[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <ipuhkh3rrc6kt4d4dpkbvdngjle4qppjj3oalcffuhkh4cujya@it4u23a4sm3k>
Date: Wed, 4 Feb 2026 16:29:35 +0000
From: Yosry Ahmed <yosry.ahmed@...ux.dev>
To: Kanchana P Sridhar <kanchana.p.sridhar@...el.com>
Cc: linux-kernel@...r.kernel.org, linux-mm@...ck.org, hannes@...xchg.org,
nphamcs@...il.com, chengming.zhou@...ux.dev, usamaarif642@...il.com,
ryan.roberts@....com, 21cnbao@...il.com, ying.huang@...ux.alibaba.com,
akpm@...ux-foundation.org, senozhatsky@...omium.org, sj@...nel.org, kasong@...cent.com,
linux-crypto@...r.kernel.org, herbert@...dor.apana.org.au, davem@...emloft.net,
clabbe@...libre.com, ardb@...nel.org, ebiggers@...gle.com, surenb@...gle.com,
kristen.c.accardi@...el.com, vinicius.gomes@...el.com, giovanni.cabiddu@...el.com,
wajdi.k.feghali@...el.com
Subject: Re: [PATCH v14 23/26] mm: zswap: Tie per-CPU acomp_ctx lifetime to
the pool.
On Sat, Jan 24, 2026 at 07:35:34PM -0800, Kanchana P Sridhar wrote:
> Currently, per-CPU acomp_ctx are allocated on pool creation and/or CPU
> hotplug, and destroyed on pool destruction or CPU hotunplug. This
> complicates the lifetime management to save memory while a CPU is
> offlined, which is not very common.
>
> Simplify lifetime management by allocating per-CPU acomp_ctx once on
> pool creation (or CPU hotplug for CPUs onlined later), and keeping them
> allocated until the pool is destroyed.
>
> Refactor cleanup code from zswap_cpu_comp_dead() into
> acomp_ctx_dealloc() to be used elsewhere.
>
> The main benefit of using the CPU hotplug multi state instance startup
> callback to allocate the acomp_ctx resources is that it prevents the
> cores from being offlined until the multi state instance addition call
> returns.
>
> From Documentation/core-api/cpu_hotplug.rst:
>
> "The node list add/remove operations and the callback invocations are
> serialized against CPU hotplug operations."
>
> Furthermore, zswap_[de]compress() cannot contend with
> zswap_cpu_comp_prepare() because:
>
> - During pool creation/deletion, the pool is not in the zswap_pools
> list.
>
> - During CPU hot[un]plug, the CPU is not yet online, as Yosry pointed
> out. zswap_cpu_comp_prepare() will be run on a control CPU,
> since CPUHP_MM_ZSWP_POOL_PREPARE is in the PREPARE section of "enum
> cpuhp_state".
>
> In both these cases, any recursions into zswap reclaim from
> zswap_cpu_comp_prepare() will be handled by the old pool.
>
> The above two observations enable the following simplifications:
>
> 1) zswap_cpu_comp_prepare():
>
> a) acomp_ctx mutex locking:
>
> If the process gets migrated while zswap_cpu_comp_prepare() is
> running, it will complete on the new CPU. In case of failures, we
> pass the acomp_ctx pointer obtained at the start of
> zswap_cpu_comp_prepare() to acomp_ctx_dealloc(), which again, can
> only undergo migration. There appear to be no contention
> scenarios that might cause inconsistent values of acomp_ctx's
> members. Hence, it seems there is no need for
> mutex_lock(&acomp_ctx->mutex) in zswap_cpu_comp_prepare().
>
> b) acomp_ctx mutex initialization:
>
> Since the pool is not yet on zswap_pools list, we don't need to
> initialize the per-CPU acomp_ctx mutex in
> zswap_pool_create(). This has been restored to occur in
> zswap_cpu_comp_prepare().
>
> c) Subsequent CPU offline-online transitions:
>
> zswap_cpu_comp_prepare() checks upfront if acomp_ctx->acomp is
> valid. If so, it returns success. This should handle any CPU
> hotplug online-offline transitions after pool creation is done.
>
> 2) CPU offline vis-a-vis zswap ops:
>
> Let's suppose the process is migrated to another CPU before the
> current CPU is dysfunctional. If zswap_[de]compress() holds the
> acomp_ctx->mutex lock of the offlined CPU, that mutex will be
> released once it completes on the new CPU. Since there is no
> teardown callback, there is no possibility of UAF.
>
> 3) Pool creation/deletion and process migration to another CPU:
>
> During pool creation/deletion, the pool is not in the zswap_pools
> list. Hence it cannot contend with zswap ops on that CPU. However,
> the process can get migrated.
>
> a) Pool creation --> zswap_cpu_comp_prepare()
> --> process migrated:
> * Old CPU offline: no-op.
> * zswap_cpu_comp_prepare() continues
> to run on the new CPU to finish
> allocating acomp_ctx resources for
> the offlined CPU.
>
> b) Pool deletion --> acomp_ctx_dealloc()
> --> process migrated:
> * Old CPU offline: no-op.
> * acomp_ctx_dealloc() continues
> to run on the new CPU to finish
> de-allocating acomp_ctx resources
> for the offlined CPU.
>
> 4) Pool deletion vis-a-vis CPU onlining:
>
> The call to cpuhp_state_remove_instance() cannot race with
> zswap_cpu_comp_prepare() because of hotplug synchronization.
>
> The current acomp_ctx_get_cpu_lock()/acomp_ctx_put_unlock() are
> deleted. Instead, zswap_[de]compress() directly call
> mutex_[un]lock(&acomp_ctx->mutex).
>
> The per-CPU memory cost of not deleting the acomp_ctx resources upon CPU
> offlining, and only deleting them when the pool is destroyed, is as
> follows, on x86_64:
>
> IAA with 8 dst buffers for batching: 64.34 KB
> Software compressors with 1 dst buffer: 8.28 KB
>
> This cost is only paid when a CPU is offlined, until it is onlined
> again.
>
> Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@...el.com>
LGTM with a small nit below:
Acked-by: Yosry Ahmed <yosry.ahmed@...ux.dev>
> ---
> mm/zswap.c | 164 +++++++++++++++++++++--------------------------------
> 1 file changed, 66 insertions(+), 98 deletions(-)
>
> diff --git a/mm/zswap.c b/mm/zswap.c
> index 038e240c03dd..9480d54264e4 100644
> --- a/mm/zswap.c
> +++ b/mm/zswap.c
> @@ -241,6 +241,20 @@ static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
> **********************************/
> static void __zswap_pool_empty(struct percpu_ref *ref);
>
> +static void acomp_ctx_dealloc(struct crypto_acomp_ctx *acomp_ctx)
> +{
> + if (IS_ERR_OR_NULL(acomp_ctx))
> + return;
> +
> + if (!IS_ERR_OR_NULL(acomp_ctx->req))
> + acomp_request_free(acomp_ctx->req);
> +
> + if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
> + crypto_free_acomp(acomp_ctx->acomp);
Should we set acomp_ctx->req, acomp_ctx->acomp, and acomp_ctx->buffer to
NULL here?
zswap_cpu_comp_prepare() uses NULL to detect that we need to initialize
acomp_ctx.
> +
> + kfree(acomp_ctx->buffer);
> +}
> +
> static struct zswap_pool *zswap_pool_create(char *compressor)
> {
> struct zswap_pool *pool;
> @@ -262,19 +276,27 @@ static struct zswap_pool *zswap_pool_create(char *compressor)
>
> strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
>
> - pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
> + /* Many things rely on the zero-initialization. */
> + pool->acomp_ctx = alloc_percpu_gfp(*pool->acomp_ctx,
> + GFP_KERNEL | __GFP_ZERO);
> if (!pool->acomp_ctx) {
> pr_err("percpu alloc failed\n");
> goto error;
> }
>
> - for_each_possible_cpu(cpu)
> - mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex);
> -
> + /*
> + * This is serialized against CPU hotplug operations. Hence, cores
> + * cannot be offlined until this finishes.
> + */
> ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
> &pool->node);
> +
> + /*
> + * cpuhp_state_add_instance() will not cleanup on failure since
> + * we don't register a hotunplug callback.
> + */
> if (ret)
> - goto error;
> + goto cpuhp_add_fail;
>
> /* being the current pool takes 1 ref; this func expects the
> * caller to always add the new pool as the current pool
> @@ -291,6 +313,10 @@ static struct zswap_pool *zswap_pool_create(char *compressor)
>
> ref_fail:
> cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
> +
> +cpuhp_add_fail:
> + for_each_possible_cpu(cpu)
> + acomp_ctx_dealloc(per_cpu_ptr(pool->acomp_ctx, cpu));
> error:
> if (pool->acomp_ctx)
> free_percpu(pool->acomp_ctx);
> @@ -321,9 +347,15 @@ static struct zswap_pool *__zswap_pool_create_fallback(void)
>
> static void zswap_pool_destroy(struct zswap_pool *pool)
> {
> + int cpu;
> +
> zswap_pool_debug("destroying", pool);
>
> cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
> +
> + for_each_possible_cpu(cpu)
> + acomp_ctx_dealloc(per_cpu_ptr(pool->acomp_ctx, cpu));
> +
> free_percpu(pool->acomp_ctx);
>
> zs_destroy_pool(pool->zs_pool);
> @@ -735,39 +767,36 @@ static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
> {
> struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
> struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
> - struct crypto_acomp *acomp = NULL;
> - struct acomp_req *req = NULL;
> - u8 *buffer = NULL;
> - int ret;
> + int ret = -ENOMEM;
>
> - buffer = kmalloc_node(PAGE_SIZE, GFP_KERNEL, cpu_to_node(cpu));
> - if (!buffer) {
> - ret = -ENOMEM;
> - goto fail;
> + /*
> + * To handle cases where the CPU goes through online-offline-online
> + * transitions, we return if the acomp_ctx has already been initialized.
> + */
> + if (acomp_ctx->acomp) {
> + WARN_ON_ONCE(IS_ERR(acomp_ctx->acomp));
> + return 0;
> }
>
> - acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
> - if (IS_ERR(acomp)) {
> + acomp_ctx->buffer = kmalloc_node(PAGE_SIZE, GFP_KERNEL, cpu_to_node(cpu));
> + if (!acomp_ctx->buffer)
> + return ret;
> +
> + acomp_ctx->acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
> + if (IS_ERR(acomp_ctx->acomp)) {
> pr_err("could not alloc crypto acomp %s : %ld\n",
> - pool->tfm_name, PTR_ERR(acomp));
> - ret = PTR_ERR(acomp);
> + pool->tfm_name, PTR_ERR(acomp_ctx->acomp));
> + ret = PTR_ERR(acomp_ctx->acomp);
> goto fail;
> }
>
> - req = acomp_request_alloc(acomp);
> - if (!req) {
> + acomp_ctx->req = acomp_request_alloc(acomp_ctx->acomp);
> + if (!acomp_ctx->req) {
> pr_err("could not alloc crypto acomp_request %s\n",
> pool->tfm_name);
> - ret = -ENOMEM;
> goto fail;
> }
>
> - /*
> - * Only hold the mutex after completing allocations, otherwise we may
> - * recurse into zswap through reclaim and attempt to hold the mutex
> - * again resulting in a deadlock.
> - */
> - mutex_lock(&acomp_ctx->mutex);
> crypto_init_wait(&acomp_ctx->wait);
>
> /*
> @@ -775,83 +804,19 @@ static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
> * crypto_wait_req(); if the backend of acomp is scomp, the callback
> * won't be called, crypto_wait_req() will return without blocking.
> */
> - acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
> + acomp_request_set_callback(acomp_ctx->req, CRYPTO_TFM_REQ_MAY_BACKLOG,
> crypto_req_done, &acomp_ctx->wait);
>
> - acomp_ctx->buffer = buffer;
> - acomp_ctx->acomp = acomp;
> - acomp_ctx->req = req;
> -
> acomp_request_set_unit_size(acomp_ctx->req, PAGE_SIZE);
>
> - mutex_unlock(&acomp_ctx->mutex);
> + mutex_init(&acomp_ctx->mutex);
> return 0;
>
> fail:
> - if (!IS_ERR_OR_NULL(acomp))
> - crypto_free_acomp(acomp);
> - kfree(buffer);
> + acomp_ctx_dealloc(acomp_ctx);
> return ret;
> }
>
[..]
Powered by blists - more mailing lists