[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <da771006-c1ca-435a-bdec-793e866a2b49@huaweicloud.com>
Date: Wed, 4 Feb 2026 10:44:09 +0800
From: Chen Ridong <chenridong@...weicloud.com>
To: Waiman Long <longman@...hat.com>, Tejun Heo <tj@...nel.org>,
Johannes Weiner <hannes@...xchg.org>, Michal Koutný
<mkoutny@...e.com>, Ingo Molnar <mingo@...hat.com>,
Peter Zijlstra <peterz@...radead.org>, Juri Lelli <juri.lelli@...hat.com>,
Vincent Guittot <vincent.guittot@...aro.org>,
Steven Rostedt <rostedt@...dmis.org>, Ben Segall <bsegall@...gle.com>,
Mel Gorman <mgorman@...e.de>, Valentin Schneider <vschneid@...hat.com>,
Anna-Maria Behnsen <anna-maria@...utronix.de>,
Frederic Weisbecker <frederic@...nel.org>,
Thomas Gleixner <tglx@...utronix.de>, Shuah Khan <shuah@...nel.org>
Cc: cgroups@...r.kernel.org, linux-kernel@...r.kernel.org,
linux-kselftest@...r.kernel.org
Subject: Re: [PATCH/for-next v3 3/3] cgroup/cpuset: Call housekeeping_update()
without holding cpus_read_lock
On 2026/2/3 4:11, Waiman Long wrote:
> The current cpuset partition code is able to dynamically update
> the sched domains of a running system and the corresponding
> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
> "isolcpus=domain,..." boot command line feature at run time.
>
> The housekeeping cpumask update requires flushing a number of different
> workqueues which may not be safe with cpus_read_lock() held as the
> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
> which have locking dependency with cpus_read_lock() down the chain. Below
> is an example of such circular locking problem.
>
> ======================================================
> WARNING: possible circular locking dependency detected
> 6.18.0-test+ #2 Tainted: G S
> ------------------------------------------------------
> test_cpuset_prs/10971 is trying to acquire lock:
> ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at: touch_wq_lockdep_map+0x7a/0x180
>
> but task is already holding lock:
> ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: cpuset_partition_write+0x85/0x130
>
> which lock already depends on the new lock.
>
> the existing dependency chain (in reverse order) is:
> -> #4 (cpuset_mutex){+.+.}-{4:4}:
> -> #3 (cpu_hotplug_lock){++++}-{0:0}:
> -> #2 (rtnl_mutex){+.+.}-{4:4}:
> -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
> -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
>
> Chain exists of:
> (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
>
> 5 locks held by test_cpuset_prs/10971:
> #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
> #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at: kernfs_fop_write_iter+0x260/0x5f0
> #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x2b6/0x5f0
> #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at: cpuset_partition_write+0x77/0x130
> #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: cpuset_partition_write+0x85/0x130
>
> Call Trace:
> <TASK>
> :
> touch_wq_lockdep_map+0x93/0x180
> __flush_workqueue+0x111/0x10b0
> housekeeping_update+0x12d/0x2d0
> update_parent_effective_cpumask+0x595/0x2440
> update_prstate+0x89d/0xce0
> cpuset_partition_write+0xc5/0x130
> cgroup_file_write+0x1a5/0x680
> kernfs_fop_write_iter+0x3df/0x5f0
> vfs_write+0x525/0xfd0
> ksys_write+0xf9/0x1d0
> do_syscall_64+0x95/0x520
> entry_SYSCALL_64_after_hwframe+0x76/0x7e
>
> To avoid such a circular locking dependency problem, we have to
> call housekeeping_update() without holding the cpus_read_lock() and
> cpuset_mutex. The current set of wq's flushed by housekeeping_update()
> may not have work functions that call cpus_read_lock() directly,
> but we are likely to extend the list of wq's that are flushed in the
> future. Moreover, the current set of work functions may hold locks that
> may have cpu_hotplug_lock down the dependency chain.
>
> One way to do that is to defer the housekeeping_update() call after
> the current cpuset critical section has finished without holding
> cpus_read_lock. For cpuset control file write, this can be done by
> deferring it using task_work right before returning to userspace.
>
> To enable mutual exclusion between the housekeeping_update() call and
> other cpuset control file write actions, a new top level cpuset_top_mutex
> is introduced. This new mutex will be acquired first to allow sharing
> variables used by both code paths. However, cpuset update from CPU
> hotplug can still happen in parallel with the housekeeping_update()
> call, though that should be rare in production environment.
>
> As cpus_read_lock() is now no longer held when
> tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
> directly.
>
> The lockdep_is_cpuset_held() is also updated to check the new
> cpuset_top_mutex.
>
> Signed-off-by: Waiman Long <longman@...hat.com>
> ---
> kernel/cgroup/cpuset.c | 103 +++++++++++++++++++++++++++-------
> kernel/sched/isolation.c | 4 +-
> kernel/time/timer_migration.c | 3 +-
> 3 files changed, 86 insertions(+), 24 deletions(-)
>
> diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
> index e98a2e953392..d2f51f40f87e 100644
> --- a/kernel/cgroup/cpuset.c
> +++ b/kernel/cgroup/cpuset.c
> @@ -65,14 +65,28 @@ static const char * const perr_strings[] = {
> * CPUSET Locking Convention
> * -------------------------
> *
> - * Below are the three global locks guarding cpuset structures in lock
> + * Below are the four global/local locks guarding cpuset structures in lock
> * acquisition order:
> + * - cpuset_top_mutex
> * - cpu_hotplug_lock (cpus_read_lock/cpus_write_lock)
> * - cpuset_mutex
> * - callback_lock (raw spinlock)
> *
> - * A task must hold all the three locks to modify externally visible or
> - * used fields of cpusets, though some of the internally used cpuset fields
> + * As cpuset will now indirectly flush a number of different workqueues in
> + * housekeeping_update() to update housekeeping cpumasks when the set of
> + * isolated CPUs is going to be changed, it may be vulnerable to deadlock
> + * if we hold cpus_read_lock while calling into housekeeping_update().
> + *
> + * The first cpuset_top_mutex will be held except when calling into
> + * cpuset_handle_hotplug() from the CPU hotplug code where cpus_write_lock
> + * and cpuset_mutex will be held instead. The main purpose of this mutex
> + * is to prevent regular cpuset control file write actions from interfering
> + * with the call to housekeeping_update(), though CPU hotplug operation can
> + * still happen in parallel. This mutex also provides protection for some
> + * internal variables.
> + *
> + * A task must hold all the remaining three locks to modify externally visible
> + * or used fields of cpusets, though some of the internally used cpuset fields
> * and internal variables can be modified without holding callback_lock. If only
> * reliable read access of the externally used fields are needed, a task can
> * hold either cpuset_mutex or callback_lock which are exposed to other
> @@ -100,6 +114,7 @@ static const char * const perr_strings[] = {
> * cpumasks and nodemasks.
> */
>
> +static DEFINE_MUTEX(cpuset_top_mutex);
> static DEFINE_MUTEX(cpuset_mutex);
>
> /*
> @@ -111,6 +126,8 @@ static DEFINE_MUTEX(cpuset_mutex);
> *
> * CSCB: Readable by holding either cpuset_mutex or callback_lock. Writable
> * by holding both cpuset_mutex and callback_lock.
> + *
> + * T: Read/write-able by holding the cpuset_top_mutex.
> */
>
> /*
> @@ -135,6 +152,13 @@ static cpumask_var_t isolated_cpus; /* CSCB */
> */
> static bool isolated_cpus_updating; /* RWCS */
>
> +/*
> + * Copy of isolated_cpus to be processed by housekeeping_update()
> + */
> +static cpumask_var_t isolated_hk_cpus; /* T */
> +static bool isolcpus_twork_queued; /* T */
> +
> +
> /*
> * A flag to force sched domain rebuild at the end of an operation.
> * It can be set in
> @@ -298,6 +322,7 @@ void lockdep_assert_cpuset_lock_held(void)
> */
> void cpuset_full_lock(void)
> {
> + mutex_lock(&cpuset_top_mutex);
> cpus_read_lock();
> mutex_lock(&cpuset_mutex);
> }
> @@ -306,12 +331,13 @@ void cpuset_full_unlock(void)
> {
> mutex_unlock(&cpuset_mutex);
> cpus_read_unlock();
> + mutex_unlock(&cpuset_top_mutex);
> }
>
> #ifdef CONFIG_LOCKDEP
> bool lockdep_is_cpuset_held(void)
> {
> - return lockdep_is_held(&cpuset_mutex);
> + return lockdep_is_held(&cpuset_top_mutex);
> }
> #endif
>
void cpuset_lock(void)
{
mutex_lock(&cpuset_mutex);
}
void cpuset_unlock(void)
{
mutex_unlock(&cpuset_mutex);
}
void lockdep_assert_cpuset_lock_held(void)
{
lockdep_assert_held(&cpuset_mutex);
}
A potential issue is that lockdep_is_cpuset_held() only checks cpuset_top_mutex.
In the call chain below, only cpuset_mutex is acquired:
rebuild_sched_domains_cpuslocked ---only cpuset_mutex is acquired
rebuild_sched_domains_locked
partition_sched_domains
dl_rebuild_rd_accounting
dl_rebuild_rd_accounting
dl_update_tasks_root_domain
dl_add_task_root_domain
dl_get_task_effective_cpus
housekeeping_cpumask
housekeeping_dereference_check
if (IS_ENABLED(CONFIG_CPUSETS) && lockdep_is_cpuset_held())
Since lockdep_is_cpuset_held() validates cpuset_top_mutex rather than
cpuset_mutex, could this lead to false lockdep warnings?
--
Best regards,
Ridong
Powered by blists - more mailing lists