lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [day] [month] [year] [list]
Date:	Mon, 04 Dec 2006 12:06:16 -0800
From:	Divy Le Ray <divy@...lsio.com>
To:	divy@...lsio.com
CC:	jeff@...zik.org, netdev@...r.kernel.org,
	linux-kernel@...r.kernel.org
Subject: Re: [PATCH 4/10] cxgb3 - HW access routines - part 2

Please dismiss this one. It duplicate patch 3/10.
I reposted pach 4/10 under the title
[PATCH 4/10] cxgb3 - HW access routines - _REAL_ part 2

Sorry for the inconvenience.

Cheers,
Divy

divy@...lsio.com wrote:
> From: Divy Le Ray <divy@...lsio.com>
>
> This patch implements the HW access routines for the
> Chelsio T3 network adapter's driver.
> This patch is split. This is the first part.
>
> Signed-off-by: Divy Le Ray <divy@...lsio.com>
> ---
>  drivers/net/cxgb3/t3_hw.c | 3334 +++++++++++++++++++++++++++++++++++++++++++++
>  1 files changed, 3334 insertions(+), 0 deletions(-)
>
> diff --git a/drivers/net/cxgb3/t3_hw.c b/drivers/net/cxgb3/t3_hw.c
> new file mode 100755
> index 0000000..68798d6
> --- /dev/null
> +++ b/drivers/net/cxgb3/t3_hw.c
> @@ -0,0 +1,3334 @@
> +/*
> + * This file is part of the Chelsio T3 Ethernet driver.
> + *
> + * Copyright (C) 2003-2006 Chelsio Communications.  All rights reserved.
> + *
> + * This program is distributed in the hope that it will be useful, but WITHOUT
> + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
> + * FITNESS FOR A PARTICULAR PURPOSE.  See the LICENSE file included in this
> + * release for licensing terms and conditions.
> + */
> +
> +#include "common.h"
> +#include "regs.h"
> +#include "sge_defs.h"
> +#include "firmware_exports.h"
> +
> +/**
> + *	t3_wait_op_done - wait until an operation is completed
> + *	@adapter: the adapter performing the operation
> + *	@reg: the register to check for completion
> + *	@mask: a single-bit field within @reg that indicates completion
> + *	@polarity: the value of the field when the operation is completed
> + *	@attempts: number of check iterations
> + *      @delay: delay in usecs between iterations
> + *
> + *	Wait until an operation is completed by checking a bit in a register
> + *	up to @attempts times.  Returns 0 if the operation completes and 1
> + *	otherwise.
> + */
> +int t3_wait_op_done(struct adapter *adapter, int reg, u32 mask, int polarity,
> +		    int attempts, int delay)
> +{
> +	while (1) {
> +		u32 val = t3_read_reg(adapter, reg) & mask;
> +
> +		if (!!val == polarity)
> +			return 0;
> +		if (--attempts == 0)
> +			return -EAGAIN;
> +		if (delay)
> +			udelay(delay);
> +	}
> +}
> +
> +/**
> + *	t3_write_regs - write a bunch of registers
> + *	@adapter: the adapter to program
> + *	@p: an array of register address/register value pairs
> + *	@n: the number of address/value pairs
> + *	@offset: register address offset
> + *
> + *	Takes an array of register address/register value pairs and writes each
> + *	value to the corresponding register.  Register addresses are adjusted
> + *	by the supplied offset.
> + */
> +void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
> +		   int n, unsigned int offset)
> +{
> +	while (n--) {
> +		t3_write_reg(adapter, p->reg_addr + offset, p->val);
> +		p++;
> +	}
> +}
> +
> +/**
> + *	t3_set_reg_field - set a register field to a value
> + *	@adapter: the adapter to program
> + *	@addr: the register address
> + *	@mask: specifies the portion of the register to modify
> + *	@val: the new value for the register field
> + *
> + *	Sets a register field specified by the supplied mask to the
> + *	given value.
> + */
> +void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
> +		      u32 val)
> +{
> +	u32 v = t3_read_reg(adapter, addr) & ~mask;
> +
> +	t3_write_reg(adapter, addr, v | val);
> +	(void)t3_read_reg(adapter, addr);	/* flush */
> +}
> +
> +/**
> + *	t3_read_indirect - read indirectly addressed registers
> + *	@adap: the adapter
> + *	@addr_reg: register holding the indirect address
> + *	@data_reg: register holding the value of the indirect register
> + *	@vals: where the read register values are stored
> + *	@start_idx: index of first indirect register to read
> + *	@nregs: how many indirect registers to read
> + *
> + *	Reads registers that are accessed indirectly through an address/data
> + *	register pair.
> + */
> +void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
> +		      unsigned int data_reg, u32 * vals, unsigned int nregs,
> +		      unsigned int start_idx)
> +{
> +	while (nregs--) {
> +		t3_write_reg(adap, addr_reg, start_idx);
> +		*vals++ = t3_read_reg(adap, data_reg);
> +		start_idx++;
> +	}
> +}
> +
> +/**
> + *	t3_mc7_bd_read - read from MC7 through backdoor accesses
> + *	@mc7: identifies MC7 to read from
> + *	@start: index of first 64-bit word to read
> + *	@n: number of 64-bit words to read
> + *	@buf: where to store the read result
> + *
> + *	Read n 64-bit words from MC7 starting at word start, using backdoor
> + *	accesses.
> + */
> +int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
> +		   u64 * buf)
> +{
> +	static int shift[] = { 0, 0, 16, 24 };
> +	static int step[] = { 0, 32, 16, 8 };
> +
> +	unsigned int size64 = mc7->size / 8;	/* # of 64-bit words */
> +	struct adapter *adap = mc7->adapter;
> +
> +	if (start >= size64 || start + n > size64)
> +		return -EINVAL;
> +
> +	start *= (8 << mc7->width);
> +	while (n--) {
> +		int i;
> +		u64 val64 = 0;
> +
> +		for (i = (1 << mc7->width) - 1; i >= 0; --i) {
> +			int attempts = 10;
> +			u32 val;
> +
> +			t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
> +			t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
> +			val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
> +			while ((val & F_BUSY) && attempts--)
> +				val = t3_read_reg(adap,
> +						  mc7->offset + A_MC7_BD_OP);
> +			if (val & F_BUSY)
> +				return -EIO;
> +
> +			val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
> +			if (mc7->width == 0) {
> +				val64 = t3_read_reg(adap,
> +						    mc7->offset +
> +						    A_MC7_BD_DATA0);
> +				val64 |= (u64) val << 32;
> +			} else {
> +				if (mc7->width > 1)
> +					val >>= shift[mc7->width];
> +				val64 |= (u64) val << (step[mc7->width] * i);
> +			}
> +			start += 8;
> +		}
> +		*buf++ = val64;
> +	}
> +	return 0;
> +}
> +
> +/*
> + * Initialize MI1.
> + */
> +static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
> +{
> +	u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
> +	u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
> +	    V_CLKDIV(clkdiv);
> +
> +	if (!(ai->caps & SUPPORTED_10000baseT_Full))
> +		val |= V_ST(1);
> +	t3_write_reg(adap, A_MI1_CFG, val);
> +}
> +
> +#define MDIO_ATTEMPTS 10
> +
> +/*
> + * MI1 read/write operations for direct-addressed PHYs.
> + */
> +static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
> +		    int reg_addr, unsigned int *valp)
> +{
> +	int ret;
> +	u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
> +
> +	if (mmd_addr)
> +		return -EINVAL;
> +
> +	mutex_lock(&adapter->mdio_lock);
> +	t3_write_reg(adapter, A_MI1_ADDR, addr);
> +	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
> +	ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
> +	if (!ret)
> +		*valp = t3_read_reg(adapter, A_MI1_DATA);
> +	mutex_unlock(&adapter->mdio_lock);
> +	return ret;
> +}
> +
> +static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
> +		     int reg_addr, unsigned int val)
> +{
> +	int ret;
> +	u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
> +
> +	if (mmd_addr)
> +		return -EINVAL;
> +
> +	mutex_lock(&adapter->mdio_lock);
> +	t3_write_reg(adapter, A_MI1_ADDR, addr);
> +	t3_write_reg(adapter, A_MI1_DATA, val);
> +	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
> +	ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
> +	mutex_unlock(&adapter->mdio_lock);
> +	return ret;
> +}
> +
> +static struct mdio_ops mi1_mdio_ops = {
> +	mi1_read,
> +	mi1_write
> +};
> +
> +/*
> + * MI1 read/write operations for indirect-addressed PHYs.
> + */
> +static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
> +			int reg_addr, unsigned int *valp)
> +{
> +	int ret;
> +	u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
> +
> +	mutex_lock(&adapter->mdio_lock);
> +	t3_write_reg(adapter, A_MI1_ADDR, addr);
> +	t3_write_reg(adapter, A_MI1_DATA, reg_addr);
> +	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
> +	ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
> +	if (!ret) {
> +		t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
> +		ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
> +				      MDIO_ATTEMPTS, 20);
> +		if (!ret)
> +			*valp = t3_read_reg(adapter, A_MI1_DATA);
> +	}
> +	mutex_unlock(&adapter->mdio_lock);
> +	return ret;
> +}
> +
> +static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
> +			 int reg_addr, unsigned int val)
> +{
> +	int ret;
> +	u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
> +
> +	mutex_lock(&adapter->mdio_lock);
> +	t3_write_reg(adapter, A_MI1_ADDR, addr);
> +	t3_write_reg(adapter, A_MI1_DATA, reg_addr);
> +	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
> +	ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
> +	if (!ret) {
> +		t3_write_reg(adapter, A_MI1_DATA, val);
> +		t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
> +		ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
> +				      MDIO_ATTEMPTS, 20);
> +	}
> +	mutex_unlock(&adapter->mdio_lock);
> +	return ret;
> +}
> +
> +static struct mdio_ops mi1_mdio_ext_ops = {
> +	mi1_ext_read,
> +	mi1_ext_write
> +};
> +
> +/**
> + *	t3_mdio_change_bits - modify the value of a PHY register
> + *	@phy: the PHY to operate on
> + *	@mmd: the device address
> + *	@reg: the register address
> + *	@clear: what part of the register value to mask off
> + *	@set: what part of the register value to set
> + *
> + *	Changes the value of a PHY register by applying a mask to its current
> + *	value and ORing the result with a new value.
> + */
> +int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
> +			unsigned int set)
> +{
> +	int ret;
> +	unsigned int val;
> +
> +	ret = mdio_read(phy, mmd, reg, &val);
> +	if (!ret) {
> +		val &= ~clear;
> +		ret = mdio_write(phy, mmd, reg, val | set);
> +	}
> +	return ret;
> +}
> +
> +/**
> + *	t3_phy_reset - reset a PHY block
> + *	@phy: the PHY to operate on
> + *	@mmd: the device address of the PHY block to reset
> + *	@wait: how long to wait for the reset to complete in 1ms increments
> + *
> + *	Resets a PHY block and optionally waits for the reset to complete.
> + *	@mmd should be 0 for 10/100/1000 PHYs and the device address to reset
> + *	for 10G PHYs.
> + */
> +int t3_phy_reset(struct cphy *phy, int mmd, int wait)
> +{
> +	int err;
> +	unsigned int ctl;
> +
> +	err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
> +	if (err || !wait)
> +		return err;
> +
> +	do {
> +		err = mdio_read(phy, mmd, MII_BMCR, &ctl);
> +		if (err)
> +			return err;
> +		ctl &= BMCR_RESET;
> +		if (ctl)
> +			msleep(1);
> +	} while (ctl && --wait);
> +
> +	return ctl ? -1 : 0;
> +}
> +
> +/**
> + *	t3_phy_advertise - set the PHY advertisement registers for autoneg
> + *	@phy: the PHY to operate on
> + *	@advert: bitmap of capabilities the PHY should advertise
> + *
> + *	Sets a 10/100/1000 PHY's advertisement registers to advertise the
> + *	requested capabilities.
> + */
> +int t3_phy_advertise(struct cphy *phy, unsigned int advert)
> +{
> +	int err;
> +	unsigned int val = 0;
> +
> +	err = mdio_read(phy, 0, MII_CTRL1000, &val);
> +	if (err)
> +		return err;
> +
> +	val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
> +	if (advert & ADVERTISED_1000baseT_Half)
> +		val |= ADVERTISE_1000HALF;
> +	if (advert & ADVERTISED_1000baseT_Full)
> +		val |= ADVERTISE_1000FULL;
> +
> +	err = mdio_write(phy, 0, MII_CTRL1000, val);
> +	if (err)
> +		return err;
> +
> +	val = 1;
> +	if (advert & ADVERTISED_10baseT_Half)
> +		val |= ADVERTISE_10HALF;
> +	if (advert & ADVERTISED_10baseT_Full)
> +		val |= ADVERTISE_10FULL;
> +	if (advert & ADVERTISED_100baseT_Half)
> +		val |= ADVERTISE_100HALF;
> +	if (advert & ADVERTISED_100baseT_Full)
> +		val |= ADVERTISE_100FULL;
> +	if (advert & ADVERTISED_Pause)
> +		val |= ADVERTISE_PAUSE_CAP;
> +	if (advert & ADVERTISED_Asym_Pause)
> +		val |= ADVERTISE_PAUSE_ASYM;
> +	return mdio_write(phy, 0, MII_ADVERTISE, val);
> +}
> +
> +/**
> + *	t3_set_phy_speed_duplex - force PHY speed and duplex
> + *	@phy: the PHY to operate on
> + *	@speed: requested PHY speed
> + *	@duplex: requested PHY duplex
> + *
> + *	Force a 10/100/1000 PHY's speed and duplex.  This also disables
> + *	auto-negotiation except for GigE, where auto-negotiation is mandatory.
> + */
> +int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
> +{
> +	int err;
> +	unsigned int ctl;
> +
> +	err = mdio_read(phy, 0, MII_BMCR, &ctl);
> +	if (err)
> +		return err;
> +
> +	if (speed >= 0) {
> +		ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
> +		if (speed == SPEED_100)
> +			ctl |= BMCR_SPEED100;
> +		else if (speed == SPEED_1000)
> +			ctl |= BMCR_SPEED1000;
> +	}
> +	if (duplex >= 0) {
> +		ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
> +		if (duplex == DUPLEX_FULL)
> +			ctl |= BMCR_FULLDPLX;
> +	}
> +	if (ctl & BMCR_SPEED1000)	/* auto-negotiation required for GigE */
> +		ctl |= BMCR_ANENABLE;
> +	return mdio_write(phy, 0, MII_BMCR, ctl);
> +}
> +
> +static struct adapter_info t3_adap_info[] = {
> +	{2, 0, 0, 0,
> +	 F_GPIO2_OEN | F_GPIO4_OEN |
> +	 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
> +	 SUPPORTED_OFFLOAD,
> +	 &mi1_mdio_ops, "Chelsio PE9000"},
> +	{2, 0, 0, 0,
> +	 F_GPIO2_OEN | F_GPIO4_OEN |
> +	 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
> +	 SUPPORTED_OFFLOAD,
> +	 &mi1_mdio_ops, "Chelsio T302"},
> +	{1, 0, 0, 0,
> +	 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
> +	 F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
> +	 SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD,
> +	 &mi1_mdio_ext_ops, "Chelsio T310"},
> +	{2, 0, 0, 0,
> +	 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
> +	 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
> +	 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
> +	 SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD,
> +	 &mi1_mdio_ext_ops, "Chelsio T320"},
> +};
> +
> +/*
> + * Return the adapter_info structure with a given index.  Out-of-range indices
> + * return NULL.
> + */
> +const struct adapter_info *t3_get_adapter_info(unsigned int id)
> +{
> +	return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
> +}
> +
> +#define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
> +		 SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
> +#define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
> +
> +static struct port_type_info port_types[] = {
> +	{NULL},
> +	{t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
> +	 "10GBASE-XR"},
> +	{t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
> +	 "10/100/1000BASE-T"},
> +	{NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
> +	 "10/100/1000BASE-T"},
> +	{t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
> +	{NULL, CAPS_10G, "10GBASE-KX4"},
> +	{t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
> +	{t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
> +	 "10GBASE-SR"},
> +	{NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
> +};
> +
> +#undef CAPS_1G
> +#undef CAPS_10G
> +
> +#define VPD_ENTRY(name, len) \
> +	u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
> +
> +/*
> + * Partial EEPROM Vital Product Data structure.  Includes only the ID and
> + * VPD-R sections.
> + */
> +struct t3_vpd {
> +	u8 id_tag;
> +	u8 id_len[2];
> +	u8 id_data[16];
> +	u8 vpdr_tag;
> +	u8 vpdr_len[2];
> +	 VPD_ENTRY(pn, 16);	/* part number */
> +	 VPD_ENTRY(ec, 16);	/* EC level */
> +	 VPD_ENTRY(sn, 16);	/* serial number */
> +	 VPD_ENTRY(na, 12);	/* MAC address base */
> +	 VPD_ENTRY(cclk, 6);	/* core clock */
> +	 VPD_ENTRY(mclk, 6);	/* mem clock */
> +	 VPD_ENTRY(uclk, 6);	/* uP clk */
> +	 VPD_ENTRY(mdc, 6);	/* MDIO clk */
> +	 VPD_ENTRY(mt, 2);	/* mem timing */
> +	 VPD_ENTRY(xaui0cfg, 6);	/* XAUI0 config */
> +	 VPD_ENTRY(xaui1cfg, 6);	/* XAUI1 config */
> +	 VPD_ENTRY(port0, 2);	/* PHY0 complex */
> +	 VPD_ENTRY(port1, 2);	/* PHY1 complex */
> +	 VPD_ENTRY(port2, 2);	/* PHY2 complex */
> +	 VPD_ENTRY(port3, 2);	/* PHY3 complex */
> +	 VPD_ENTRY(rv, 1);	/* csum */
> +	u32 pad;		/* for multiple-of-4 sizing and alignment */
> +};
> +
> +#define EEPROM_MAX_POLL   4
> +#define EEPROM_STAT_ADDR  0x4000
> +#define VPD_BASE          0xc00
> +
> +/**
> + *	t3_seeprom_read - read a VPD EEPROM location
> + *	@adapter: adapter to read
> + *	@addr: EEPROM address
> + *	@data: where to store the read data
> + *
> + *	Read a 32-bit word from a location in VPD EEPROM using the card's PCI
> + *	VPD ROM capability.  A zero is written to the flag bit when the
> + *	addres is written to the control register.  The hardware device will
> + *	set the flag to 1 when 4 bytes have been read into the data register.
> + */
> +int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 * data)
> +{
> +	u16 val;
> +	int attempts = EEPROM_MAX_POLL;
> +	unsigned int base = adapter->params.pci.vpd_cap_addr;
> +
> +	if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
> +		return -EINVAL;
> +
> +	pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, (u16) addr);
> +	do {
> +		udelay(10);
> +		pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
> +	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
> +
> +	if (!(val & PCI_VPD_ADDR_F)) {
> +		CH_ERR("%s: reading EEPROM address 0x%x failed\n",
> +		       adapter->name, addr);
> +		return -EIO;
> +	}
> +	pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data);
> +	*data = le32_to_cpu(*data);
> +	return 0;
> +}
> +
> +/**
> + *	t3_seeprom_write - write a VPD EEPROM location
> + *	@adapter: adapter to write
> + *	@addr: EEPROM address
> + *	@data: value to write
> + *
> + *	Write a 32-bit word to a location in VPD EEPROM using the card's PCI
> + *	VPD ROM capability.
> + */
> +int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
> +{
> +	u16 val;
> +	int attempts = EEPROM_MAX_POLL;
> +	unsigned int base = adapter->params.pci.vpd_cap_addr;
> +
> +	if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
> +		return -EINVAL;
> +
> +	pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
> +			       cpu_to_le32(data));
> +	pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
> +			      (u16) addr | PCI_VPD_ADDR_F);
> +	do {
> +		msleep(1);
> +		pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
> +	} while ((val & PCI_VPD_ADDR_F) && --attempts);
> +
> +	if (val & PCI_VPD_ADDR_F) {
> +		CH_ERR("%s: write to EEPROM address 0x%x failed\n",
> +		       adapter->name, addr);
> +		return -EIO;
> +	}
> +	return 0;
> +}
> +
> +/**
> + *	t3_seeprom_wp - enable/disable EEPROM write protection
> + *	@adapter: the adapter
> + *	@enable: 1 to enable write protection, 0 to disable it
> + *
> + *	Enables or disables write protection on the serial EEPROM.
> + */
> +int t3_seeprom_wp(struct adapter *adapter, int enable)
> +{
> +	return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
> +}
> +
> +/*
> + * Convert a character holding a hex digit to a number.
> + */
> +static unsigned int hex2int(unsigned char c)
> +{
> +	return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
> +}
> +
> +/**
> + *	get_vpd_params - read VPD parameters from VPD EEPROM
> + *	@adapter: adapter to read
> + *	@p: where to store the parameters
> + *
> + *	Reads card parameters stored in VPD EEPROM.
> + */
> +static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
> +{
> +	int i, addr, ret;
> +	struct t3_vpd vpd;
> +
> +	/*
> +	 * Card information is normally at VPD_BASE but some early cards had
> +	 * it at 0.
> +	 */
> +	ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *) & vpd);
> +	if (ret)
> +		return ret;
> +	addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
> +
> +	for (i = 0; i < sizeof(vpd); i += 4) {
> +		ret = t3_seeprom_read(adapter, addr + i,
> +				      (u32 *) ((u8 *) & vpd + i));
> +		if (ret)
> +			return ret;
> +	}
> +
> +	p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
> +	p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
> +	p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
> +	p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
> +	p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
> +
> +	/* Old eeproms didn't have port information */
> +	if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
> +		p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
> +		p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
> +	} else {
> +		p->port_type[0] = (u8) hex2int(vpd.port0_data[0]);
> +		p->port_type[1] = (u8) hex2int(vpd.port1_data[0]);
> +		p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
> +		p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
> +	}
> +
> +	for (i = 0; i < 6; i++)
> +		p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
> +		    hex2int(vpd.na_data[2 * i + 1]);
> +	return 0;
> +}
> +
> +/* serial flash and firmware constants */
> +enum {
> +	SF_ATTEMPTS = 5,	/* max retries for SF1 operations */
> +	SF_SEC_SIZE = 64 * 1024,	/* serial flash sector size */
> +	SF_SIZE = SF_SEC_SIZE * 8,	/* serial flash size */
> +
> +	/* flash command opcodes */
> +	SF_PROG_PAGE = 2,	/* program page */
> +	SF_WR_DISABLE = 4,	/* disable writes */
> +	SF_RD_STATUS = 5,	/* read status register */
> +	SF_WR_ENABLE = 6,	/* enable writes */
> +	SF_RD_DATA_FAST = 0xb,	/* read flash */
> +	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
> +
> +	FW_FLASH_BOOT_ADDR = 0x70000,	/* start address of FW in flash */
> +	FW_VERS_ADDR = 0x77ffc	/* flash address holding FW version */
> +};
> +
> +/**
> + *	sf1_read - read data from the serial flash
> + *	@adapter: the adapter
> + *	@byte_cnt: number of bytes to read
> + *	@cont: whether another operation will be chained
> + *	@valp: where to store the read data
> + *
> + *	Reads up to 4 bytes of data from the serial flash.  The location of
> + *	the read needs to be specified prior to calling this by issuing the
> + *	appropriate commands to the serial flash.
> + */
> +static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
> +		    u32 * valp)
> +{
> +	int ret;
> +
> +	if (!byte_cnt || byte_cnt > 4)
> +		return -EINVAL;
> +	if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
> +		return -EBUSY;
> +	t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
> +	ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
> +	if (!ret)
> +		*valp = t3_read_reg(adapter, A_SF_DATA);
> +	return ret;
> +}
> +
> +/**
> + *	sf1_write - write data to the serial flash
> + *	@adapter: the adapter
> + *	@byte_cnt: number of bytes to write
> + *	@cont: whether another operation will be chained
> + *	@val: value to write
> + *
> + *	Writes up to 4 bytes of data to the serial flash.  The location of
> + *	the write needs to be specified prior to calling this by issuing the
> + *	appropriate commands to the serial flash.
> + */
> +static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
> +		     u32 val)
> +{
> +	if (!byte_cnt || byte_cnt > 4)
> +		return -EINVAL;
> +	if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
> +		return -EBUSY;
> +	t3_write_reg(adapter, A_SF_DATA, val);
> +	t3_write_reg(adapter, A_SF_OP,
> +		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
> +	return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
> +}
> +
> +/**
> + *	flash_wait_op - wait for a flash operation to complete
> + *	@adapter: the adapter
> + *	@attempts: max number of polls of the status register
> + *	@delay: delay between polls in ms
> + *
> + *	Wait for a flash operation to complete by polling the status register.
> + */
> +static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
> +{
> +	int ret;
> +	u32 status;
> +
> +	while (1) {
> +		if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
> +		    (ret = sf1_read(adapter, 1, 0, &status)) != 0)
> +			return ret;
> +		if (!(status & 1))
> +			return 0;
> +		if (--attempts == 0)
> +			return -EAGAIN;
> +		if (delay)
> +			msleep(delay);
> +	}
> +}
> +
> +/**
> + *	t3_read_flash - read words from serial flash
> + *	@adapter: the adapter
> + *	@addr: the start address for the read
> + *	@nwords: how many 32-bit words to read
> + *	@data: where to store the read data
> + *	@byte_oriented: whether to store data as bytes or as words
> + *
> + *	Read the specified number of 32-bit words from the serial flash.
> + *	If @byte_oriented is set the read data is stored as a byte array
> + *	(i.e., big-endian), otherwise as 32-bit words in the platform's
> + *	natural endianess.
> + */
> +int t3_read_flash(struct adapter *adapter, unsigned int addr,
> +		  unsigned int nwords, u32 * data, int byte_oriented)
> +{
> +	int ret;
> +
> +	if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
> +		return -EINVAL;
> +
> +	addr = swab32(addr) | SF_RD_DATA_FAST;
> +
> +	if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
> +	    (ret = sf1_read(adapter, 1, 1, data)) != 0)
> +		return ret;
> +
> +	for (; nwords; nwords--, data++) {
> +		ret = sf1_read(adapter, 4, nwords > 1, data);
> +		if (ret)
> +			return ret;
> +		if (byte_oriented)
> +			*data = htonl(*data);
> +	}
> +	return 0;
> +}
> +
> +/**
> + *	t3_write_flash - write up to a page of data to the serial flash
> + *	@adapter: the adapter
> + *	@addr: the start address to write
> + *	@n: length of data to write
> + *	@data: the data to write
> + *
> + *	Writes up to a page of data (256 bytes) to the serial flash starting
> + *	at the given address.
> + */
> +static int t3_write_flash(struct adapter *adapter, unsigned int addr,
> +			  unsigned int n, const u8 * data)
> +{
> +	int ret;
> +	u32 buf[64];
> +	unsigned int i, c, left, val, offset = addr & 0xff;
> +
> +	if (addr + n > SF_SIZE || offset + n > 256)
> +		return -EINVAL;
> +
> +	val = swab32(addr) | SF_PROG_PAGE;
> +
> +	if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
> +	    (ret = sf1_write(adapter, 4, 1, val)) != 0)
> +		return ret;
> +
> +	for (left = n; left; left -= c) {
> +		c = min(left, 4U);
> +		for (val = 0, i = 0; i < c; ++i)
> +			val = (val << 8) + *data++;
> +
> +		ret = sf1_write(adapter, c, c != left, val);
> +		if (ret)
> +			return ret;
> +	}
> +	if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
> +		return ret;
> +
> +	/* Read the page to verify the write succeeded */
> +	ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
> +	if (ret)
> +		return ret;
> +
> +	if (memcmp(data - n, (u8 *) buf + offset, n))
> +		return -EIO;
> +	return 0;
> +}
> +
> +/**
> + *	t3_get_fw_version - read the firmware version
> + *	@adapter: the adapter
> + *	@vers: where to place the version
> + *
> + *	Reads the FW version from flash.
> + */
> +int t3_get_fw_version(struct adapter *adapter, u32 * vers)
> +{
> +	return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
> +}
> +
> +/**
> + *	t3_check_fw_version - check if the FW is compatible with this driver
> + *	@adapter: the adapter
> + *
> + *	Checks if an adapter's FW is compatible with the driver.  Returns 0
> + *	if the versions are compatible, a negative error otherwise.
> + */
> +int t3_check_fw_version(struct adapter *adapter)
> +{
> +	int ret;
> +	u32 vers;
> +
> +	ret = t3_get_fw_version(adapter, &vers);
> +	if (ret)
> +		return ret;
> +
> +	/* Minor 0xfff means the FW is an internal development-only version. */
> +	if ((vers & 0xfff) == 0xfff)
> +		return 0;
> +
> +	if (vers == 0x1002009)
> +		return 0;
> +
> +	return -EINVAL;
> +}
> +
> +/**
> + *	t3_flash_erase_sectors - erase a range of flash sectors
> + *	@adapter: the adapter
> + *	@start: the first sector to erase
> + *	@end: the last sector to erase
> + *
> + *	Erases the sectors in the given range.
> + */
> +static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
> +{
> +	while (start <= end) {
> +		int ret;
> +
> +		if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
> +		    (ret = sf1_write(adapter, 4, 0,
> +				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
> +		    (ret = flash_wait_op(adapter, 5, 500)) != 0)
> +			return ret;
> +		start++;
> +	}
> +	return 0;
> +}
> +
> +/*
> + *	t3_load_fw - download firmware
> + *	@adapter: the adapter
> + *	@fw_data: the firrware image to write
> + *	@size: image size
> + *
> + *	Write the supplied firmware image to the card's serial flash.
> + *	The FW image has the following sections: @size - 8 bytes of code and
> + *	data, followed by 4 bytes of FW version, followed by the 32-bit
> + *	1's complement checksum of the whole image.
> + */
> +int t3_load_fw(struct adapter *adapter, const u8 * fw_data, unsigned int size)
> +{
> +	u32 csum;
> +	unsigned int i;
> +	const u32 *p = (const u32 *)fw_data;
> +	int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
> +
> +	if (size & 3)
> +		return -EINVAL;
> +	if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
> +		return -EFBIG;
> +
> +	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
> +		csum += ntohl(p[i]);
> +	if (csum != 0xffffffff) {
> +		CH_ERR("%s: corrupted firmware image, checksum %u\n",
> +		       adapter->name, csum);
> +		return -EINVAL;
> +	}
> +
> +	ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
> +	if (ret)
> +		goto out;
> +
> +	size -= 8;		/* trim off version and checksum */
> +	for (addr = FW_FLASH_BOOT_ADDR; size;) {
> +		unsigned int chunk_size = min(size, 256U);
> +
> +		ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
> +		if (ret)
> +			goto out;
> +
> +		addr += chunk_size;
> +		fw_data += chunk_size;
> +		size -= chunk_size;
> +	}
> +
> +	ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
> +out:
> +	if (ret)
> +		CH_ERR("%s: firmware download failed, error %d\n",
> +		       adapter->name, ret);
> +	return ret;
> +}
> +
> +#define CIM_CTL_BASE 0x2000
> +
> +/**
> + *      t3_cim_ctl_blk_read - read a block from CIM control region
> + *
> + *      @adap: the adapter
> + *      @addr: the start address within the CIM control region
> + *      @n: number of words to read
> + *      @valp: where to store the result
> + *
> + *      Reads a block of 4-byte words from the CIM control region.
> + */
> +int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
> +			unsigned int n, unsigned int *valp)
> +{
> +	int ret = 0;
> +
> +	if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
> +		return -EBUSY;
> +
> +	for ( ; !ret && n--; addr += 4) {
> +		t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
> +		ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
> +				      0, 5, 2);
> +		if (!ret)
> +			*valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
> +	}
> +	return ret;
> +}
> +
> +
> +/**
> + *	t3_link_changed - handle interface link changes
> + *	@adapter: the adapter
> + *	@port_id: the port index that changed link state
> + *
> + *	Called when a port's link settings change to propagate the new values
> + *	to the associated PHY and MAC.  After performing the common tasks it
> + *	invokes an OS-specific handler.
> + */
> +void t3_link_changed(struct adapter *adapter, int port_id)
> +{
> +	int link_ok, speed, duplex, fc;
> +	struct cphy *phy = &adapter->port[port_id].phy;
> +	struct cmac *mac = &adapter->port[port_id].mac;
> +	struct link_config *lc = &adapter->port[port_id].link_config;
> +
> +	phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
> +
> +	if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
> +	    uses_xaui(adapter)) {
> +		if (link_ok)
> +			t3b_pcs_reset(mac);
> +		t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
> +			     link_ok ? F_TXACTENABLE | F_RXEN : 0);
> +	}
> +	lc->link_ok = (unsigned char)link_ok;
> +	lc->speed = speed < 0 ? SPEED_INVALID : speed;
> +	lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
> +	if (lc->requested_fc & PAUSE_AUTONEG)
> +		fc &= lc->requested_fc;
> +	else
> +		fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
> +
> +	if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
> +		/* Set MAC speed, duplex, and flow control to match PHY. */
> +		t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
> +		lc->fc = (unsigned char)fc;
> +	}
> +
> +	t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
> +}
> +
> +/**
> + *	t3_link_start - apply link configuration to MAC/PHY
> + *	@phy: the PHY to setup
> + *	@mac: the MAC to setup
> + *	@lc: the requested link configuration
> + *
> + *	Set up a port's MAC and PHY according to a desired link configuration.
> + *	- If the PHY can auto-negotiate first decide what to advertise, then
> + *	  enable/disable auto-negotiation as desired, and reset.
> + *	- If the PHY does not auto-negotiate just reset it.
> + *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
> + *	  otherwise do it later based on the outcome of auto-negotiation.
> + */
> +int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
> +{
> +	unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
> +
> +	lc->link_ok = 0;
> +	if (lc->supported & SUPPORTED_Autoneg) {
> +		lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
> +		if (fc) {
> +			lc->advertising |= ADVERTISED_Asym_Pause;
> +			if (fc & PAUSE_RX)
> +				lc->advertising |= ADVERTISED_Pause;
> +		}
> +		phy->ops->advertise(phy, lc->advertising);
> +
> +		if (lc->autoneg == AUTONEG_DISABLE) {
> +			lc->speed = lc->requested_speed;
> +			lc->duplex = lc->requested_duplex;
> +			lc->fc = (unsigned char)fc;
> +			t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
> +						   fc);
> +			/* Also disables autoneg */
> +			phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
> +			phy->ops->reset(phy, 0);
> +		} else
> +			phy->ops->autoneg_enable(phy);
> +	} else {
> +		t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
> +		lc->fc = (unsigned char)fc;
> +		phy->ops->reset(phy, 0);
> +	}
> +	return 0;
> +}
> +
> +/**
> + *	t3_set_vlan_accel - control HW VLAN extraction
> + *	@adapter: the adapter
> + *	@ports: bitmap of adapter ports to operate on
> + *	@on: enable (1) or disable (0) HW VLAN extraction
> + *
> + *	Enables or disables HW extraction of VLAN tags for the given port.
> + */
> +void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
> +{
> +	t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
> +			 ports << S_VLANEXTRACTIONENABLE,
> +			 on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
> +}
> +
> +struct intr_info {
> +	unsigned int mask;	/* bits to check in interrupt status */
> +	const char *msg;	/* message to print or NULL */
> +	short stat_idx;		/* stat counter to increment or -1 */
> +	unsigned short fatal:1;	/* whether the condition reported is fatal */
> +};
> +
> +/**
> + *	t3_handle_intr_status - table driven interrupt handler
> + *	@adapter: the adapter that generated the interrupt
> + *	@reg: the interrupt status register to process
> + *	@mask: a mask to apply to the interrupt status
> + *	@acts: table of interrupt actions
> + *	@stats: statistics counters tracking interrupt occurences
> + *
> + *	A table driven interrupt handler that applies a set of masks to an
> + *	interrupt status word and performs the corresponding actions if the
> + *	interrupts described by the mask have occured.  The actions include
> + *	optionally printing a warning or alert message, and optionally
> + *	incrementing a stat counter.  The table is terminated by an entry
> + *	specifying mask 0.  Returns the number of fatal interrupt conditions.
> + */
> +static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
> +				 unsigned int mask,
> +				 const struct intr_info *acts,
> +				 unsigned long *stats)
> +{
> +	int fatal = 0;
> +	unsigned int status = t3_read_reg(adapter, reg) & mask;
> +
> +	for (; acts->mask; ++acts) {
> +		if (!(status & acts->mask))
> +			continue;
> +		if (acts->fatal) {
> +			fatal++;
> +			CH_ALERT("%s: %s (0x%x)\n", adapter->name,
> +				 acts->msg, status & acts->mask);
> +		} else if (acts->msg)
> +			CH_WARN("%s: %s (0x%x)\n", adapter->name,
> +				acts->msg, status & acts->mask);
> +		if (acts->stat_idx >= 0)
> +			stats[acts->stat_idx]++;
> +	}
> +	if (status)		/* clear processed interrupts */
> +		t3_write_reg(adapter, reg, status);
> +	return fatal;
> +}
> +
> +#define SGE_INTR_MASK (F_RSPQDISABLED)
> +#define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
> +		       F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
> +		       F_NFASRCHFAIL)
> +#define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
> +#define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
> +		       V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
> +		       F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
> +#define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
> +			F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
> +			F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
> +			F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
> +			V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
> +			V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
> +#define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
> +			F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
> +			/* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
> +			V_BISTERR(M_BISTERR))
> +#define ULPRX_INTR_MASK F_PARERR
> +#define ULPTX_INTR_MASK 0
> +#define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \
> +			 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
> +			 F_ZERO_SWITCH_ERROR)
> +#define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
> +		       F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
> +		       F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
> +	 	       F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT)
> +#define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
> +			V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
> +			V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
> +#define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
> +			V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
> +			V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
> +#define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
> +		       V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
> +		       V_RXTPPARERRENB(M_RXTPPARERRENB) | \
> +		       V_MCAPARERRENB(M_MCAPARERRENB))
> +#define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
> +		      F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
> +		      F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
> +		      F_MPS0 | F_CPL_SWITCH)
> +
> +/*
> + * Interrupt handler for the PCIX1 module.
> + */
> +static void pci_intr_handler(struct adapter *adapter)
> +{
> +	static struct intr_info pcix1_intr_info[] = {
> +		{F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
> +		{F_SIGTARABT, "PCI signaled target abort", -1, 1},
> +		{F_RCVTARABT, "PCI received target abort", -1, 1},
> +		{F_RCVMSTABT, "PCI received master abort", -1, 1},
> +		{F_SIGSYSERR, "PCI signaled system error", -1, 1},
> +		{F_DETPARERR, "PCI detected parity error", -1, 1},
> +		{F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
> +		{F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
> +		{F_RCVSPLCMPERR, "PCI received split completion error", -1,
> +		 1},
> +		{F_DETCORECCERR, "PCI correctable ECC error",
> +		 STAT_PCI_CORR_ECC, 0},
> +		{F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
> +		{F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
> +		{V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
> +		 1},
> +		{V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
> +		 1},
> +		{V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
> +		 1},
> +		{V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
> +		 "error", -1, 1},
> +		{0}
> +	};
> +
> +	if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
> +				  pcix1_intr_info, adapter->irq_stats))
> +		t3_fatal_err(adapter);
> +}
> +
> +/*
> + * Interrupt handler for the PCIE module.
> + */
> +static void pcie_intr_handler(struct adapter *adapter)
> +{
> +	static struct intr_info pcie_intr_info[] = {
> +		{F_UNXSPLCPLERRR,
> +		 "PCI unexpected split completion DMA read error", -1, 1},
> +		{F_UNXSPLCPLERRC,
> +		 "PCI unexpected split completion DMA command error", -1, 1},
> +		{F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
> +		{F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
> +		{F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
> +		{F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
> +		{V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
> +		 "PCI MSI-X table/PBA parity error", -1, 1},
> +		{V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
> +		{0}
> +	};
> +
> +	if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
> +				  pcie_intr_info, adapter->irq_stats))
> +		t3_fatal_err(adapter);
> +}
> +
> +/*
> + * TP interrupt handler.
> + */
> +static void tp_intr_handler(struct adapter *adapter)
> +{
> +	static struct intr_info tp_intr_info[] = {
> +		{0xffffff, "TP parity error", -1, 1},
> +		{0x1000000, "TP out of Rx pages", -1, 1},
> +		{0x2000000, "TP out of Tx pages", -1, 1},
> +		{0}
> +	};
> +
> +	if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
> +				  tp_intr_info, NULL))
> +		t3_fatal_err(adapter);
> +}
> +
> +/*
> + * CIM interrupt handler.
> + */
> +static void cim_intr_handler(struct adapter *adapter)
> +{
> +	static struct intr_info cim_intr_info[] = {
> +		{F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
> +		{F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
> +		{F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
> +		{F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
> +		{F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
> +		{F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
> +		{F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
> +		{F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
> +		{F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
> +		{F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
> +		{F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
> +		{F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
> +		{0}
> +	};
> +
> +	if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
> +				  cim_intr_info, NULL))
> +		t3_fatal_err(adapter);
> +}
> +
> +/*
> + * ULP RX interrupt handler.
> + */
> +static void ulprx_intr_handler(struct adapter *adapter)
> +{
> +	static struct intr_info ulprx_intr_info[] = {
> +		{F_PARERR, "ULP RX parity error", -1, 1},
> +		{0}
> +	};
> +
> +	if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
> +				  ulprx_intr_info, NULL))
> +		t3_fatal_err(adapter);
> +}
> +
> +/*
> + * ULP TX interrupt handler.
> + */
> +static void ulptx_intr_handler(struct adapter *adapter)
> +{
> +	static struct intr_info ulptx_intr_info[] = {
> +		{F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
> +		 STAT_ULP_CH0_PBL_OOB, 0},
> +		{F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
> +		 STAT_ULP_CH1_PBL_OOB, 0},
> +		{0}
> +	};
> +
> +	if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
> +				  ulptx_intr_info, adapter->irq_stats))
> +		t3_fatal_err(adapter);
> +}
> +
> +#define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
> +	F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
> +	F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
> +	F_ICSPI1_TX_FRAMING_ERROR)
> +#define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
> +	F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
> +	F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
> +	F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
> +
> +/*
> + * PM TX interrupt handler.
> + */
> +static void pmtx_intr_handler(struct adapter *adapter)
> +{
> +	static struct intr_info pmtx_intr_info[] = {
> +		{F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
> +		{ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
> +		{OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
> +		{V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
> +		 "PMTX ispi parity error", -1, 1},
> +		{V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
> +		 "PMTX ospi parity error", -1, 1},
> +		{0}
> +	};
> +
> +	if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
> +				  pmtx_intr_info, NULL))
> +		t3_fatal_err(adapter);
> +}
> +
> +#define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
> +	F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
> +	F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
> +	F_IESPI1_TX_FRAMING_ERROR)
> +#define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
> +	F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
> +	F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
> +	F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
> +
> +/*
> + * PM RX interrupt handler.
> + */
> +static void pmrx_intr_handler(struct adapter *adapter)
> +{
> +	static struct intr_info pmrx_intr_info[] = {
> +		{F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
> +		{IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
> +		{OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
> +		{V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
> +		 "PMRX ispi parity error", -1, 1},
> +		{V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
> +		 "PMRX ospi parity error", -1, 1},
> +		{0}
> +	};
> +
> +	if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
> +				  pmrx_intr_info, NULL))
> +		t3_fatal_err(adapter);
> +}
> +
> +/*
> + * CPL switch interrupt handler.
> + */
> +static void cplsw_intr_handler(struct adapter *adapter)
> +{
> +	static struct intr_info cplsw_intr_info[] = {
> +//              { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 },
> +		{F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
> +		{F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
> +		{F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
> +		{F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
> +		{0}
> +	};
> +
> +	if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
> +				  cplsw_intr_info, NULL))
> +		t3_fatal_err(adapter);
> +}
> +
> +/*
> + * MPS interrupt handler.
> + */
> +static void mps_intr_handler(struct adapter *adapter)
> +{
> +	static struct intr_info mps_intr_info[] = {
> +		{0x1ff, "MPS parity error", -1, 1},
> +		{0}
> +	};
> +
> +	if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
> +				  mps_intr_info, NULL))
> +		t3_fatal_err(adapter);
> +}
> +
> +#define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
> +
> +/*
> + * MC7 interrupt handler.
> + */
> +static void mc7_intr_handler(struct mc7 *mc7)
> +{
> +	struct adapter *adapter = mc7->adapter;
> +	u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
> +
> +	if (cause & F_CE) {
> +		mc7->stats.corr_err++;
> +		CH_WARN("%s: %s MC7 correctable error at addr 0x%x, "
> +			"data 0x%x 0x%x 0x%x\n", adapter->name,
> +			mc7->name,
> +			t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
> +			t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
> +			t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
> +			t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
> +	}
> +
> +	if (cause & F_UE) {
> +		mc7->stats.uncorr_err++;
> +		CH_ALERT("%s: %s MC7 uncorrectable error at addr 0x%x, "
> +			 "data 0x%x 0x%x 0x%x\n", adapter->name,
> +			 mc7->name,
> +			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
> +			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
> +			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
> +			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
> +	}
> +
> +	if (G_PE(cause)) {
> +		mc7->stats.parity_err++;
> +		CH_ALERT("%s: %s MC7 parity error 0x%x\n",
> +			 adapter->name, mc7->name, G_PE(cause));
> +	}
> +
> +	if (cause & F_AE) {
> +		u32 addr = 0;
> +
> +		if (adapter->params.rev > 0)
> +			addr = t3_read_reg(adapter,
> +					   mc7->offset + A_MC7_ERR_ADDR);
> +		mc7->stats.addr_err++;
> +		CH_ALERT("%s: %s MC7 address error: 0x%x\n",
> +			 adapter->name, mc7->name, addr);
> +	}
> +
> +	if (cause & MC7_INTR_FATAL)
> +		t3_fatal_err(adapter);
> +
> +	t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
> +}
> +
> +#define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
> +			V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
> +/*
> + * XGMAC interrupt handler.
> + */
> +static int mac_intr_handler(struct adapter *adap, unsigned int idx)
> +{
> +	struct cmac *mac = &adap->port[idx].mac;
> +	u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
> +
> +	if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
> +		mac->stats.tx_fifo_parity_err++;
> +		CH_ALERT("port%d: MAC TX FIFO parity error\n", idx);
> +	}
> +	if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
> +		mac->stats.rx_fifo_parity_err++;
> +		CH_ALERT("port%d: MAC RX FIFO parity error\n", idx);
> +	}
> +	if (cause & F_TXFIFO_UNDERRUN)
> +		mac->stats.tx_fifo_urun++;
> +	if (cause & F_RXFIFO_OVERFLOW)
> +		mac->stats.rx_fifo_ovfl++;
> +	if (cause & V_SERDES_LOS(M_SERDES_LOS))
> +		mac->stats.serdes_signal_loss++;
> +	if (cause & F_XAUIPCSCTCERR)
> +		mac->stats.xaui_pcs_ctc_err++;
> +	if (cause & F_XAUIPCSALIGNCHANGE)
> +		mac->stats.xaui_pcs_align_change++;
> +
> +	t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
> +	if (cause & XGM_INTR_FATAL)
> +		t3_fatal_err(adap);
> +	return cause != 0;
> +}
> +
> +/*
> + * Interrupt handler for PHY events.
> + */
> +int t3_phy_intr_handler(struct adapter *adapter)
> +{
> +	static int intr_gpio_bits[] = { 8, 0x20 };
> +
> +	u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
> +
> +	for_each_port(adapter, i) {
> +		if (cause & intr_gpio_bits[i]) {
> +			struct cphy *phy = &adapter->port[i].phy;
> +			int phy_cause = phy->ops->intr_handler(phy);
> +
> +			if (phy_cause & cphy_cause_link_change)
> +				t3_link_changed(adapter, i);
> +			if (phy_cause & cphy_cause_fifo_error)
> +				phy->fifo_errors++;
> +		}
> +	}
> +
> +	t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
> +	return 0;
> +}
> +
> +/*
> + * T3 slow path (non-data) interrupt handler.
> + */
> +int t3_slow_intr_handler(struct adapter *adapter)
> +{
> +	u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
> +
> +	cause &= adapter->slow_intr_mask;
> +	if (!cause)
> +		return 0;
> +	if (cause & F_PCIM0) {
> +		if (is_pcie(adapter))
> +			pcie_intr_handler(adapter);
> +		else
> +			pci_intr_handler(adapter);
> +	}
> +	if (cause & F_SGE3)
> +		t3_sge_err_intr_handler(adapter);
> +	if (cause & F_MC7_PMRX)
> +		mc7_intr_handler(&adapter->pmrx);
> +	if (cause & F_MC7_PMTX)
> +		mc7_intr_handler(&adapter->pmtx);
> +	if (cause & F_MC7_CM)
> +		mc7_intr_handler(&adapter->cm);
> +	if (cause & F_CIM)
> +		cim_intr_handler(adapter);
> +	if (cause & F_TP1)
> +		tp_intr_handler(adapter);
> +	if (cause & F_ULP2_RX)
> +		ulprx_intr_handler(adapter);
> +	if (cause & F_ULP2_TX)
> +		ulptx_intr_handler(adapter);
> +	if (cause & F_PM1_RX)
> +		pmrx_intr_handler(adapter);
> +	if (cause & F_PM1_TX)
> +		pmtx_intr_handler(adapter);
> +	if (cause & F_CPL_SWITCH)
> +		cplsw_intr_handler(adapter);
> +	if (cause & F_MPS0)
> +		mps_intr_handler(adapter);
> +	if (cause & F_MC5A)
> +		t3_mc5_intr_handler(&adapter->mc5);
> +	if (cause & F_XGMAC0_0)
> +		mac_intr_handler(adapter, 0);
> +	if (cause & F_XGMAC0_1)
> +		mac_intr_handler(adapter, 1);
> +	if (cause & F_T3DBG)
> +		t3_os_ext_intr_handler(adapter);
> +
> +	/* Clear the interrupts just processed. */
> +	t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
> +	(void)t3_read_reg(adapter, A_PL_INT_CAUSE0);	/* flush */
> +	return 1;
> +}
> +
> +/**
> + *	t3_intr_enable - enable interrupts
> + *	@adapter: the adapter whose interrupts should be enabled
> + *
> + *	Enable interrupts by setting the interrupt enable registers of the
> + *	various HW modules and then enabling the top-level interrupt
> + *	concentrator.
> + */
> +void t3_intr_enable(struct adapter *adapter)
> +{
> +	static struct addr_val_pair intr_en_avp[] = {
> +		{A_SG_INT_ENABLE, SGE_INTR_MASK},
> +		{A_MC7_INT_ENABLE, MC7_INTR_MASK},
> +		{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
> +		 MC7_INTR_MASK},
> +		{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
> +		 MC7_INTR_MASK},
> +		{A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
> +		{A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
> +		{A_TP_INT_ENABLE, 0x3bfffff},
> +		{A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
> +		{A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
> +		{A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
> +		{A_MPS_INT_ENABLE, MPS_INTR_MASK},
> +	};
> +
> +	adapter->slow_intr_mask = PL_INTR_MASK;
> +
> +	t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
> +
> +	if (adapter->params.rev > 0) {
> +		t3_write_reg(adapter, A_CPL_INTR_ENABLE,
> +			     CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
> +		t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
> +			     ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
> +			     F_PBL_BOUND_ERR_CH1);
> +	} else {
> +		t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
> +		t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
> +	}
> +
> +	t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
> +		     adapter_info(adapter)->gpio_intr);
> +	t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
> +		     adapter_info(adapter)->gpio_intr);
> +	if (is_pcie(adapter))
> +		t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
> +	else
> +		t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
> +	t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
> +	(void)t3_read_reg(adapter, A_PL_INT_ENABLE0);	/* flush */
> +}
> +
> +/**
> + *	t3_intr_disable - disable a card's interrupts
> + *	@adapter: the adapter whose interrupts should be disabled
> + *
> + *	Disable interrupts.  We only disable the top-level interrupt
> + *	concentrator and the SGE data interrupts.
> + */
> +void t3_intr_disable(struct adapter *adapter)
> +{
> +	t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
> +	(void)t3_read_reg(adapter, A_PL_INT_ENABLE0);	/* flush */
> +	adapter->slow_intr_mask = 0;
> +}
> +
> +/**
> + *	t3_intr_clear - clear all interrupts
> + *	@adapter: the adapter whose interrupts should be cleared
> + *
> + *	Clears all interrupts.
> + */
> +void t3_intr_clear(struct adapter *adapter)
> +{
> +	static unsigned int cause_reg_addr[] = {
> +		A_SG_INT_CAUSE,
> +		A_SG_RSPQ_FL_STATUS,
> +		A_PCIX_INT_CAUSE,
> +		A_MC7_INT_CAUSE,
> +		A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
> +		A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
> +		A_CIM_HOST_INT_CAUSE,
> +		A_TP_INT_CAUSE,
> +		A_MC5_DB_INT_CAUSE,
> +		A_ULPRX_INT_CAUSE,
> +		A_ULPTX_INT_CAUSE,
> +		A_CPL_INTR_CAUSE,
> +		A_PM1_TX_INT_CAUSE,
> +		A_PM1_RX_INT_CAUSE,
> +		A_MPS_INT_CAUSE,
> +		A_T3DBG_INT_CAUSE,
> +	};
> +	unsigned int i;
> +
> +	/* Clear PHY and MAC interrupts for each port. */
> +	for_each_port(adapter, i)
> +	    t3_port_intr_clear(adapter, i);
> +
> +	for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
> +		t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
> +
> +	t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
> +	(void)t3_read_reg(adapter, A_PL_INT_CAUSE0);	/* flush */
> +}
> +
> +/**
> + *	t3_port_intr_enable - enable port-specific interrupts
> + *	@adapter: associated adapter
> + *	@idx: index of port whose interrupts should be enabled
> + *
> + *	Enable port-specific (i.e., MAC and PHY) interrupts for the given
> + *	adapter port.
> + */
> +void t3_port_intr_enable(struct adapter *adapter, int idx)
> +{
> +	t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
> +	adapter->port[idx].phy.ops->intr_enable(&adapter->port[idx].phy);
> +}
> +
> +/**
> + *	t3_port_intr_disable - disable port-specific interrupts
> + *	@adapter: associated adapter
> + *	@idx: index of port whose interrupts should be disabled
> + *
> + *	Disable port-specific (i.e., MAC and PHY) interrupts for the given
> + *	adapter port.
> + */
> +void t3_port_intr_disable(struct adapter *adapter, int idx)
> +{
> +	t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
> +	adapter->port[idx].phy.ops->intr_disable(&adapter->port[idx].phy);
> +}
> +
> +/**
> + *	t3_port_intr_clear - clear port-specific interrupts
> + *	@adapter: associated adapter
> + *	@idx: index of port whose interrupts to clear
> + *
> + *	Clear port-specific (i.e., MAC and PHY) interrupts for the given
> + *	adapter port.
> + */
> +void t3_port_intr_clear(struct adapter *adapter, int idx)
> +{
> +	t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
> +	adapter->port[idx].phy.ops->intr_clear(&adapter->port[idx].phy);
> +}
> +
> +/**
> + * 	t3_sge_write_context - write an SGE context
> + * 	@adapter: the adapter
> + * 	@id: the context id
> + * 	@type: the context type
> + *
> + * 	Program an SGE context with the values already loaded in the
> + * 	CONTEXT_DATA? registers.
> + */
> +static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
> +				unsigned int type)
> +{
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
> +	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
> +		     V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
> +	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
> +			       0, 5, 1);
> +}
> +
> +/**
> + *	t3_sge_init_ecntxt - initialize an SGE egress context
> + *	@adapter: the adapter to configure
> + *	@id: the context id
> + *	@gts_enable: whether to enable GTS for the context
> + *	@type: the egress context type
> + *	@respq: associated response queue
> + *	@base_addr: base address of queue
> + *	@size: number of queue entries
> + *	@token: uP token
> + *	@gen: initial generation value for the context
> + *	@cidx: consumer pointer
> + *
> + *	Initialize an SGE egress context and make it ready for use.  If the
> + *	platform allows concurrent context operations, the caller is
> + *	responsible for appropriate locking.
> + */
> +int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
> +		       enum sge_context_type type, int respq, u64 base_addr,
> +		       unsigned int size, unsigned int token, int gen,
> +		       unsigned int cidx)
> +{
> +	unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
> +
> +	if (base_addr & 0xfff)	/* must be 4K aligned */
> +		return -EINVAL;
> +	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
> +		return -EBUSY;
> +
> +	base_addr >>= 12;
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
> +		     V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
> +		     V_EC_BASE_LO((u32) base_addr & 0xffff));
> +	base_addr >>= 16;
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA2, (u32) base_addr);
> +	base_addr >>= 32;
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
> +		     V_EC_BASE_HI((u32) base_addr & 0xf) | V_EC_RESPQ(respq) |
> +		     V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
> +		     F_EC_VALID);
> +	return t3_sge_write_context(adapter, id, F_EGRESS);
> +}
> +
> +/**
> + *	t3_sge_init_flcntxt - initialize an SGE free-buffer list context
> + *	@adapter: the adapter to configure
> + *	@id: the context id
> + *	@gts_enable: whether to enable GTS for the context
> + *	@base_addr: base address of queue
> + *	@size: number of queue entries
> + *	@bsize: size of each buffer for this queue
> + *	@cong_thres: threshold to signal congestion to upstream producers
> + *	@gen: initial generation value for the context
> + *	@cidx: consumer pointer
> + *
> + *	Initialize an SGE free list context and make it ready for use.  The
> + *	caller is responsible for ensuring only one context operation occurs
> + *	at a time.
> + */
> +int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
> +			int gts_enable, u64 base_addr, unsigned int size,
> +			unsigned int bsize, unsigned int cong_thres, int gen,
> +			unsigned int cidx)
> +{
> +	if (base_addr & 0xfff)	/* must be 4K aligned */
> +		return -EINVAL;
> +	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
> +		return -EBUSY;
> +
> +	base_addr >>= 12;
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, (u32) base_addr);
> +	base_addr >>= 32;
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
> +		     V_FL_BASE_HI((u32) base_addr) |
> +		     V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
> +		     V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
> +		     V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
> +		     V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
> +		     V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
> +	return t3_sge_write_context(adapter, id, F_FREELIST);
> +}
> +
> +/**
> + *	t3_sge_init_rspcntxt - initialize an SGE response queue context
> + *	@adapter: the adapter to configure
> + *	@id: the context id
> + *	@irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
> + *	@base_addr: base address of queue
> + *	@size: number of queue entries
> + *	@fl_thres: threshold for selecting the normal or jumbo free list
> + *	@gen: initial generation value for the context
> + *	@cidx: consumer pointer
> + *
> + *	Initialize an SGE response queue context and make it ready for use.
> + *	The caller is responsible for ensuring only one context operation
> + *	occurs at a time.
> + */
> +int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
> +			 int irq_vec_idx, u64 base_addr, unsigned int size,
> +			 unsigned int fl_thres, int gen, unsigned int cidx)
> +{
> +	unsigned int intr = 0;
> +
> +	if (base_addr & 0xfff)	/* must be 4K aligned */
> +		return -EINVAL;
> +	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
> +		return -EBUSY;
> +
> +	base_addr >>= 12;
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
> +		     V_CQ_INDEX(cidx));
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA1, (u32) base_addr);
> +	base_addr >>= 32;
> +	if (irq_vec_idx >= 0)
> +		intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
> +		     V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
> +	return t3_sge_write_context(adapter, id, F_RESPONSEQ);
> +}
> +
> +/**
> + *	t3_sge_init_cqcntxt - initialize an SGE completion queue context
> + *	@adapter: the adapter to configure
> + *	@id: the context id
> + *	@base_addr: base address of queue
> + *	@size: number of queue entries
> + *	@rspq: response queue for async notifications
> + *	@ovfl_mode: CQ overflow mode
> + *	@credits: completion queue credits
> + *	@credit_thres: the credit threshold
> + *
> + *	Initialize an SGE completion queue context and make it ready for use.
> + *	The caller is responsible for ensuring only one context operation
> + *	occurs at a time.
> + */
> +int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
> +			unsigned int size, int rspq, int ovfl_mode,
> +			unsigned int credits, unsigned int credit_thres)
> +{
> +	if (base_addr & 0xfff)	/* must be 4K aligned */
> +		return -EINVAL;
> +	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
> +		return -EBUSY;
> +
> +	base_addr >>= 12;
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA1, (u32) base_addr);
> +	base_addr >>= 32;
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
> +		     V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
> +		     V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode));
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
> +		     V_CQ_CREDIT_THRES(credit_thres));
> +	return t3_sge_write_context(adapter, id, F_CQ);
> +}
> +
> +/**
> + *	t3_sge_enable_ecntxt - enable/disable an SGE egress context
> + *	@adapter: the adapter
> + *	@id: the egress context id
> + *	@enable: enable (1) or disable (0) the context
> + *
> + *	Enable or disable an SGE egress context.  The caller is responsible for
> + *	ensuring only one context operation occurs at a time.
> + */
> +int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
> +{
> +	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
> +		return -EBUSY;
> +
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
> +	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
> +		     V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
> +	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
> +			       0, 5, 1);
> +}
> +
> +/**
> + *	t3_sge_disable_fl - disable an SGE free-buffer list
> + *	@adapter: the adapter
> + *	@id: the free list context id
> + *
> + *	Disable an SGE free-buffer list.  The caller is responsible for
> + *	ensuring only one context operation occurs at a time.
> + */
> +int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
> +{
> +	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
> +		return -EBUSY;
> +
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
> +		     V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
> +	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
> +			       0, 5, 1);
> +}
> +
> +/**
> + *	t3_sge_disable_rspcntxt - disable an SGE response queue
> + *	@adapter: the adapter
> + *	@id: the response queue context id
> + *
> + *	Disable an SGE response queue.  The caller is responsible for
> + *	ensuring only one context operation occurs at a time.
> + */
> +int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
> +{
> +	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
> +		return -EBUSY;
> +
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
> +		     V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
> +	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
> +			       0, 5, 1);
> +}
> +
> +/**
> + *	t3_sge_disable_cqcntxt - disable an SGE completion queue
> + *	@adapter: the adapter
> + *	@id: the completion queue context id
> + *
> + *	Disable an SGE completion queue.  The caller is responsible for
> + *	ensuring only one context operation occurs at a time.
> + */
> +int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
> +{
> +	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
> +		return -EBUSY;
> +
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
> +	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
> +		     V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
> +	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
> +			       0, 5, 1);
> +}
> +
> -
> To unsubscribe from this list: send the line "unsubscribe netdev" in
> the body of a message to majordomo@...r.kernel.org
> More majordomo info at  http://vger.kernel.org/majordomo-info.html
>   

-
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html

Powered by blists - more mailing lists