lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:	Thu, 29 Mar 2007 09:39:58 -0700
From:	Auke Kok <auke-jan.h.kok@...el.com>
To:	jeff@...zik.org
Cc:	auke-jan.h.kok@...el.com, bruce.w.allan@...el.com,
	jeffrey.t.kirsher@...el.com, jesse.brandeburg@...el.com,
	cramerj@...el.com, john.ronciak@...el.com,
	arjan.van.de.ven@...el.com, akpm@...ux-foundation.org,
	netdev@...r.kernel.org
Subject: [PATCH 02/19] e1000: MAC specific parts of the new hardware layer code

From: Jeb Cramer <cramerj@...el.com>

This adds the MAC specific code for e100 devices. This includes RX/TX
register setup code, link properties and autonegotiation settings, Flow
Control setup, software/firmware semaphore handling code.

Signed-off-by: Jeb Cramer <cramerj@...el.com>
Signed-off-by: Auke Kok <auke-jan.h.kok@...el.com>
---

 drivers/net/e1000/e1000_mac.c | 1939 +++++++++++++++++++++++++++++++++++++++++
 drivers/net/e1000/e1000_mac.h |   84 ++
 2 files changed, 2023 insertions(+), 0 deletions(-)

diff --git a/drivers/net/e1000/e1000_mac.c b/drivers/net/e1000/e1000_mac.c
new file mode 100644
index 0000000..8359048
--- /dev/null
+++ b/drivers/net/e1000/e1000_mac.c
@@ -0,0 +1,1939 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2007 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@...el.com>
+  e1000-devel Mailing List <e1000-devel@...ts.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include "e1000_mac.h"
+
+/**
+ *  e1000_remove_device_generic - Free device specific structure
+ *  @hw: pointer to the HW structure
+ *
+ *  If a device specific structure was allocated, this function will
+ *  free it.
+ **/
+void
+e1000_remove_device_generic(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_remove_device_generic");
+
+	/* Freeing the dev_spec member of e1000_hw structure */
+	e1000_free_dev_spec_struct(hw);
+}
+
+/**
+ *  e1000_get_bus_info_pci_generic - Get PCI(x) bus information
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines and stores the system bus information for a particular
+ *  network interface.  The following bus information is determined and stored:
+ *  bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
+ **/
+s32
+e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	u32 status = E1000_READ_REG(hw, E1000_STATUS);
+	s32 ret_val = E1000_SUCCESS;
+	u16 pci_header_type;
+
+	DEBUGFUNC("e1000_get_bus_info_pci_generic");
+
+	/* PCI or PCI-X? */
+	bus->type = (status & E1000_STATUS_PCIX_MODE)
+			? e1000_bus_type_pcix
+			: e1000_bus_type_pci;
+
+	/* Bus speed */
+	if (bus->type == e1000_bus_type_pci) {
+		bus->speed = (status & E1000_STATUS_PCI66)
+		             ? e1000_bus_speed_66
+		             : e1000_bus_speed_33;
+	} else {
+		switch (status & E1000_STATUS_PCIX_SPEED) {
+		case E1000_STATUS_PCIX_SPEED_66:
+			bus->speed = e1000_bus_speed_66;
+			break;
+		case E1000_STATUS_PCIX_SPEED_100:
+			bus->speed = e1000_bus_speed_100;
+			break;
+		case E1000_STATUS_PCIX_SPEED_133:
+			bus->speed = e1000_bus_speed_133;
+			break;
+		default:
+			bus->speed = e1000_bus_speed_reserved;
+			break;
+		}
+	}
+
+	/* Bus width */
+	bus->width = (status & E1000_STATUS_BUS64)
+	             ? e1000_bus_width_64
+	             : e1000_bus_width_32;
+
+	/* Which PCI(-X) function? */
+	e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC)
+		bus->func = (status & E1000_STATUS_FUNC_MASK)
+		            >> E1000_STATUS_FUNC_SHIFT;
+	else
+		bus->func = 0;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_bus_info_pcie_generic - Get PCIe bus information
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines and stores the system bus information for a particular
+ *  network interface.  The following bus information is determined and stored:
+ *  bus speed, bus width, type (PCIe), and PCIe function.
+ **/
+s32
+e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val;
+	u32 status;
+	u16 pcie_link_status, pci_header_type;
+
+	DEBUGFUNC("e1000_get_bus_info_pcie_generic");
+
+	bus->type = e1000_bus_type_pci_express;
+	bus->speed = e1000_bus_speed_2500;
+
+	ret_val = e1000_read_pcie_cap_reg(hw,
+	                                  PCIE_LINK_STATUS,
+	                                  &pcie_link_status);
+	if (ret_val)
+		bus->width = e1000_bus_width_unknown;
+	else
+		bus->width = (e1000_bus_width)((pcie_link_status &
+		                                PCIE_LINK_WIDTH_MASK) >>
+		                               PCIE_LINK_WIDTH_SHIFT);
+
+	e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
+		status = E1000_READ_REG(hw, E1000_STATUS);
+		bus->func = (status & E1000_STATUS_FUNC_MASK)
+		            >> E1000_STATUS_FUNC_SHIFT;
+	} else
+		bus->func = 0;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_clear_vfta_generic - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the register array which contains the VLAN filter table by
+ *  setting all the values to 0.
+ **/
+void
+e1000_clear_vfta_generic(struct e1000_hw *hw)
+{
+	u32 offset;
+
+	DEBUGFUNC("e1000_clear_vfta_generic");
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+		E1000_WRITE_FLUSH(hw);
+	}
+}
+
+/**
+ *  e1000_write_vfta_generic - Write value to VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset in VLAN filter table
+ *  @value: register value written to VLAN filter table
+ *
+ *  Writes value at the given offset in the register array which stores
+ *  the VLAN filter table.
+ **/
+void
+e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	DEBUGFUNC("e1000_write_vfta_generic");
+
+	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_init_rx_addrs_generic - Initialize receive address's
+ *  @hw: pointer to the HW structure
+ *  @rar_count: receive address registers
+ *
+ *  Setups the receive address registers by setting the base receive address
+ *  register to the devices MAC address and clearing all the other receive
+ *  address registers to 0.
+ **/
+void
+e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
+{
+	u32 i;
+
+	DEBUGFUNC("e1000_init_rx_addrs_generic");
+
+	/* Setup the receive address */
+	DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+	e1000_rar_set_generic(hw, hw->mac.addr, 0);
+
+	/* Zero out the other (rar_entry_count - 1) receive addresses */
+	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
+	for (i = 1; i < rar_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
+		E1000_WRITE_FLUSH(hw);
+	}
+}
+
+/**
+ *  e1000_rar_set_generic - Set receive address register
+ *  @hw: pointer to the HW structure
+ *  @addr: pointer to the receive address
+ *  @index: receive address array register
+ *
+ *  Sets the receive address array register at index to the address passed
+ *  in by addr.
+ **/
+void
+e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+
+	DEBUGFUNC("e1000_rar_set_generic");
+
+	/* HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] |
+		   ((u32) addr[1] << 8) |
+		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	if (!hw->mac.disable_av)
+		rar_high |= E1000_RAH_AV;
+
+	E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
+	E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
+}
+
+/**
+ *  e1000_mta_set_generic - Set multicast filter table address
+ *  @hw: pointer to the HW structure
+ *  @hash_value: determines the MTA register and bit to set
+ *
+ *  The multicast table address is a register array of 32-bit registers.
+ *  The hash_value is used to determine what register the bit is in, the
+ *  current value is read, the new bit is OR'd in and the new value is
+ *  written back into the register.
+ **/
+void
+e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value)
+{
+	u32 hash_bit, hash_reg, mta;
+
+	DEBUGFUNC("e1000_mta_set_generic");
+	/* The MTA is a register array of 32-bit registers. It is
+	 * treated like an array of (32*mta_reg_count) bits.  We want to
+	 * set bit BitArray[hash_value]. So we figure out what register
+	 * the bit is in, read it, OR in the new bit, then write
+	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
+	 * mask to bits 31:5 of the hash value which gives us the
+	 * register we're modifying.  The hash bit within that register
+	 * is determined by the lower 5 bits of the hash value.
+	 */
+	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+	hash_bit = hash_value & 0x1F;
+
+	mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
+
+	mta |= (1 << hash_bit);
+
+	E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_mc_addr_list_update_generic - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *  @rar_used_count: the first RAR register free to program
+ *  @rar_count: total number of supported Receive Address Registers
+ *
+ *  Updates the Receive Address Registers and Multicast Table Array.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ *  The parameter rar_count will usually be hw->mac.rar_entry_count
+ *  unless there are workarounds that change this.
+ **/
+void
+e1000_mc_addr_list_update_generic(struct e1000_hw *hw,
+                                  u8 *mc_addr_list, u32 mc_addr_count,
+                                  u32 rar_used_count, u32 rar_count)
+{
+	u32 hash_value;
+	u32 i;
+
+	DEBUGFUNC("e1000_mc_addr_list_update_generic");
+
+	/* Load the first set of multicast addresses into the exact
+	 * filters (RAR).  If there are not enough to fill the RAR
+	 * array, clear the filters.
+	 */
+	for (i = rar_used_count; i < rar_count; i++) {
+		if (mc_addr_count) {
+			e1000_rar_set_generic(hw, mc_addr_list, i);
+			mc_addr_count--;
+			mc_addr_list += ETH_ADDR_LEN;
+		} else {
+			E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
+			E1000_WRITE_FLUSH(hw);
+			E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
+			E1000_WRITE_FLUSH(hw);
+		}
+	}
+
+	/* Clear the old settings from the MTA */
+	DEBUGOUT("Clearing MTA\n");
+	for (i = 0; i < hw->mac.mta_reg_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	/* Load any remaining multicast addresses into the hash table. */
+	for (; mc_addr_count > 0; mc_addr_count--) {
+		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
+		DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
+		e1000_mta_set(hw, hash_value);
+		mc_addr_list += ETH_ADDR_LEN;
+	}
+}
+
+/**
+ *  e1000_hash_mc_addr_generic - Generate a multicast hash value
+ *  @hw: pointer to the HW structure
+ *  @mc_addr: pointer to a multicast address
+ *
+ *  Generates a multicast address hash value which is used to determine
+ *  the multicast filter table array address and new table value.  See
+ *  e1000_mta_set_generic()
+ **/
+u32
+e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
+{
+	u32 hash_value, hash_mask;
+	u8 bit_shift = 0;
+
+	DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+	/* Register count multiplied by bits per register */
+	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
+	 * where 0xFF would still fall within the hash mask. */
+	while (hash_mask >> bit_shift != 0xFF)
+		bit_shift++;
+
+	/* The portion of the address that is used for the hash table
+	 * is determined by the mc_filter_type setting.
+	 * The algorithm is such that there is a total of 8 bits of shifting.
+	 * The bit_shift for a mc_filter_type of 0 represents the number of
+	 * left-shifts where the MSB of mc_addr[5] would still fall within
+	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
+	 * of 8 bits of shifting, then mc_addr[4] will shift right the
+	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
+	 * cases are a variation of this algorithm...essentially raising the
+	 * number of bits to shift mc_addr[5] left, while still keeping the
+	 * 8-bit shifting total.
+	 */
+	/* For example, given the following Destination MAC Address and an
+	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
+	 * we can see that the bit_shift for case 0 is 4.  These are the hash
+	 * values resulting from each mc_filter_type...
+	 * [0] [1] [2] [3] [4] [5]
+	 * 01  AA  00  12  34  56
+	 * LSB                 MSB
+	 *
+	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
+	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
+	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
+	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
+	 */
+	switch (hw->mac.mc_filter_type) {
+		default:
+		case 0:
+			break;
+		case 1:
+			bit_shift += 1;
+			break;
+		case 2:
+			bit_shift += 2;
+			break;
+		case 3:
+			bit_shift += 4;
+			break;
+	}
+
+	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+	                          (((u16) mc_addr[5]) << bit_shift)));
+
+	return hash_value;
+}
+
+/**
+ *  e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
+ *  @hw: pointer to the HW structure
+ *
+ *  In certain situations, a system BIOS may report that the PCIx maximum
+ *  memory read byte count (MMRBC) value is higher than than the actual
+ *  value. We check the PCIx command regsiter with the current PCIx status
+ *  regsiter.
+ **/
+void
+e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
+{
+	u16 cmd_mmrbc;
+	u16 pcix_cmd;
+	u16 pcix_stat_hi_word;
+	u16 stat_mmrbc;
+
+	DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
+
+	/* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
+	if (hw->bus.type != e1000_bus_type_pcix)
+		return;
+
+	e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+	e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
+	cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
+		    PCIX_COMMAND_MMRBC_SHIFT;
+	stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+		     PCIX_STATUS_HI_MMRBC_SHIFT;
+	if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+		stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+	if (cmd_mmrbc > stat_mmrbc) {
+		pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
+		pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+		e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+	}
+}
+
+/**
+ *  e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the base hardware counters by reading the counter registers.
+ **/
+void
+e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
+
+	temp = E1000_READ_REG(hw, E1000_CRCERRS);
+	temp = E1000_READ_REG(hw, E1000_SYMERRS);
+	temp = E1000_READ_REG(hw, E1000_MPC);
+	temp = E1000_READ_REG(hw, E1000_SCC);
+	temp = E1000_READ_REG(hw, E1000_ECOL);
+	temp = E1000_READ_REG(hw, E1000_MCC);
+	temp = E1000_READ_REG(hw, E1000_LATECOL);
+	temp = E1000_READ_REG(hw, E1000_COLC);
+	temp = E1000_READ_REG(hw, E1000_DC);
+	temp = E1000_READ_REG(hw, E1000_SEC);
+	temp = E1000_READ_REG(hw, E1000_RLEC);
+	temp = E1000_READ_REG(hw, E1000_XONRXC);
+	temp = E1000_READ_REG(hw, E1000_XONTXC);
+	temp = E1000_READ_REG(hw, E1000_XOFFRXC);
+	temp = E1000_READ_REG(hw, E1000_XOFFTXC);
+	temp = E1000_READ_REG(hw, E1000_FCRUC);
+	temp = E1000_READ_REG(hw, E1000_GPRC);
+	temp = E1000_READ_REG(hw, E1000_BPRC);
+	temp = E1000_READ_REG(hw, E1000_MPRC);
+	temp = E1000_READ_REG(hw, E1000_GPTC);
+	temp = E1000_READ_REG(hw, E1000_GORCL);
+	temp = E1000_READ_REG(hw, E1000_GORCH);
+	temp = E1000_READ_REG(hw, E1000_GOTCL);
+	temp = E1000_READ_REG(hw, E1000_GOTCH);
+	temp = E1000_READ_REG(hw, E1000_RNBC);
+	temp = E1000_READ_REG(hw, E1000_RUC);
+	temp = E1000_READ_REG(hw, E1000_RFC);
+	temp = E1000_READ_REG(hw, E1000_ROC);
+	temp = E1000_READ_REG(hw, E1000_RJC);
+	temp = E1000_READ_REG(hw, E1000_TORL);
+	temp = E1000_READ_REG(hw, E1000_TORH);
+	temp = E1000_READ_REG(hw, E1000_TOTL);
+	temp = E1000_READ_REG(hw, E1000_TOTH);
+	temp = E1000_READ_REG(hw, E1000_TPR);
+	temp = E1000_READ_REG(hw, E1000_TPT);
+	temp = E1000_READ_REG(hw, E1000_MPTC);
+	temp = E1000_READ_REG(hw, E1000_BPTC);
+}
+
+/**
+ *  e1000_check_for_copper_link_generic - Check for link (Copper)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks to see of the link status of the hardware has changed.  If a
+ *  change in link status has been detected, then we read the PHY registers
+ *  to get the current speed/duplex if link exists.
+ **/
+s32
+e1000_check_for_copper_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	boolean_t link;
+
+	DEBUGFUNC("e1000_check_for_copper_link");
+
+	/* We only want to go out to the PHY registers to see if Auto-Neg
+	 * has completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status
+	 * Change or Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	/* First we want to see if the MII Status Register reports
+	 * link.  If so, then we want to get the current speed/duplex
+	 * of the PHY.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link)
+		goto out; /* No link detected */
+
+	mac->get_link_status = FALSE;
+
+	/* Check if there was DownShift, must be checked
+	 * immediately after link-up */
+	e1000_check_downshift_generic(hw);
+
+	/* If we are forcing speed/duplex, then we simply return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/* Auto-Neg is enabled.  Auto Speed Detection takes care
+	 * of MAC speed/duplex configuration.  So we only need to
+	 * configure Collision Distance in the MAC.
+	 */
+	e1000_config_collision_dist_generic(hw);
+
+	/* Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000_config_fc_after_link_up_generic(hw);
+	if (ret_val) {
+		DEBUGOUT("Error configuring flow control\n");
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_fiber_link_generic - Check for link (Fiber)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+s32
+e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_check_for_fiber_link_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+	/* If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), the cable is plugged in (we have signal),
+	 * and our link partner is not trying to auto-negotiate with us (we
+	 * are receiving idles or data), we need to force link up. We also
+	 * need to give auto-negotiation time to complete, in case the cable
+	 * was just plugged in. The autoneg_failed flag does this.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
+	    (!(rxcw & E1000_RXCW_C))) {
+		if (mac->autoneg_failed == 0) {
+			mac->autoneg_failed = 1;
+			goto out;
+		}
+		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/* If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = TRUE;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+s32
+e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+	/* If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), and our link partner is not trying to
+	 * auto-negotiate with us (we are receiving idles or data),
+	 * we need to force link up. We also need to give auto-negotiation
+	 * time to complete.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+		if (mac->autoneg_failed == 0) {
+			mac->autoneg_failed = 1;
+			goto out;
+		}
+		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/* If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = TRUE;
+	} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
+		/* If we force link for non-auto-negotiation switch, check
+		 * link status based on MAC synchronization for internal
+		 * serdes media type.
+		 */
+		/* SYNCH bit and IV bit are sticky. */
+		udelay(10);
+		if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, E1000_RXCW)) {
+			if (!(rxcw & E1000_RXCW_IV)) {
+				mac->serdes_has_link = TRUE;
+				DEBUGOUT("SERDES: Link is up.\n");
+			}
+		} else {
+			mac->serdes_has_link = FALSE;
+			DEBUGOUT("SERDES: Link is down.\n");
+		}
+	}
+
+	if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
+		status = E1000_READ_REG(hw, E1000_STATUS);
+		mac->serdes_has_link = (status & E1000_STATUS_LU)
+					? TRUE
+					: FALSE;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_link_generic - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+s32
+e1000_setup_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_functions *func = &hw->func;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_link_generic");
+
+	/* In the case of the phy reset being blocked, we already have a link.
+	 * We do not need to set it up again.
+	 */
+	if (e1000_check_reset_block(hw))
+		goto out;
+
+	ret_val = e1000_set_default_fc_generic(hw);
+	if (ret_val)
+		goto out;
+
+	/* We want to save off the original Flow Control configuration just
+	 * in case we get disconnected and then reconnected into a different
+	 * hub or switch with different Flow Control capabilities.
+	 */
+	mac->original_fc = mac->fc;
+
+	DEBUGOUT1("After fix-ups FlowControl is now = %x\n", mac->fc);
+
+	/* Call the necessary media_type subroutine to configure the link. */
+	ret_val = func->setup_physical_interface(hw);
+	if (ret_val)
+		goto out;
+
+	/* Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
+	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+	E1000_WRITE_REG(hw, E1000_FCTTV, mac->fc_pause_time);
+
+	ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures collision distance and flow control for fiber and serdes
+ *  links.  Upon successful setup, poll for link.
+ **/
+s32
+e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Take the link out of reset */
+	ctrl &= ~E1000_CTRL_LRST;
+
+	e1000_config_collision_dist_generic(hw);
+
+	ret_val = e1000_commit_fc_settings_generic(hw);
+	if (ret_val)
+		goto out;
+
+	/* Since auto-negotiation is enabled, take the link out of reset (the
+	 * link will be in reset, because we previously reset the chip). This
+	 * will restart auto-negotiation.  If auto-negotiation is successful
+	 * then the link-up status bit will be set and the flow control enable
+	 * bits (RFCE and TFCE) will be set according to their negotiated value.
+	 */
+	DEBUGOUT("Auto-negotiation enabled\n");
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+	msleep(1);
+
+	/* For these adapters, the SW defineable pin 1 is set when the optics
+	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
+	 * indication.
+	 */
+	if (hw->media_type == e1000_media_type_internal_serdes ||
+	    (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+	} else {
+		DEBUGOUT("No signal detected\n");
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_config_collision_dist_generic - Configure collision distance
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the collision distance to the default value and is used
+ *  during link setup. Currently no func pointer exists and all
+ *  implementations are handled in the generic version of this function.
+ **/
+void
+e1000_config_collision_dist_generic(struct e1000_hw *hw)
+{
+	u32 tctl;
+
+	DEBUGFUNC("e1000_config_collision_dist_generic");
+
+	tctl = E1000_READ_REG(hw, E1000_TCTL);
+
+	tctl &= ~E1000_TCTL_COLD;
+	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_poll_fiber_serdes_link_generic - Poll for link up
+ *  @hw: pointer to the HW structure
+ *
+ *  Polls for link up by reading the status register, if link fails to come
+ *  up with auto-negotiation, then the link is forced if a signal is detected.
+ **/
+s32
+e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 i, status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
+
+	/* If we have a signal (the cable is plugged in, or assumed true for
+	 * serdes media) then poll for a "Link-Up" indication in the Device
+	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
+	 * seconds (Auto-negotiation should complete in less than 500
+	 * milliseconds even if the other end is doing it in SW).
+	 */
+	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
+		msleep(10);
+		status = E1000_READ_REG(hw, E1000_STATUS);
+		if (status & E1000_STATUS_LU)
+			break;
+	}
+	if (i == FIBER_LINK_UP_LIMIT) {
+		DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+		mac->autoneg_failed = 1;
+		/* AutoNeg failed to achieve a link, so we'll call
+		 * mac->check_for_link. This routine will force the
+		 * link up if we detect a signal. This will allow us to
+		 * communicate with non-autonegotiating link partners.
+		 */
+		ret_val = e1000_check_for_link(hw);
+		if (ret_val) {
+			DEBUGOUT("Error while checking for link\n");
+			goto out;
+		}
+		mac->autoneg_failed = 0;
+	} else {
+		mac->autoneg_failed = 0;
+		DEBUGOUT("Valid Link Found\n");
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_commit_fc_settings_generic - Configure flow control
+ *  @hw: pointer to the HW structure
+ *
+ *  Write the flow control settings to the Transmit Config Word Register (TXCW)
+ *  base on the flow control settings in e1000_mac_info.
+ **/
+s32
+e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 txcw;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_commit_fc_settings_generic");
+
+	/* Check for a software override of the flow control settings, and
+	 * setup the device accordingly.  If auto-negotiation is enabled, then
+	 * software will have to set the "PAUSE" bits to the correct value in
+	 * the Transmit Config Word Register (TXCW) and re-start auto-
+	 * negotiation.  However, if auto-negotiation is disabled, then
+	 * software will have to manually configure the two flow control enable
+	 * bits in the CTRL register.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames,
+	 *          but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames but we
+	 *          do not support receiving pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
+	 */
+	switch (mac->fc) {
+	case e1000_fc_none:
+		/* Flow control completely disabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+		break;
+	case e1000_fc_rx_pause:
+		/* RX Flow control is enabled and TX Flow control is disabled
+		 * by a software over-ride. Since there really isn't a way to
+		 * advertise that we are capable of RX Pause ONLY, we will
+		 * advertise that we support both symmetric and asymmetric RX
+		 * PAUSE.  Later, we will disable the adapter's ability to send
+		 * PAUSE frames.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	case e1000_fc_tx_pause:
+		/* TX Flow control is enabled, and RX Flow control is disabled,
+		 * by a software over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+		break;
+	case e1000_fc_full:
+		/* Flow control (both RX and TX) is enabled by a software
+		 * over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+		break;
+	}
+
+	E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+	mac->txcw = txcw;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the flow control high/low threshold (watermark) registers.  If
+ *  flow control XON frame transmission is enabled, then set XON frame
+ *  tansmission as well.
+ **/
+s32
+e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+	u32 fcrtl = 0, fcrth = 0;
+
+	DEBUGFUNC("e1000_set_fc_watermarks_generic");
+
+	/* Set the flow control receive threshold registers.  Normally,
+	 * these registers will be set to a default threshold that may be
+	 * adjusted later by the driver's runtime code.  However, if the
+	 * ability to transmit pause frames is not enabled, then these
+	 * registers will be set to 0.
+	 */
+	if (mac->fc & e1000_fc_tx_pause) {
+		/* We need to set up the Receive Threshold high and low water
+		 * marks as well as (optionally) enabling the transmission of
+		 * XON frames.
+		 */
+		fcrtl = mac->fc_low_water;
+		if (mac->fc_send_xon)
+			fcrtl |= E1000_FCRTL_XONE;
+
+		fcrth = mac->fc_high_water;
+	}
+	E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
+	E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_set_default_fc_generic - Set flow control default values
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the EEPROM for the default values for flow control and store the
+ *  values.
+ **/
+s32
+e1000_set_default_fc_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+	u16 nvm_data;
+
+	DEBUGFUNC("e1000_set_default_fc_generic");
+
+	if (mac->fc != e1000_fc_default)
+		goto out;
+
+	/* Read and store word 0x0F of the EEPROM. This word contains bits
+	 * that determine the hardware's default PAUSE (flow control) mode,
+	 * a bit that determines whether the HW defaults to enabling or
+	 * disabling auto-negotiation, and the direction of the
+	 * SW defined pins. If there is no SW over-ride of the flow
+	 * control setting, then the variable hw->fc will
+	 * be initialized based on a value in the EEPROM.
+	 */
+	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
+
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
+		mac->fc = e1000_fc_none;
+	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+		 NVM_WORD0F_ASM_DIR)
+		mac->fc = e1000_fc_tx_pause;
+	else
+		mac->fc = e1000_fc_full;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_force_mac_fc_generic - Force the MAC's flow control settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
+ *  device control register to reflect the adapter settings.  TFCE and RFCE
+ *  need to be explicitly set by software when a copper PHY is used because
+ *  autonegotiation is managed by the PHY rather than the MAC.  Software must
+ *  also configure these bits when link is forced on a fiber connection.
+ **/
+s32
+e1000_force_mac_fc_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 ctrl;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_force_mac_fc_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Because we didn't get link via the internal auto-negotiation
+	 * mechanism (we either forced link or we got link via PHY
+	 * auto-neg), we have to manually enable/disable transmit an
+	 * receive flow control.
+	 *
+	 * The "Case" statement below enables/disable flow control
+	 * according to the "mac->fc" parameter.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause
+	 *          frames but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          frames but we do not receive pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
+	 *  other:  No other values should be possible at this point.
+	 */
+	DEBUGOUT1("mac->fc = %u\n", mac->fc);
+
+	switch (mac->fc) {
+	case e1000_fc_none:
+		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+		break;
+	case e1000_fc_rx_pause:
+		ctrl &= (~E1000_CTRL_TFCE);
+		ctrl |= E1000_CTRL_RFCE;
+		break;
+	case e1000_fc_tx_pause:
+		ctrl &= (~E1000_CTRL_RFCE);
+		ctrl |= E1000_CTRL_TFCE;
+		break;
+	case e1000_fc_full:
+		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_config_fc_after_link_up_generic - Configures flow control after link
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the status of auto-negotiation after link up to ensure that the
+ *  speed and duplex were not forced.  If the link needed to be forced, then
+ *  flow control needs to be forced also.  If auto-negotiation is enabled
+ *  and did not fail, then we configure flow control based on our link
+ *  partner.
+ **/
+s32
+e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+	u16 speed, duplex;
+
+	DEBUGFUNC("e1000_config_fc_after_link_up_generic");
+
+	/* Check for the case where we have fiber media and auto-neg failed
+	 * so we had to force link.  In this case, we need to force the
+	 * configuration of the MAC to match the "fc" parameter.
+	 */
+	if (mac->autoneg_failed) {
+		if (hw->media_type == e1000_media_type_fiber ||
+		    hw->media_type == e1000_media_type_internal_serdes)
+			ret_val = e1000_force_mac_fc_generic(hw);
+	} else {
+		if (hw->media_type == e1000_media_type_copper)
+			ret_val = e1000_force_mac_fc_generic(hw);
+	}
+
+	if (ret_val) {
+		DEBUGOUT("Error forcing flow control settings\n");
+		goto out;
+	}
+
+	/* Check for the case where we have copper media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg
+	 * has completed, and if so, how the PHY and link partner has
+	 * flow control configured.
+	 */
+	if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) {
+		/* Read the MII Status Register and check to see if AutoNeg
+		 * has completed.  We read this twice because this reg has
+		 * some "sticky" (latched) bits.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			goto out;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			goto out;
+
+		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+			DEBUGOUT("Copper PHY and Auto Neg "
+			         "has not completed.\n");
+			goto out;
+		}
+
+		/* The AutoNeg process has completed, so we now need to
+		 * read both the Auto Negotiation Advertisement
+		 * Register (Address 4) and the Auto_Negotiation Base
+		 * Page Ability Register (Address 5) to determine how
+		 * flow control was negotiated.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
+					    &mii_nway_adv_reg);
+		if (ret_val)
+			goto out;
+		ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
+					    &mii_nway_lp_ability_reg);
+		if (ret_val)
+			goto out;
+
+		/* Two bits in the Auto Negotiation Advertisement Register
+		 * (Address 4) and two bits in the Auto Negotiation Base
+		 * Page Ability Register (Address 5) determine flow control
+		 * for both the PHY and the link partner.  The following
+		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+		 * 1999, describes these PAUSE resolution bits and how flow
+		 * control is determined based upon these settings.
+		 * NOTE:  DC = Don't Care
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
+		 *   0   |    1    |   0   |   DC    | e1000_fc_none
+		 *   0   |    1    |   1   |    0    | e1000_fc_none
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 *   1   |    0    |   0   |   DC    | e1000_fc_none
+		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
+		 *   1   |    1    |   0   |    0    | e1000_fc_none
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 *
+		 */
+		/* Are both PAUSE bits set to 1?  If so, this implies
+		 * Symmetric Flow Control is enabled at both ends.  The
+		 * ASM_DIR bits are irrelevant per the spec.
+		 *
+		 * For Symmetric Flow Control:
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
+		 *
+		 */
+		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+			/* Now we need to check if the user selected RX ONLY
+			 * of pause frames.  In this case, we had to advertise
+			 * FULL flow control because we could not advertise RX
+			 * ONLY. Hence, we must now check to see if we need to
+			 * turn OFF  the TRANSMISSION of PAUSE frames.
+			 */
+			if (mac->original_fc == e1000_fc_full) {
+				mac->fc = e1000_fc_full;
+				DEBUGOUT("Flow Control = FULL.\r\n");
+			} else {
+				mac->fc = e1000_fc_rx_pause;
+				DEBUGOUT("Flow Control = "
+				         "RX PAUSE frames only.\r\n");
+			}
+		}
+		/* For receiving PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 *
+		 */
+		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		          (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+		          (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+		          (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			mac->fc = e1000_fc_tx_pause;
+			DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
+		}
+		/* For transmitting PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 *
+		 */
+		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		         (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+		         !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+		         (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			mac->fc = e1000_fc_rx_pause;
+			DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+		}
+		/* Per the IEEE spec, at this point flow control should be
+		 * disabled.  However, we want to consider that we could
+		 * be connected to a legacy switch that doesn't advertise
+		 * desired flow control, but can be forced on the link
+		 * partner.  So if we advertised no flow control, that is
+		 * what we will resolve to.  If we advertised some kind of
+		 * receive capability (Rx Pause Only or Full Flow Control)
+		 * and the link partner advertised none, we will configure
+		 * ourselves to enable Rx Flow Control only.  We can do
+		 * this safely for two reasons:  If the link partner really
+		 * didn't want flow control enabled, and we enable Rx, no
+		 * harm done since we won't be receiving any PAUSE frames
+		 * anyway.  If the intent on the link partner was to have
+		 * flow control enabled, then by us enabling RX only, we
+		 * can at least receive pause frames and process them.
+		 * This is a good idea because in most cases, since we are
+		 * predominantly a server NIC, more times than not we will
+		 * be asked to delay transmission of packets than asking
+		 * our link partner to pause transmission of frames.
+		 */
+		else if ((mac->original_fc == e1000_fc_none ||
+		          mac->original_fc == e1000_fc_tx_pause) ||
+		         mac->fc_strict_ieee) {
+			mac->fc = e1000_fc_none;
+			DEBUGOUT("Flow Control = NONE.\r\n");
+		} else {
+			mac->fc = e1000_fc_rx_pause;
+			DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+		}
+
+		/* Now we need to do one last check...  If we auto-
+		 * negotiated to HALF DUPLEX, flow control should not be
+		 * enabled per IEEE 802.3 spec.
+		 */
+		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+		if (ret_val) {
+			DEBUGOUT("Error getting link speed and duplex\n");
+			goto out;
+		}
+
+		if (duplex == HALF_DUPLEX)
+			mac->fc = e1000_fc_none;
+
+		/* Now we call a subroutine to actually force the MAC
+		 * controller to use the correct flow control settings.
+		 */
+		ret_val = e1000_force_mac_fc_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error forcing flow control settings\n");
+			goto out;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_speed_and_duplex_copper_generic - Retreive current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Read the status register for the current speed/duplex and store the current
+ *  speed and duplex for copper connections.
+ **/
+s32
+e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+                                          u16 *duplex)
+{
+	u32 status;
+
+	DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
+
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	if (status & E1000_STATUS_SPEED_1000) {
+		*speed = SPEED_1000;
+		DEBUGOUT("1000 Mbs, ");
+	} else if (status & E1000_STATUS_SPEED_100) {
+		*speed = SPEED_100;
+		DEBUGOUT("100 Mbs, ");
+	} else {
+		*speed = SPEED_10;
+		DEBUGOUT("10 Mbs, ");
+	}
+
+	if (status & E1000_STATUS_FD) {
+		*duplex = FULL_DUPLEX;
+		DEBUGOUT("Full Duplex\n");
+	} else {
+		*duplex = HALF_DUPLEX;
+		DEBUGOUT("Half Duplex\n");
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_speed_and_duplex_fiber_generic - Retreive current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Sets the speed and duplex to gigabit full duplex (the only possible option)
+ *  for fiber/serdes links.
+ **/
+s32
+e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw, u16 *speed,
+                                                u16 *duplex)
+{
+	DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
+
+	*speed = SPEED_1000;
+	*duplex = FULL_DUPLEX;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_hw_semaphore_generic - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Request a hardware semaphore by setting the firmware semaphore bit, once
+ *  bit has been set, semaphore has been acquired.
+ **/
+s32
+e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
+{
+	u32 swsm;
+	s32 ret_val = E1000_SUCCESS;
+	s32 timeout = hw->nvm.word_size + 1;
+	s32 i = 0;
+
+	DEBUGFUNC("e1000_get_hw_semaphore_generic");
+
+	/* Get the FW semaphore. */
+	for (i = 0; i < timeout; i++) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+		/* Semaphore acquired if bit latched */
+		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+			break;
+
+		udelay(50);
+	}
+
+	if (i == timeout) {
+		/* Release semaphores */
+		e1000_put_hw_semaphore_generic(hw);
+		DEBUGOUT("Driver can't access the NVM\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_put_hw_semaphore_generic - Release hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Release hardware semaphore by clearing in the firmware semaphore bit.
+ **/
+void
+e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
+{
+	u32 swsm;
+
+	DEBUGFUNC("e1000_put_hw_semaphore_generic");
+
+	swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+	swsm &= ~E1000_SWSM_SWESMBI;
+
+	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/**
+ *  e1000_get_auto_rd_done_generic - Check for auto read completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Check EEPROM for Auto Read done bit.
+ **/
+s32
+e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
+{
+	s32 i = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_get_auto_rd_done_generic");
+
+	while (i < AUTO_READ_DONE_TIMEOUT) {
+		if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
+			break;
+		msleep(1);
+		i++;
+	}
+
+	if (i == AUTO_READ_DONE_TIMEOUT) {
+		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
+		ret_val = -E1000_ERR_RESET;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_valid_led_default_generic - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+s32
+e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_valid_led_default_generic");
+
+	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_id_led_init_generic -
+ *  @hw: pointer to the HW structure
+ *
+ **/
+s32
+e1000_id_led_init_generic(struct e1000_hw * hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	const u32 ledctl_mask = 0x000000FF;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+	u16 data, i, temp;
+	const u16 led_mask = 0x0F;
+
+	DEBUGFUNC("e1000_id_led_init_generic");
+
+	ret_val = hw->func.valid_led_default(hw, &data);
+	if (ret_val)
+		goto out;
+
+	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
+	mac->ledctl_mode1 = mac->ledctl_default;
+	mac->ledctl_mode2 = mac->ledctl_default;
+
+	for (i = 0; i < 4; i++) {
+		temp = (data >> (i << 2)) & led_mask;
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_led_generic - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use and saves the current state
+ *  of the LED so it can be later restored.
+ **/
+s32
+e1000_setup_led_generic(struct e1000_hw *hw)
+{
+	u32 ledctl;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_led_generic");
+
+	if (hw->func.setup_led != e1000_setup_led_generic) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	if (hw->media_type == e1000_media_type_fiber) {
+		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+		hw->mac.ledctl_default = ledctl;
+		/* Turn off LED0 */
+		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+		            E1000_LEDCTL_LED0_BLINK |
+		            E1000_LEDCTL_LED0_MODE_MASK);
+		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+		           E1000_LEDCTL_LED0_MODE_SHIFT);
+		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+	} else if (hw->media_type == e1000_media_type_copper) {
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_cleanup_led_generic - Set LED config to default operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Remove the current LED configuration and set the LED configuration
+ *  to the default value, saved from the EEPROM.
+ **/
+s32
+e1000_cleanup_led_generic(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_cleanup_led_generic");
+
+	if (hw->func.cleanup_led != e1000_cleanup_led_generic) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_blink_led_generic - Blink LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Blink the led's which are set to be on.
+ **/
+s32
+e1000_blink_led_generic(struct e1000_hw *hw)
+{
+	u32 ledctl_blink = 0;
+	u32 i;
+
+	DEBUGFUNC("e1000_blink_led_generic");
+
+	if (hw->media_type == e1000_media_type_fiber) {
+		/* always blink LED0 for PCI-E fiber */
+		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+	} else {
+		/* set the blink bit for each LED that's "on" (0x0E)
+		 * in ledctl_mode2 */
+		ledctl_blink = hw->mac.ledctl_mode2;
+		for (i = 0; i < 4; i++)
+			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+			    E1000_LEDCTL_MODE_LED_ON)
+				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
+				                 (i * 8));
+	}
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_on_generic - Turn LED on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED on.
+ **/
+s32
+e1000_led_on_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_led_on_generic");
+
+	switch (hw->media_type) {
+	case e1000_media_type_fiber:
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		break;
+	case e1000_media_type_copper:
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+		break;
+	default:
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_off_generic - Turn LED off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED off.
+ **/
+s32
+e1000_led_off_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_led_off_generic");
+
+	switch (hw->media_type) {
+	case e1000_media_type_fiber:
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		break;
+	case e1000_media_type_copper:
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+		break;
+	default:
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
+ *  @hw: pointer to the HW structure
+ *  @no_snoop: bitmap of snoop events
+ *
+ *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
+ **/
+void
+e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
+{
+	u32 gcr;
+
+	DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
+
+	if (hw->bus.type != e1000_bus_type_pci_express)
+		goto out;
+
+	if (no_snoop) {
+		gcr = E1000_READ_REG(hw, E1000_GCR);
+		gcr &= ~(PCIE_NO_SNOOP_ALL);
+		gcr |= no_snoop;
+		E1000_WRITE_REG(hw, E1000_GCR, gcr);
+	}
+out:
+	return;
+}
+
+/**
+ *  e1000_disable_pcie_master_generic - Disables PCI-express master access
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns 0 (E1000_SUCCESS) if successful, else returns -10
+ *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
+ *  the master requests to be disabled.
+ *
+ *  Disables PCI-Express master access and verifies there are no pending
+ *  requests.
+ **/
+s32
+e1000_disable_pcie_master_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 timeout = MASTER_DISABLE_TIMEOUT;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_disable_pcie_master_generic");
+
+	if (hw->bus.type != e1000_bus_type_pci_express)
+		goto out;
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	while (timeout) {
+		if (!(E1000_READ_REG(hw, E1000_STATUS) &
+		      E1000_STATUS_GIO_MASTER_ENABLE))
+			break;
+		udelay(100);
+		timeout--;
+	}
+
+	if (!timeout) {
+		DEBUGOUT("Master requests are pending.\n");
+		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
+ *  @hw: pointer to the HW structure
+ *
+ *  Reset the Adaptive Interframe Spacing throttle to default values.
+ **/
+void
+e1000_reset_adaptive_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	DEBUGFUNC("e1000_reset_adaptive_generic");
+
+	if (!mac->adaptive_ifs) {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+		goto out;
+	}
+
+	if (!mac->ifs_params_forced) {
+		mac->current_ifs_val = 0;
+		mac->ifs_min_val = IFS_MIN;
+		mac->ifs_max_val = IFS_MAX;
+		mac->ifs_step_size = IFS_STEP;
+		mac->ifs_ratio = IFS_RATIO;
+	}
+
+	mac->in_ifs_mode = FALSE;
+	E1000_WRITE_REG(hw, E1000_AIT, 0);
+out:
+	return;
+}
+
+/**
+ *  e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
+ *  @hw: pointer to the HW structure
+ *
+ *  Update the Adaptive Interframe Spacing Throttle value based on the
+ *  time between transmitted packets and time between collisions.
+ **/
+void
+e1000_update_adaptive_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	DEBUGFUNC("e1000_update_adaptive_generic");
+
+	if (!mac->adaptive_ifs) {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+		goto out;
+	}
+
+	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
+		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
+			mac->in_ifs_mode = TRUE;
+			if (mac->current_ifs_val < mac->ifs_max_val) {
+				if (!mac->current_ifs_val)
+					mac->current_ifs_val = mac->ifs_min_val;
+				else
+					mac->current_ifs_val +=
+						mac->ifs_step_size;
+				E1000_WRITE_REG(hw, E1000_AIT, mac->current_ifs_val);
+			}
+		}
+	} else {
+		if (mac->in_ifs_mode &&
+		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
+			mac->current_ifs_val = 0;
+			mac->in_ifs_mode = FALSE;
+			E1000_WRITE_REG(hw, E1000_AIT, 0);
+		}
+	}
+out:
+	return;
+}
+
+/**
+ *  e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
+ *  set, which is forced to MDI mode only.
+ **/
+s32
+e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_validate_mdi_setting_generic");
+
+	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
+		DEBUGOUT("Invalid MDI setting detected\n");
+		hw->phy.mdix = 1;
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
diff --git a/drivers/net/e1000/e1000_mac.h b/drivers/net/e1000/e1000_mac.h
new file mode 100644
index 0000000..47422f6
--- /dev/null
+++ b/drivers/net/e1000/e1000_mac.h
@@ -0,0 +1,84 @@
+/*******************************************************************************
+
+  Intel PRO/1000 Linux driver
+  Copyright(c) 1999 - 2007 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@...el.com>
+  e1000-devel Mailing List <e1000-devel@...ts.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#ifndef _E1000_MAC_H_
+#define _E1000_MAC_H_
+
+#include "e1000_api.h"
+
+/* Functions that should not be called directly from drivers but can be used
+ * by other files in this 'shared code'
+ */
+s32  e1000_blink_led_generic(struct e1000_hw *hw);
+s32  e1000_check_for_copper_link_generic(struct e1000_hw *hw);
+s32  e1000_check_for_fiber_link_generic(struct e1000_hw *hw);
+s32  e1000_check_for_serdes_link_generic(struct e1000_hw *hw);
+s32  e1000_cleanup_led_generic(struct e1000_hw *hw);
+s32  e1000_commit_fc_settings_generic(struct e1000_hw *hw);
+s32  e1000_config_fc_after_link_up_generic(struct e1000_hw *hw);
+s32  e1000_disable_pcie_master_generic(struct e1000_hw *hw);
+s32  e1000_force_mac_fc_generic(struct e1000_hw *hw);
+s32  e1000_get_auto_rd_done_generic(struct e1000_hw *hw);
+s32  e1000_get_bus_info_pci_generic(struct e1000_hw *hw);
+s32  e1000_get_bus_info_pcie_generic(struct e1000_hw *hw);
+s32  e1000_get_hw_semaphore_generic(struct e1000_hw *hw);
+s32  e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+                                               u16 *duplex);
+s32  e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+                                                     u16 *speed, u16 *duplex);
+s32  e1000_id_led_init_generic(struct e1000_hw *hw);
+s32  e1000_led_on_generic(struct e1000_hw *hw);
+s32  e1000_led_off_generic(struct e1000_hw *hw);
+void e1000_mc_addr_list_update_generic(struct e1000_hw *hw,
+	                               u8 *mc_addr_list, u32 mc_addr_count,
+	                               u32 rar_used_count, u32 rar_count);
+s32  e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32  e1000_set_default_fc_generic(struct e1000_hw *hw);
+s32  e1000_set_fc_watermarks_generic(struct e1000_hw *hw);
+s32  e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32  e1000_setup_led_generic(struct e1000_hw *hw);
+s32  e1000_setup_link_generic(struct e1000_hw *hw);
+s32  e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
+
+u32  e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr);
+
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw);
+void e1000_clear_vfta_generic(struct e1000_hw *hw);
+void e1000_config_collision_dist_generic(struct e1000_hw *hw);
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count);
+void e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value);
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw);
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw);
+void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
+void e1000_remove_device_generic(struct e1000_hw *hw);
+void e1000_reset_adaptive_generic(struct e1000_hw *hw);
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop);
+void e1000_update_adaptive_generic(struct e1000_hw *hw);
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
+
+#endif
-
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html

Powered by blists - more mailing lists