[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <CAHy_qTzaT+SxgBrpTE=jy5iS6VOsuqhEKJLqAn+KfzEyNJ7GZQ@mail.gmail.com>
Date: Sun, 23 Mar 2014 21:54:51 -0700
From: Terry Lam <vtlam@...gle.com>
To: Tom Herbert <therbert@...gle.com>
Cc: "David S. Miller" <davem@...emloft.net>,
Linux Netdev List <netdev@...r.kernel.org>,
Eric Dumazet <edumazet@...gle.com>,
Nandita Dukkipati <nanditad@...gle.com>
Subject: Re: [PATCH] net-qdisc-hhf: Heavy-Hitter Filter (HHF) qdisc
Hi Tom,
Perturbation is mainly for added security (e.g. intentional hash
collision to map an elephant to the high priority bucket).
I just looked at the code and it looks like skb_get_hash (indeed,
__skb_get_hash) does not have perturbation.
Do you mean we will soon perturbation for connected sockets?
Terry
On Fri, Mar 21, 2014 at 2:45 PM, Tom Herbert <therbert@...gle.com> wrote:
>
> Terry,
>
> HHF defines it's own skb_hash function. Do you see any issues if we
> remove this and call skb_get_hash instead. We'll have functionality in
> TX to set skb->hash from sk_hash. The only difference is that in
> non-connected socket case we won't include q->perturbation in the
> jhash-- how important is this?
>
>
> On Tue, Dec 10, 2013 at 11:26 PM, Terry Lam <vtlam@...gle.com> wrote:
> > This patch implements the first size-based qdisc that attempts to
> > differentiate between small flows and heavy-hitters. The goal is to
> > catch the heavy-hitters and move them to a separate queue with less
> > priority so that bulk traffic does not affect the latency of critical
> > traffic. Currently "less priority" means less weight (2:1 in
> > particular) in a Weighted Deficit Round Robin (WDRR) scheduler.
> >
> > In essence, this patch addresses the "delay-bloat" problem due to
> > bloated buffers. In some systems, large queues may be necessary for
> > obtaining CPU efficiency, or due to the presence of unresponsive
> > traffic like UDP, or just a large number of connections with each
> > having a small amount of outstanding traffic. In these circumstances,
> > HHF aims to reduce the HoL blocking for latency sensitive traffic,
> > while not impacting the queues built up by bulk traffic. HHF can also
> > be used in conjunction with other AQM mechanisms such as CoDel.
> >
> > To capture heavy-hitters, we implement the "multi-stage filter" design
> > in the following paper:
> > C. Estan and G. Varghese, "New Directions in Traffic Measurement and
> > Accounting", in ACM SIGCOMM, 2002.
> >
> > Some configurable qdisc settings through 'tc':
> > - hhf_reset_timeout: period to reset counter values in the multi-stage
> > filter (default 40ms)
> > - hhf_admit_bytes: threshold to classify heavy-hitters
> > (default 128KB)
> > - hhf_evict_timeout: threshold to evict idle heavy-hitters
> > (default 1s)
> > - hhf_non_hh_weight: Weighted Deficit Round Robin (WDRR) weight for
> > non-heavy-hitters (default 2)
> > - hh_flows_limit: max number of heavy-hitter flow entries
> > (default 2048)
> >
> > Note that the ratio between hhf_admit_bytes and hhf_reset_timeout
> > reflects the bandwidth of heavy-hitters that we attempt to capture
> > (25Mbps with the above default settings).
> >
> > The false negative rate (heavy-hitter flows getting away unclassified)
> > is zero by the design of the multi-stage filter algorithm.
> > With 100 heavy-hitter flows, using four hashes and 4000 counters yields
> > a false positive rate (non-heavy-hitters mistakenly classified as
> > heavy-hitters) of less than 1e-4.
> >
> > Signed-off-by: Terry Lam <vtlam@...gle.com>
> > ---
> > include/uapi/linux/pkt_sched.h | 25 ++
> > net/sched/Kconfig | 9 +
> > net/sched/Makefile | 1 +
> > net/sched/sch_hhf.c | 746 +++++++++++++++++++++++++++++++++++++++++
> > 4 files changed, 781 insertions(+)
> > create mode 100644 net/sched/sch_hhf.c
> >
> > diff --git a/include/uapi/linux/pkt_sched.h b/include/uapi/linux/pkt_sched.h
> > index a806687..4566993 100644
> > --- a/include/uapi/linux/pkt_sched.h
> > +++ b/include/uapi/linux/pkt_sched.h
> > @@ -790,4 +790,29 @@ struct tc_fq_qd_stats {
> > __u32 throttled_flows;
> > __u32 pad;
> > };
> > +
> > +/* Heavy-Hitter Filter */
> > +
> > +enum {
> > + TCA_HHF_UNSPEC,
> > + TCA_HHF_BACKLOG_LIMIT,
> > + TCA_HHF_QUANTUM,
> > + TCA_HHF_HH_FLOWS_LIMIT,
> > + TCA_HHF_RESET_TIMEOUT,
> > + TCA_HHF_ADMIT_BYTES,
> > + TCA_HHF_EVICT_TIMEOUT,
> > + TCA_HHF_NON_HH_WEIGHT,
> > + __TCA_HHF_MAX
> > +};
> > +
> > +#define TCA_HHF_MAX (__TCA_HHF_MAX - 1)
> > +
> > +struct tc_hhf_xstats {
> > + __u32 drop_overlimit; /* number of times max qdisc packet limit
> > + * was hit
> > + */
> > + __u32 hh_overlimit; /* number of times max heavy-hitters was hit */
> > + __u32 hh_tot_count; /* number of captured heavy-hitters so far */
> > + __u32 hh_cur_count; /* number of current heavy-hitters */
> > +};
> > #endif
> > diff --git a/net/sched/Kconfig b/net/sched/Kconfig
> > index ad1f1d8..919847b 100644
> > --- a/net/sched/Kconfig
> > +++ b/net/sched/Kconfig
> > @@ -286,6 +286,15 @@ config NET_SCH_FQ
> >
> > If unsure, say N.
> >
> > +config NET_SCH_HHF
> > + tristate "Heavy-Hitter Filter (HHF)"
> > + help
> > + Say Y here if you want to use the Heavy-Hitter Filter (HHF)
> > + packet scheduling algorithm.
> > +
> > + To compile this driver as a module, choose M here: the module
> > + will be called sch_hhf.
> > +
> > config NET_SCH_INGRESS
> > tristate "Ingress Qdisc"
> > depends on NET_CLS_ACT
> > diff --git a/net/sched/Makefile b/net/sched/Makefile
> > index 35fa47a..3442e5f 100644
> > --- a/net/sched/Makefile
> > +++ b/net/sched/Makefile
> > @@ -40,6 +40,7 @@ obj-$(CONFIG_NET_SCH_QFQ) += sch_qfq.o
> > obj-$(CONFIG_NET_SCH_CODEL) += sch_codel.o
> > obj-$(CONFIG_NET_SCH_FQ_CODEL) += sch_fq_codel.o
> > obj-$(CONFIG_NET_SCH_FQ) += sch_fq.o
> > +obj-$(CONFIG_NET_SCH_HHF) += sch_hhf.o
> >
> > obj-$(CONFIG_NET_CLS_U32) += cls_u32.o
> > obj-$(CONFIG_NET_CLS_ROUTE4) += cls_route.o
> > diff --git a/net/sched/sch_hhf.c b/net/sched/sch_hhf.c
> > new file mode 100644
> > index 0000000..91c723e
> > --- /dev/null
> > +++ b/net/sched/sch_hhf.c
> > @@ -0,0 +1,746 @@
> > +/* net/sched/sch_hhf.c Heavy-Hitter Filter (HHF)
> > + *
> > + * Copyright (C) 2013 Terry Lam <vtlam@...gle.com>
> > + * Copyright (C) 2013 Nandita Dukkipati <nanditad@...gle.com>
> > + */
> > +
> > +#include <linux/jhash.h>
> > +#include <linux/jiffies.h>
> > +#include <linux/module.h>
> > +#include <linux/skbuff.h>
> > +#include <linux/vmalloc.h>
> > +#include <net/flow_keys.h>
> > +#include <net/pkt_sched.h>
> > +#include <net/sock.h>
> > +
> > +/* Heavy-Hitter Filter (HHF)
> > + *
> > + * Principles :
> > + * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter
> > + * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified
> > + * as heavy-hitter, it is immediately switched to the heavy-hitter bucket.
> > + * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler,
> > + * in which the heavy-hitter bucket is served with less weight.
> > + * In other words, non-heavy-hitters (e.g., short bursts of critical traffic)
> > + * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have
> > + * higher share of bandwidth.
> > + *
> > + * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the
> > + * following paper:
> > + * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and
> > + * Accounting", in ACM SIGCOMM, 2002.
> > + *
> > + * Conceptually, a multi-stage filter comprises k independent hash functions
> > + * and k counter arrays. Packets are indexed into k counter arrays by k hash
> > + * functions, respectively. The counters are then increased by the packet sizes.
> > + * Therefore,
> > + * - For a heavy-hitter flow: *all* of its k array counters must be large.
> > + * - For a non-heavy-hitter flow: some of its k array counters can be large
> > + * due to hash collision with other small flows; however, with high
> > + * probability, not *all* k counters are large.
> > + *
> > + * By the design of the multi-stage filter algorithm, the false negative rate
> > + * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is
> > + * susceptible to false positives (non-heavy-hitters mistakenly classified as
> > + * heavy-hitters).
> > + * Therefore, we also implement the following optimizations to reduce false
> > + * positives by avoiding unnecessary increment of the counter values:
> > + * - Optimization O1: once a heavy-hitter is identified, its bytes are not
> > + * accounted in the array counters. This technique is called "shielding"
> > + * in Section 3.3.1 of [EV02].
> > + * - Optimization O2: conservative update of counters
> > + * (Section 3.3.2 of [EV02]),
> > + * New counter value = max {old counter value,
> > + * smallest counter value + packet bytes}
> > + *
> > + * Finally, we refresh the counters periodically since otherwise the counter
> > + * values will keep accumulating.
> > + *
> > + * Once a flow is classified as heavy-hitter, we also save its per-flow state
> > + * in an exact-matching flow table so that its subsequent packets can be
> > + * dispatched to the heavy-hitter bucket accordingly.
> > + *
> > + *
> > + * At a high level, this qdisc works as follows:
> > + * Given a packet p:
> > + * - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching
> > + * heavy-hitter flow table, denoted table T, then send p to the heavy-hitter
> > + * bucket.
> > + * - Otherwise, forward p to the multi-stage filter, denoted filter F
> > + * + If F decides that p belongs to a non-heavy-hitter flow, then send p
> > + * to the non-heavy-hitter bucket.
> > + * + Otherwise, if F decides that p belongs to a new heavy-hitter flow,
> > + * then set up a new flow entry for the flow-id of p in the table T and
> > + * send p to the heavy-hitter bucket.
> > + *
> > + * In this implementation:
> > + * - T is a fixed-size hash-table with 1024 entries. Hash collision is
> > + * resolved by linked-list chaining.
> > + * - F has four counter arrays, each array containing 1024 32-bit counters.
> > + * That means 4 * 1024 * 32 bits = 16KB of memory.
> > + * - Since each array in F contains 1024 counters, 10 bits are sufficient to
> > + * index into each array.
> > + * Hence, instead of having four hash functions, we chop the 32-bit
> > + * skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is
> > + * computed as XOR sum of those three chunks.
> > + * - We need to clear the counter arrays periodically; however, directly
> > + * memsetting 16KB of memory can lead to cache eviction and unwanted delay.
> > + * So by representing each counter by a valid bit, we only need to reset
> > + * 4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory.
> > + * - The Deficit Round Robin engine is taken from fq_codel implementation
> > + * (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to
> > + * fq_codel_flow in fq_codel implementation.
> > + *
> > + */
> > +
> > +/* Non-configurable parameters */
> > +#define HH_FLOWS_CNT 1024 /* number of entries in exact-matching table T */
> > +#define HHF_ARRAYS_CNT 4 /* number of arrays in multi-stage filter F */
> > +#define HHF_ARRAYS_LEN 1024 /* number of counters in each array of F */
> > +#define HHF_BIT_MASK_LEN 10 /* masking 10 bits */
> > +#define HHF_BIT_MASK 0x3FF /* bitmask of 10 bits */
> > +
> > +#define WDRR_BUCKET_CNT 2 /* two buckets for Weighted DRR */
> > +enum wdrr_bucket_idx {
> > + WDRR_BUCKET_FOR_HH = 0, /* bucket id for heavy-hitters */
> > + WDRR_BUCKET_FOR_NON_HH = 1 /* bucket id for non-heavy-hitters */
> > +};
> > +
> > +#define hhf_time_before(a, b) \
> > + (typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0))
> > +
> > +/* Heavy-hitter per-flow state */
> > +struct hh_flow_state {
> > + u32 hash_id; /* hash of flow-id (e.g. TCP 5-tuple) */
> > + u32 hit_timestamp; /* last time heavy-hitter was seen */
> > + struct list_head flowchain; /* chaining under hash collision */
> > +};
> > +
> > +/* Weighted Deficit Round Robin (WDRR) scheduler */
> > +struct wdrr_bucket {
> > + struct sk_buff *head;
> > + struct sk_buff *tail;
> > + struct list_head bucketchain;
> > + int deficit;
> > +};
> > +
> > +struct hhf_sched_data {
> > + struct wdrr_bucket buckets[WDRR_BUCKET_CNT];
> > + u32 perturbation; /* hash perturbation */
> > + u32 quantum; /* psched_mtu(qdisc_dev(sch)); */
> > + u32 drop_overlimit; /* number of times max qdisc packet
> > + * limit was hit
> > + */
> > + struct list_head *hh_flows; /* table T (currently active HHs) */
> > + u32 hh_flows_limit; /* max active HH allocs */
> > + u32 hh_flows_overlimit; /* num of disallowed HH allocs */
> > + u32 hh_flows_total_cnt; /* total admitted HHs */
> > + u32 hh_flows_current_cnt; /* total current HHs */
> > + u32 *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */
> > + u32 hhf_arrays_reset_timestamp; /* last time hhf_arrays
> > + * was reset
> > + */
> > + unsigned long *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits
> > + * of hhf_arrays
> > + */
> > + /* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */
> > + struct list_head new_buckets; /* list of new buckets */
> > + struct list_head old_buckets; /* list of old buckets */
> > +
> > + /* Configurable HHF parameters */
> > + u32 hhf_reset_timeout; /* interval to reset counter
> > + * arrays in filter F
> > + * (default 40ms)
> > + */
> > + u32 hhf_admit_bytes; /* counter thresh to classify as
> > + * HH (default 128KB).
> > + * With these default values,
> > + * 128KB / 40ms = 25 Mbps
> > + * i.e., we expect to capture HHs
> > + * sending > 25 Mbps.
> > + */
> > + u32 hhf_evict_timeout; /* aging threshold to evict idle
> > + * HHs out of table T. This should
> > + * be large enough to avoid
> > + * reordering during HH eviction.
> > + * (default 1s)
> > + */
> > + u32 hhf_non_hh_weight; /* WDRR weight for non-HHs
> > + * (default 2,
> > + * i.e., non-HH : HH = 2 : 1)
> > + */
> > +};
> > +
> > +static inline u32 hhf_time_stamp(void)
> > +{
> > + return jiffies;
> > +}
> > +
> > +static unsigned int skb_hash(const struct hhf_sched_data *q,
> > + const struct sk_buff *skb)
> > +{
> > + struct flow_keys keys;
> > + unsigned int hash;
> > +
> > + if (skb->sk && skb->sk->sk_hash)
> > + return skb->sk->sk_hash;
> > +
> > + skb_flow_dissect(skb, &keys);
> > + hash = jhash_3words((__force u32)keys.dst,
> > + (__force u32)keys.src ^ keys.ip_proto,
> > + (__force u32)keys.ports, q->perturbation);
> > + return hash;
> > +}
> > +
> > +/* Looks up a heavy-hitter flow in a chaining list of table T. */
> > +static inline struct hh_flow_state *seek_list(const u32 hash,
> > + struct list_head *head,
> > + struct hhf_sched_data *q)
> > +{
> > + struct hh_flow_state *flow, *next;
> > + u32 now = hhf_time_stamp();
> > +
> > + if (list_empty(head))
> > + return NULL;
> > +
> > + list_for_each_entry_safe(flow, next, head, flowchain) {
> > + u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
> > +
> > + if (hhf_time_before(prev, now)) {
> > + /* Delete expired heavy-hitters, but preserve one entry
> > + * to avoid kzalloc() when next time this slot is hit.
> > + */
> > + if (list_is_last(&flow->flowchain, head))
> > + return NULL;
> > + list_del(&flow->flowchain);
> > + kfree(flow);
> > + q->hh_flows_current_cnt--;
> > + } else if (flow->hash_id == hash) {
> > + return flow;
> > + }
> > + }
> > + return NULL;
> > +}
> > +
> > +/* Returns a flow state entry for a new heavy-hitter. Either reuses an expired
> > + * entry or dynamically alloc a new entry.
> > + */
> > +static inline struct hh_flow_state *alloc_new_hh(struct list_head *head,
> > + struct hhf_sched_data *q)
> > +{
> > + struct hh_flow_state *flow;
> > + u32 now = hhf_time_stamp();
> > +
> > + if (!list_empty(head)) {
> > + /* Find an expired heavy-hitter flow entry. */
> > + list_for_each_entry(flow, head, flowchain) {
> > + u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
> > +
> > + if (hhf_time_before(prev, now))
> > + return flow;
> > + }
> > + }
> > +
> > + if (q->hh_flows_current_cnt >= q->hh_flows_limit) {
> > + q->hh_flows_overlimit++;
> > + return NULL;
> > + }
> > + /* Create new entry. */
> > + flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC);
> > + if (!flow)
> > + return NULL;
> > +
> > + q->hh_flows_current_cnt++;
> > + INIT_LIST_HEAD(&flow->flowchain);
> > + list_add_tail(&flow->flowchain, head);
> > +
> > + return flow;
> > +}
> > +
> > +/* Assigns packets to WDRR buckets. Implements a multi-stage filter to
> > + * classify heavy-hitters.
> > + */
> > +static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch)
> > +{
> > + struct hhf_sched_data *q = qdisc_priv(sch);
> > + u32 tmp_hash, hash;
> > + u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos;
> > + struct hh_flow_state *flow;
> > + u32 pkt_len, min_hhf_val;
> > + int i;
> > + u32 prev;
> > + u32 now = hhf_time_stamp();
> > +
> > + /* Reset the HHF counter arrays if this is the right time. */
> > + prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout;
> > + if (hhf_time_before(prev, now)) {
> > + for (i = 0; i < HHF_ARRAYS_CNT; i++)
> > + bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN);
> > + q->hhf_arrays_reset_timestamp = now;
> > + }
> > +
> > + /* Get hashed flow-id of the skb. */
> > + hash = skb_hash(q, skb);
> > +
> > + /* Check if this packet belongs to an already established HH flow. */
> > + flow_pos = hash & HHF_BIT_MASK;
> > + flow = seek_list(hash, &q->hh_flows[flow_pos], q);
> > + if (flow) { /* found its HH flow */
> > + flow->hit_timestamp = now;
> > + return WDRR_BUCKET_FOR_HH;
> > + }
> > +
> > + /* Now pass the packet through the multi-stage filter. */
> > + tmp_hash = hash;
> > + xorsum = 0;
> > + for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) {
> > + /* Split the skb_hash into three 10-bit chunks. */
> > + filter_pos[i] = tmp_hash & HHF_BIT_MASK;
> > + xorsum ^= filter_pos[i];
> > + tmp_hash >>= HHF_BIT_MASK_LEN;
> > + }
> > + /* The last chunk is computed as XOR sum of other chunks. */
> > + filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash;
> > +
> > + pkt_len = qdisc_pkt_len(skb);
> > + min_hhf_val = ~0U;
> > + for (i = 0; i < HHF_ARRAYS_CNT; i++) {
> > + u32 val;
> > +
> > + if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) {
> > + q->hhf_arrays[i][filter_pos[i]] = 0;
> > + __set_bit(filter_pos[i], q->hhf_valid_bits[i]);
> > + }
> > +
> > + val = q->hhf_arrays[i][filter_pos[i]] + pkt_len;
> > + if (min_hhf_val > val)
> > + min_hhf_val = val;
> > + }
> > +
> > + /* Found a new HH iff all counter values > HH admit threshold. */
> > + if (min_hhf_val > q->hhf_admit_bytes) {
> > + /* Just captured a new heavy-hitter. */
> > + flow = alloc_new_hh(&q->hh_flows[flow_pos], q);
> > + if (!flow) /* memory alloc problem */
> > + return WDRR_BUCKET_FOR_NON_HH;
> > + flow->hash_id = hash;
> > + flow->hit_timestamp = now;
> > + q->hh_flows_total_cnt++;
> > +
> > + /* By returning without updating counters in q->hhf_arrays,
> > + * we implicitly implement "shielding" (see Optimization O1).
> > + */
> > + return WDRR_BUCKET_FOR_HH;
> > + }
> > +
> > + /* Conservative update of HHF arrays (see Optimization O2). */
> > + for (i = 0; i < HHF_ARRAYS_CNT; i++) {
> > + if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val)
> > + q->hhf_arrays[i][filter_pos[i]] = min_hhf_val;
> > + }
> > + return WDRR_BUCKET_FOR_NON_HH;
> > +}
> > +
> > +/* Removes one skb from head of bucket. */
> > +static inline struct sk_buff *dequeue_head(struct wdrr_bucket *bucket)
> > +{
> > + struct sk_buff *skb = bucket->head;
> > +
> > + bucket->head = skb->next;
> > + skb->next = NULL;
> > + return skb;
> > +}
> > +
> > +/* Tail-adds skb to bucket. */
> > +static inline void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb)
> > +{
> > + if (bucket->head == NULL)
> > + bucket->head = skb;
> > + else
> > + bucket->tail->next = skb;
> > + bucket->tail = skb;
> > + skb->next = NULL;
> > +}
> > +
> > +static unsigned int hhf_drop(struct Qdisc *sch)
> > +{
> > + struct hhf_sched_data *q = qdisc_priv(sch);
> > + struct wdrr_bucket *bucket;
> > +
> > + /* Always try to drop from heavy-hitters first. */
> > + bucket = &q->buckets[WDRR_BUCKET_FOR_HH];
> > + if (!bucket->head)
> > + bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH];
> > +
> > + if (bucket->head) {
> > + struct sk_buff *skb = dequeue_head(bucket);
> > +
> > + sch->q.qlen--;
> > + sch->qstats.drops++;
> > + sch->qstats.backlog -= qdisc_pkt_len(skb);
> > + kfree_skb(skb);
> > + }
> > +
> > + /* Return id of the bucket from which the packet was dropped. */
> > + return bucket - q->buckets;
> > +}
> > +
> > +static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
> > +{
> > + struct hhf_sched_data *q = qdisc_priv(sch);
> > + enum wdrr_bucket_idx idx;
> > + struct wdrr_bucket *bucket;
> > +
> > + idx = hhf_classify(skb, sch);
> > +
> > + bucket = &q->buckets[idx];
> > + bucket_add(bucket, skb);
> > + sch->qstats.backlog += qdisc_pkt_len(skb);
> > +
> > + if (list_empty(&bucket->bucketchain)) {
> > + unsigned int weight;
> > +
> > + /* The logic of new_buckets vs. old_buckets is the same as
> > + * new_flows vs. old_flows in the implementation of fq_codel,
> > + * i.e., short bursts of non-HHs should have strict priority.
> > + */
> > + if (idx == WDRR_BUCKET_FOR_HH) {
> > + /* Always move heavy-hitters to old bucket. */
> > + weight = 1;
> > + list_add_tail(&bucket->bucketchain, &q->old_buckets);
> > + } else {
> > + weight = q->hhf_non_hh_weight;
> > + list_add_tail(&bucket->bucketchain, &q->new_buckets);
> > + }
> > + bucket->deficit = weight * q->quantum;
> > + }
> > + if (++sch->q.qlen < sch->limit)
> > + return NET_XMIT_SUCCESS;
> > +
> > + q->drop_overlimit++;
> > + /* Return Congestion Notification only if we dropped a packet from this
> > + * bucket.
> > + */
> > + if (hhf_drop(sch) == idx)
> > + return NET_XMIT_CN;
> > +
> > + /* As we dropped a packet, better let upper stack know this. */
> > + qdisc_tree_decrease_qlen(sch, 1);
> > + return NET_XMIT_SUCCESS;
> > +}
> > +
> > +static struct sk_buff *hhf_dequeue(struct Qdisc *sch)
> > +{
> > + struct hhf_sched_data *q = qdisc_priv(sch);
> > + struct sk_buff *skb = NULL;
> > + struct wdrr_bucket *bucket;
> > + struct list_head *head;
> > +
> > +begin:
> > + head = &q->new_buckets;
> > + if (list_empty(head)) {
> > + head = &q->old_buckets;
> > + if (list_empty(head))
> > + return NULL;
> > + }
> > + bucket = list_first_entry(head, struct wdrr_bucket, bucketchain);
> > +
> > + if (bucket->deficit <= 0) {
> > + int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ?
> > + 1 : q->hhf_non_hh_weight;
> > +
> > + bucket->deficit += weight * q->quantum;
> > + list_move_tail(&bucket->bucketchain, &q->old_buckets);
> > + goto begin;
> > + }
> > +
> > + if (bucket->head) {
> > + skb = dequeue_head(bucket);
> > + sch->q.qlen--;
> > + sch->qstats.backlog -= qdisc_pkt_len(skb);
> > + }
> > +
> > + if (!skb) {
> > + /* Force a pass through old_buckets to prevent starvation. */
> > + if ((head == &q->new_buckets) && !list_empty(&q->old_buckets))
> > + list_move_tail(&bucket->bucketchain, &q->old_buckets);
> > + else
> > + list_del_init(&bucket->bucketchain);
> > + goto begin;
> > + }
> > + qdisc_bstats_update(sch, skb);
> > + bucket->deficit -= qdisc_pkt_len(skb);
> > +
> > + return skb;
> > +}
> > +
> > +static void hhf_reset(struct Qdisc *sch)
> > +{
> > + struct sk_buff *skb;
> > +
> > + while ((skb = hhf_dequeue(sch)) != NULL)
> > + kfree_skb(skb);
> > +}
> > +
> > +static void *hhf_zalloc(size_t sz)
> > +{
> > + void *ptr = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN);
> > +
> > + if (!ptr)
> > + ptr = vzalloc(sz);
> > +
> > + return ptr;
> > +}
> > +
> > +static void hhf_free(void *addr)
> > +{
> > + if (addr) {
> > + if (is_vmalloc_addr(addr))
> > + vfree(addr);
> > + else
> > + kfree(addr);
> > + }
> > +}
> > +
> > +static void hhf_destroy(struct Qdisc *sch)
> > +{
> > + int i;
> > + struct hhf_sched_data *q = qdisc_priv(sch);
> > +
> > + for (i = 0; i < HHF_ARRAYS_CNT; i++) {
> > + hhf_free(q->hhf_arrays[i]);
> > + hhf_free(q->hhf_valid_bits[i]);
> > + }
> > +
> > + for (i = 0; i < HH_FLOWS_CNT; i++) {
> > + struct hh_flow_state *flow, *next;
> > + struct list_head *head = &q->hh_flows[i];
> > +
> > + if (list_empty(head))
> > + continue;
> > + list_for_each_entry_safe(flow, next, head, flowchain) {
> > + list_del(&flow->flowchain);
> > + kfree(flow);
> > + }
> > + }
> > + hhf_free(q->hh_flows);
> > +}
> > +
> > +static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = {
> > + [TCA_HHF_BACKLOG_LIMIT] = { .type = NLA_U32 },
> > + [TCA_HHF_QUANTUM] = { .type = NLA_U32 },
> > + [TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 },
> > + [TCA_HHF_RESET_TIMEOUT] = { .type = NLA_U32 },
> > + [TCA_HHF_ADMIT_BYTES] = { .type = NLA_U32 },
> > + [TCA_HHF_EVICT_TIMEOUT] = { .type = NLA_U32 },
> > + [TCA_HHF_NON_HH_WEIGHT] = { .type = NLA_U32 },
> > +};
> > +
> > +static int hhf_change(struct Qdisc *sch, struct nlattr *opt)
> > +{
> > + struct hhf_sched_data *q = qdisc_priv(sch);
> > + struct nlattr *tb[TCA_HHF_MAX + 1];
> > + unsigned int qlen;
> > + int err;
> > + u64 non_hh_quantum;
> > + u32 new_quantum = q->quantum;
> > + u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight;
> > +
> > + if (!opt)
> > + return -EINVAL;
> > +
> > + err = nla_parse_nested(tb, TCA_HHF_MAX, opt, hhf_policy);
> > + if (err < 0)
> > + return err;
> > +
> > + sch_tree_lock(sch);
> > +
> > + if (tb[TCA_HHF_BACKLOG_LIMIT])
> > + sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]);
> > +
> > + if (tb[TCA_HHF_QUANTUM])
> > + new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]);
> > +
> > + if (tb[TCA_HHF_NON_HH_WEIGHT])
> > + new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]);
> > +
> > + non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight;
> > + if (non_hh_quantum > INT_MAX)
> > + return -EINVAL;
> > + q->quantum = new_quantum;
> > + q->hhf_non_hh_weight = new_hhf_non_hh_weight;
> > +
> > + if (tb[TCA_HHF_HH_FLOWS_LIMIT])
> > + q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]);
> > +
> > + if (tb[TCA_HHF_RESET_TIMEOUT]) {
> > + u32 ms = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]);
> > +
> > + q->hhf_reset_timeout = msecs_to_jiffies(ms);
> > + }
> > +
> > + if (tb[TCA_HHF_ADMIT_BYTES])
> > + q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]);
> > +
> > + if (tb[TCA_HHF_EVICT_TIMEOUT]) {
> > + u32 ms = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]);
> > +
> > + q->hhf_evict_timeout = msecs_to_jiffies(ms);
> > + }
> > +
> > + qlen = sch->q.qlen;
> > + while (sch->q.qlen > sch->limit) {
> > + struct sk_buff *skb = hhf_dequeue(sch);
> > +
> > + kfree_skb(skb);
> > + }
> > + qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
> > +
> > + sch_tree_unlock(sch);
> > + return 0;
> > +}
> > +
> > +static int hhf_init(struct Qdisc *sch, struct nlattr *opt)
> > +{
> > + struct hhf_sched_data *q = qdisc_priv(sch);
> > + int i;
> > +
> > + sch->limit = 1000;
> > + q->quantum = psched_mtu(qdisc_dev(sch));
> > + q->perturbation = net_random();
> > + INIT_LIST_HEAD(&q->new_buckets);
> > + INIT_LIST_HEAD(&q->old_buckets);
> > +
> > + /* Configurable HHF parameters */
> > + q->hhf_reset_timeout = HZ / 25; /* 40 ms */
> > + q->hhf_admit_bytes = 131072; /* 128 KB */
> > + q->hhf_evict_timeout = HZ; /* 1 sec */
> > + q->hhf_non_hh_weight = 2;
> > +
> > + if (opt) {
> > + int err = hhf_change(sch, opt);
> > +
> > + if (err)
> > + return err;
> > + }
> > +
> > + if (!q->hh_flows) {
> > + /* Initialize heavy-hitter flow table. */
> > + q->hh_flows = hhf_zalloc(HH_FLOWS_CNT *
> > + sizeof(struct list_head));
> > + if (!q->hh_flows)
> > + return -ENOMEM;
> > + for (i = 0; i < HH_FLOWS_CNT; i++)
> > + INIT_LIST_HEAD(&q->hh_flows[i]);
> > +
> > + /* Cap max active HHs at twice len of hh_flows table. */
> > + q->hh_flows_limit = 2 * HH_FLOWS_CNT;
> > + q->hh_flows_overlimit = 0;
> > + q->hh_flows_total_cnt = 0;
> > + q->hh_flows_current_cnt = 0;
> > +
> > + /* Initialize heavy-hitter filter arrays. */
> > + for (i = 0; i < HHF_ARRAYS_CNT; i++) {
> > + q->hhf_arrays[i] = hhf_zalloc(HHF_ARRAYS_LEN *
> > + sizeof(u32));
> > + if (!q->hhf_arrays[i]) {
> > + hhf_destroy(sch);
> > + return -ENOMEM;
> > + }
> > + }
> > + q->hhf_arrays_reset_timestamp = hhf_time_stamp();
> > +
> > + /* Initialize valid bits of heavy-hitter filter arrays. */
> > + for (i = 0; i < HHF_ARRAYS_CNT; i++) {
> > + q->hhf_valid_bits[i] = hhf_zalloc(HHF_ARRAYS_LEN /
> > + BITS_PER_BYTE);
> > + if (!q->hhf_valid_bits[i]) {
> > + hhf_destroy(sch);
> > + return -ENOMEM;
> > + }
> > + }
> > +
> > + /* Initialize Weighted DRR buckets. */
> > + for (i = 0; i < WDRR_BUCKET_CNT; i++) {
> > + struct wdrr_bucket *bucket = q->buckets + i;
> > +
> > + INIT_LIST_HEAD(&bucket->bucketchain);
> > + }
> > + }
> > +
> > + return 0;
> > +}
> > +
> > +static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb)
> > +{
> > + struct hhf_sched_data *q = qdisc_priv(sch);
> > + struct nlattr *opts;
> > +
> > + opts = nla_nest_start(skb, TCA_OPTIONS);
> > + if (opts == NULL)
> > + goto nla_put_failure;
> > +
> > + if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) ||
> > + nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) ||
> > + nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) ||
> > + nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT,
> > + jiffies_to_msecs(q->hhf_reset_timeout)) ||
> > + nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) ||
> > + nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT,
> > + jiffies_to_msecs(q->hhf_evict_timeout)) ||
> > + nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight))
> > + goto nla_put_failure;
> > +
> > + nla_nest_end(skb, opts);
> > + return skb->len;
> > +
> > +nla_put_failure:
> > + return -1;
> > +}
> > +
> > +static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
> > +{
> > + struct hhf_sched_data *q = qdisc_priv(sch);
> > + struct tc_hhf_xstats st = {
> > + .drop_overlimit = q->drop_overlimit,
> > + .hh_overlimit = q->hh_flows_overlimit,
> > + .hh_tot_count = q->hh_flows_total_cnt,
> > + .hh_cur_count = q->hh_flows_current_cnt,
> > + };
> > +
> > + return gnet_stats_copy_app(d, &st, sizeof(st));
> > +}
> > +
> > +struct Qdisc_ops hhf_qdisc_ops __read_mostly = {
> > + .id = "hhf",
> > + .priv_size = sizeof(struct hhf_sched_data),
> > +
> > + .enqueue = hhf_enqueue,
> > + .dequeue = hhf_dequeue,
> > + .peek = qdisc_peek_dequeued,
> > + .drop = hhf_drop,
> > + .init = hhf_init,
> > + .reset = hhf_reset,
> > + .destroy = hhf_destroy,
> > + .change = hhf_change,
> > + .dump = hhf_dump,
> > + .dump_stats = hhf_dump_stats,
> > + .owner = THIS_MODULE,
> > +};
> > +EXPORT_SYMBOL(hhf_qdisc_ops);
> > +
> > +static int __init hhf_module_init(void)
> > +{
> > + return register_qdisc(&hhf_qdisc_ops);
> > +}
> > +
> > +static void __exit hhf_module_exit(void)
> > +{
> > + unregister_qdisc(&hhf_qdisc_ops);
> > +}
> > +
> > +module_init(hhf_module_init)
> > +module_exit(hhf_module_exit)
> > +MODULE_AUTHOR("Terry Lam");
> > +MODULE_AUTHOR("Nandita Dukkipati");
> > +MODULE_LICENSE("GPL");
> > --
> > 1.8.5.1
> >
> > --
> > To unsubscribe from this list: send the line "unsubscribe netdev" in
> > the body of a message to majordomo@...r.kernel.org
> > More majordomo info at http://vger.kernel.org/majordomo-info.html
--
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Powered by blists - more mailing lists