[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20160205092416.GB31671@gmail.com>
Date: Fri, 5 Feb 2016 10:24:16 +0100
From: Ingo Molnar <mingo@...nel.org>
To: Tom Herbert <tom@...bertland.com>
Cc: "David S. Miller" <davem@...emloft.net>,
Linux Kernel Network Developers <netdev@...r.kernel.org>,
tglx@...utronix.de, mingo@...hat.com, hpa@...or.com,
x86@...nel.org, Kernel Team <kernel-team@...com>,
LKML <linux-kernel@...r.kernel.org>,
Peter Zijlstra <a.p.zijlstra@...llo.nl>,
Linus Torvalds <torvalds@...ux-foundation.org>
Subject: Re: [PATCH v3 net-next] net: Implement fast csum_partial for x86_64
* Tom Herbert <tom@...bertland.com> wrote:
> Thanks for the explanation and sample code. Expanding on your example, I added a
> switch statement to perform to function (code below).
So I think your new switch() based testcase is broken in a subtle way.
The problem is that in your added testcase GCC effectively optimizes out the
function call, because it is able to recognize that all the (trivial) functions
are identical. (At least here, with GCC 5.2.1)
So all overhead of the workload goes into just that do_switch() function you
added:
#
# Total Lost Samples: 0
#
# Samples: 5K of event 'cycles:pp'
# Event count (approx.): 5738959683
#
# Overhead Command Shared Object Symbol
# ........ ........... ................. ...........................
#
99.94% jump-table2 jump-table2 [.] do_switch
0.02% jump-table2 [kernel.kallsyms] [k] native_read_msr_safe
0.02% jump-table2 [kernel.kallsyms] [k] native_apic_mem_write
0.01% jump-table2 [kernel.kallsyms] [k] __fput
0.00% jump-table2 [kernel.kallsyms] [k] change_protection_range
0.00% perf [kernel.kallsyms] [k] strrchr
0.00% perf [kernel.kallsyms] [k] intel_pmu_handle_irq
0.00% perf [kernel.kallsyms] [k] native_write_msr_safe
... and per instruction overhead in the do_switch() looks like this:
:
: Disassembly of section .text:
:
: 0000000000401100 <do_switch>:
: do_switch():
0.00 : 401100: mov 0x201f61(%rip),%r8 # 603068 <loops>
0.00 : 401107: test %r8,%r8
0.00 : 40110a: je 401178 <do_switch+0x78>
0.00 : 40110c: mov 0x201f5d(%rip),%rdi # 603070 <table_size>
0.00 : 401113: xor %esi,%esi
0.00 : 401115: xor %ecx,%ecx
0.00 : 401117: nopw 0x0(%rax,%rax,1)
0.00 : 401120: mov 0x201f61(%rip),%rax # 603088 <global>
1.46 : 401127: xor %edx,%edx
0.00 : 401129: add $0x1,%rax
0.00 : 40112d: mov %rax,0x201f54(%rip) # 603088 <global>
0.00 : 401134: mov 0x201f4d(%rip),%rax # 603088 <global>
51.68 : 40113b: div %rdi
0.00 : 40113e: cmp $0x3f,%rdx
1.34 : 401142: ja 40116b <do_switch+0x6b>
0.02 : 401144: mov 0x201f3d(%rip),%r9 # 603088 <global>
0.10 : 40114b: mov 0x201f36(%rip),%rax # 603088 <global>
6.91 : 401152: jmpq *0x401420(,%rdx,8)
0.00 : 401159: nopl 0x0(%rax)
0.02 : 401160: xor %edx,%edx
35.71 : 401162: div %r9
1.07 : 401165: add %rdx,%r9
1.69 : 401168: add %r9,%rsi
0.00 : 40116b: add $0x1,%rcx
0.00 : 40116f: cmp %r8,%rcx
0.00 : 401172: jne 401120 <do_switch+0x20>
0.00 : 401174: mov %rsi,%rax
0.00 : 401177: retq
0.00 : 401178: xor %esi,%esi
0.00 : 40117a: jmp 401174 <do_switch+0x74>
Note that as you remarked there _is_ an indirect jump in there:
6.91 : 401152: jmpq *0x401420(,%rdx,8)
But:
> gcc seems to be implementing this switch as a jump table:
>
> jmpq *0x400ac8(,%rdx,8)
... the 'jump table' has identical entries:
40141f: 00 60 11 add %ah,0x11(%rax)
401422: 40 00 00 add %al,(%rax)
401425: 00 00 add %al,(%rax)
401427: 00 60 11 add %ah,0x11(%rax)
40142a: 40 00 00 add %al,(%rax)
40142d: 00 00 add %al,(%rax)
40142f: 00 60 11 add %ah,0x11(%rax)
401432: 40 00 00 add %al,(%rax)
401435: 00 00 add %al,(%rax)
401437: 00 60 11 add %ah,0x11(%rax)
40143a: 40 00 00 add %al,(%rax)
(misaligned dump - jump table starts at 0x401420)
Every jump table entry points to 0x401160 - which is the code after the indirect
jump in do_switch().
So the hardware predictor simply recognizes that it's the same target address all
the time, and thus (understandably) performs much faster - none of the functions
are actually executed.
That is why there are no function call entries in perf report, while in the
function pointer case we get:
#
# Total Lost Samples: 0
#
# Samples: 4K of event 'cycles:pp'
# Event count (approx.): 5482523153
#
# Overhead Command Shared Object Symbol
# ........ ........... ................. ..........................
#
13.47% jump-table2 jump-table2 [.] fun_1
13.22% jump-table2 jump-table2 [.] fun_6
13.12% jump-table2 jump-table2 [.] fun_5
12.87% jump-table2 jump-table2 [.] fun_7
12.23% jump-table2 jump-table2 [.] fun_2
12.09% jump-table2 jump-table2 [.] fun_0
8.23% jump-table2 jump-table2 [.] do_funcptr
7.43% jump-table2 jump-table2 [.] fun_3
7.27% jump-table2 jump-table2 [.] fun_4
0.02% jump-table2 [kernel.kallsyms] [k] page_add_new_anon_rmap
0.02% jump-table2 [kernel.kallsyms] [k] native_read_msr_safe
0.02% jump-table2 [kernel.kallsyms] [k] perf_pmu_sched_task
0.00% jump-table2 [kernel.kallsyms] [k] flush_tlb_mm_range
0.00% perf [kernel.kallsyms] [k] _raw_spin_lock
0.00% perf [kernel.kallsyms] [k] intel_bts_enable_local
0.00% perf [kernel.kallsyms] [k] native_write_msr_safe
Same-target indirect jumps were optimized well starting from PentiumM IIRC, so
this would perform well all across the x86 spectrum.
Btw., I think it's a bit weird that GCC didn't eliminate the switch jump table
itself. (Maybe newer versions of GCC do?)
> Which is a different call than the function table implementation:
>
> callq *(%rsp,%rdx,8)
> So the switch implementation does not seem to be causing branch-misses to be
> counted and is a lot faster. This is also what I see when looking at the
> branch-misses with the checksum code-- I haven't yet found any test case
> thrashing lengths or alignments increase branch-misses and shows a performance
> degradation over the case where they are static.
That's because AFAICS there's no indirect branching in your testcase! :-)
And before you spend too much time on this, I do concede your general point: that
jump tables are simpler than call tables, and that newer x86 uarchs are able to
distinguish between multiple target branches pretty well indexed by a wide range
of input registers, resulting in pretty good branch prediction.
Anyway - I think Linus's C based approach is vastly superior, so the jump tables
vs. call tables topic is somewhat of a side track.
Thanks,
Ingo
Powered by blists - more mailing lists