lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [day] [month] [year] [list]
Message-Id: <20161214154336.17639-2-daniel@zonque.org>
Date:   Wed, 14 Dec 2016 16:43:35 +0100
From:   Daniel Mack <daniel@...que.org>
To:     ast@...com
Cc:     dh.herrmann@...il.com, daniel@...earbox.net,
        netdev@...r.kernel.org, davem@...emloft.net,
        Daniel Mack <daniel@...que.org>
Subject: [PATCH RFC 1/2] bpf: add a longest prefix match trie map implementation

This trie implements a longest prefix match algorithm that can be used
to match IP addresses to a stored set of ranges.

Internally, data is stored in an unbalanced trie of nodes that has a
maximum height of n, where n is the prefixlen the trie was created
with.

Tries may be created with prefix lengths that are multiples of 8, in
the range from 8 to 2048. The key used for lookup and update operations
is a struct bpf_lpm_trie_key, and the value is a uint64_t.

The code carries more information about the internal implementation.

Signed-off-by: Daniel Mack <daniel@...que.org>
Reviewed-by: David Herrmann <dh.herrmann@...il.com>
---
 include/uapi/linux/bpf.h |   7 +
 kernel/bpf/Makefile      |   2 +-
 kernel/bpf/lpm_trie.c    | 491 +++++++++++++++++++++++++++++++++++++++++++++++
 3 files changed, 499 insertions(+), 1 deletion(-)
 create mode 100644 kernel/bpf/lpm_trie.c

diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h
index 0eb0e87..d564277 100644
--- a/include/uapi/linux/bpf.h
+++ b/include/uapi/linux/bpf.h
@@ -63,6 +63,12 @@ struct bpf_insn {
 	__s32	imm;		/* signed immediate constant */
 };
 
+/* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
+struct bpf_lpm_trie_key {
+	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
+	__u8	data[0];	/* Arbitrary size */
+};
+
 /* BPF syscall commands, see bpf(2) man-page for details. */
 enum bpf_cmd {
 	BPF_MAP_CREATE,
@@ -89,6 +95,7 @@ enum bpf_map_type {
 	BPF_MAP_TYPE_CGROUP_ARRAY,
 	BPF_MAP_TYPE_LRU_HASH,
 	BPF_MAP_TYPE_LRU_PERCPU_HASH,
+	BPF_MAP_TYPE_LPM_TRIE,
 };
 
 enum bpf_prog_type {
diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile
index 1276474..e1ce4f4 100644
--- a/kernel/bpf/Makefile
+++ b/kernel/bpf/Makefile
@@ -1,7 +1,7 @@
 obj-y := core.o
 
 obj-$(CONFIG_BPF_SYSCALL) += syscall.o verifier.o inode.o helpers.o
-obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o
+obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o lpm_trie.o
 ifeq ($(CONFIG_PERF_EVENTS),y)
 obj-$(CONFIG_BPF_SYSCALL) += stackmap.o
 endif
diff --git a/kernel/bpf/lpm_trie.c b/kernel/bpf/lpm_trie.c
new file mode 100644
index 0000000..cae759d
--- /dev/null
+++ b/kernel/bpf/lpm_trie.c
@@ -0,0 +1,491 @@
+/*
+ * Longest prefix match list implementation
+ *
+ * Copyright (c) 2016 Daniel Mack
+ * Copyright (c) 2016 David Herrmann
+ *
+ * This file is subject to the terms and conditions of version 2 of the GNU
+ * General Public License.  See the file COPYING in the main directory of the
+ * Linux distribution for more details.
+ */
+
+#include <linux/bpf.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/vmalloc.h>
+#include <net/ipv6.h>
+
+/* Intermediate node */
+#define LPM_TREE_NODE_FLAG_IM BIT(0)
+
+struct lpm_trie_node;
+
+struct lpm_trie_node {
+	struct rcu_head rcu;
+	struct lpm_trie_node	*child[2];
+	u32			prefixlen;
+	u32			flags;
+	u64			value;
+	u8			data[0];
+};
+
+struct lpm_trie {
+	struct bpf_map		map;
+	struct lpm_trie_node	*root;
+	size_t			n_entries;
+	size_t			max_prefixlen;
+	size_t			data_size;
+	spinlock_t		lock;
+};
+
+/*
+ * This trie implements a longest prefix match algorithm that can be used to
+ * match IP addresses to a stored set of ranges.
+ *
+ * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
+ * interpreted as big endian, so data[0] stores the most significant byte.
+ *
+ * Match ranges are internally stored in instances of struct lpm_trie_node
+ * which each contain their prefix length as well as two pointers that may
+ * lead to more nodes containing more specific matches. Each node also stores
+ * a value that is defined by and returned to userspace via the update_elem
+ * and lookup functions.
+ *
+ * For instance, let's start with a trie that was created with a prefix length
+ * of 32, so it can be used for IPv4 addresses, and one single element that
+ * matches 192.168.0.0/16. The data array would hence contain
+ * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
+ * stick to IP-address notation for readability though.
+ *
+ * As the trie is empty initially, the new node (1) will be places as root
+ * node, denoted as (R) in the example below. As there are no other node, both
+ * child pointers are %NULL.
+ *
+ *              +----------------+
+ *              |       (1)  (R) |
+ *              | 192.168.0.0/16 |
+ *              |    value: 1    |
+ *              |   [0]    [1]   |
+ *              +----------------+
+ *
+ * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
+ * a node with the same data and a smaller prefix (ie, a less specific one),
+ * node (2) will become a child of (1). In child index depends on the next bit
+ * that is outside of that (1) matches, and that bit is 0, so (2) will be
+ * child[0] of (1):
+ *
+ *              +----------------+
+ *              |       (1)  (R) |
+ *              | 192.168.0.0/16 |
+ *              |    value: 1    |
+ *              |   [0]    [1]   |
+ *              +----------------+
+ *                   |
+ *    +----------------+
+ *    |       (2)      |
+ *    | 192.168.0.0/24 |
+ *    |    value: 2    |
+ *    |   [0]    [1]   |
+ *    +----------------+
+ *
+ * The child[1] slot of (1) could be filled with another node which has bit #17
+ * (the next bit after the ones that (1) matches on) set to 1. For instance,
+ * 192.168.128.0/24:
+ *
+ *              +----------------+
+ *              |       (1)  (R) |
+ *              | 192.168.0.0/16 |
+ *              |    value: 1    |
+ *              |   [0]    [1]   |
+ *              +----------------+
+ *                   |      |
+ *    +----------------+  +------------------+
+ *    |       (2)      |  |        (3)       |
+ *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
+ *    |    value: 2    |  |     value: 3     |
+ *    |   [0]    [1]   |  |    [0]    [1]    |
+ *    +----------------+  +------------------+
+ *
+ * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
+ * it, node (1) is looked at first, and because (4) of the semantics laid out
+ * above (bit #17 is 0), it would normally be attached to (1) as child[0].
+ * However, that slot is already allocated, so a new node is needed in between.
+ * That node is does not have a value attached to it and it will never be
+ * returned to users as result of a lookup. It is only there to differenciate
+ * the traversal further. It will get a prefix as wide as necessary to
+ * distinguish its two children:
+ *
+ *                      +----------------+
+ *                      |       (1)  (R) |
+ *                      | 192.168.0.0/16 |
+ *                      |    value: 1    |
+ *                      |   [0]    [1]   |
+ *                      +----------------+
+ *                           |      |
+ *            +----------------+  +------------------+
+ *            |       (4)  (I) |  |        (3)       |
+ *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
+ *            |    value: ---  |  |     value: 3     |
+ *            |   [0]    [1]   |  |    [0]    [1]    |
+ *            +----------------+  +------------------+
+ *                 |      |
+ *  +----------------+  +----------------+
+ *  |       (2)      |  |       (5)      |
+ *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
+ *  |    value: 2    |  |     value: 5   |
+ *  |   [0]    [1]   |  |   [0]    [1]   |
+ *  +----------------+  +----------------+
+ *
+ * 192.168.1.1/32 would be a child of (5) etc.
+ *
+ * An intermediate node will be turned into a 'real' node on demand. In the
+ * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
+ *
+ * A fully populated trie would have a height of 32 nodes, as the trie was
+ * created with a prefix length of 32.
+ *
+ * The lookup starts at the root node. If the current node matches and if there
+ * is a child that can be used to become more specific, the trie is traversed
+ * downwards. The last node in the traversal that is a non-intermediate one is
+ * returned.
+ */
+
+static inline int extract_bit(const u8 *data, size_t index)
+{
+	return !!(data[index / 8] & (1 << (7 - (index % 8))));
+}
+
+/**
+ * longest_prefix_match() - determine the longest prefix
+ * @trie:	The trie to get internal sizes from
+ * @node:	The node to operate on
+ * @key:	The key to compare to @node
+ *
+ * Determine the longest prefix of @node that matches the bits in @key.
+ */
+static size_t longest_prefix_match(const struct lpm_trie *trie,
+				   const struct lpm_trie_node *node,
+				   const struct bpf_lpm_trie_key *key)
+{
+	size_t prefixlen = 0;
+	int i;
+
+	for (i = 0; i < trie->data_size; i++) {
+		size_t b;
+
+		b = 8 - fls(node->data[i] ^ key->data[i]);
+		prefixlen += b;
+
+		if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen)
+			return min(node->prefixlen, key->prefixlen);
+
+		if (b < 8)
+			break;
+	}
+
+	return prefixlen;
+}
+
+/* Called from syscall or from eBPF program */
+static void *trie_lookup_elem(struct bpf_map *map, void *_key)
+{
+	struct lpm_trie_node *node, *found = NULL;
+	struct bpf_lpm_trie_key *key = _key;
+	struct lpm_trie *trie =
+		container_of(map, struct lpm_trie, map);
+
+	/* Start walking the trie from the root node ... */
+
+	for (node = rcu_dereference(trie->root); node;) {
+		unsigned int next_bit;
+		size_t matchlen;
+
+		/*
+		 * Determine the longest prefix of @node that matches @key.
+		 * If it's the maximum possible prefix for this trie, we have
+		 * an exact match and can return it directly.
+		 */
+		matchlen = longest_prefix_match(trie, node, key);
+		if (matchlen == trie->max_prefixlen)
+			return &node->value;
+
+		/*
+		 * If the number of bits that match is smaller than the prefix
+		 * length of @node, bail out and return the node we have seen
+		 * last in the traversal (ie, the parent).
+		 */
+		if (matchlen < node->prefixlen)
+			break;
+
+		/*
+		 * Consider this node as return candidate unless it is an
+		 * artificially added intermediate one
+		 */
+		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
+			found = node;
+
+		/*
+		 * If the node match is fully satisfied, let's see if we can
+		 * become more specific. Determine the next bit in the key and
+		 * traverse down.
+		 */
+		next_bit = extract_bit(key->data, node->prefixlen);
+		node = rcu_dereference(node->child[next_bit]);
+	}
+
+	return found ? &found->value : NULL;
+}
+
+static struct lpm_trie_node *lpm_trie_node_alloc(size_t data_size)
+{
+	return kmalloc(sizeof(struct lpm_trie_node) + data_size,
+		       GFP_ATOMIC | __GFP_NOWARN);
+}
+
+/**
+ *_lpm_trie_find_target_node() - locate a spot to put a new node
+ * @trie:	The trie to walk
+ * @key:	The key to find a slot for
+ * @node_ret:	Return variable for a node slot
+ *
+ * Find a slot to put a new node for @key, and return it in @node_ret.
+ *
+ * If the target location is an empty child of an existing node, or the
+ * root is unused, a pointer to that empty spot is returned in @node_ret
+ * and 0 is returned by the function.
+ *
+ * Otherwise, if a node is detected that conflicts with @key, that conflicting
+ * node is returned in @node_ret. The caller should then replace that node with
+ * an intermediate node. In this case, the longest prefix match between the
+ * existing node and @key is returned.
+ */
+static size_t find_target_node(struct lpm_trie *trie,
+			       struct bpf_lpm_trie_key *key,
+			       struct lpm_trie_node ***node_ret)
+{
+	struct lpm_trie_node **node = &trie->root;
+	size_t matchlen = 0;
+
+	while (*node) {
+		unsigned int next_bit;
+
+		matchlen = longest_prefix_match(trie, *node, key);
+
+		if ((*node)->prefixlen != matchlen ||
+		    (*node)->prefixlen == key->prefixlen ||
+		    (*node)->prefixlen == trie->max_prefixlen)
+			break;
+
+		next_bit = extract_bit(key->data, (*node)->prefixlen);
+		node = &(*node)->child[next_bit];
+	}
+
+	*node_ret = node;
+
+	return *node ? matchlen : 0;
+}
+
+/* Called from syscall or from eBPF program */
+static int trie_update_elem(struct bpf_map *map,
+			    void *_key, void *value, u64 flags)
+{
+	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
+	struct lpm_trie_node **node, *im_node, *new_node = NULL;
+	struct bpf_lpm_trie_key *key = _key;
+	size_t matchlen;
+	int ret = 0;
+
+	if (key->prefixlen > trie->max_prefixlen)
+		return -EINVAL;
+
+	spin_lock(&trie->lock);
+
+	/* Allocate and fill a new node */
+
+	if (trie->n_entries == trie->map.max_entries) {
+		ret = -ENOSPC;
+		goto out;
+	}
+
+	new_node = lpm_trie_node_alloc(trie->data_size);
+	if (!new_node) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	trie->n_entries++;
+	new_node->value = *(u64 *) value;
+	new_node->prefixlen = key->prefixlen;
+	new_node->flags = 0;
+	new_node->child[0] = NULL;
+	new_node->child[1] = NULL;
+	memcpy(new_node->data, key->data, trie->data_size);
+
+	/*
+	 * Now find a place to attach the new node. find_target_node()
+	 * either returned an empty slot (the root or an empty leaf), or the
+	 * closest match, in which case an intermediate node has to be created
+	 * and installed.
+	 */
+	matchlen = find_target_node(trie, key, &node);
+	if (!*node) {
+		rcu_assign_pointer(*node, new_node);
+		goto out;
+	}
+
+	/*
+	 * If the node we got back as target already exists, replace it
+	 * new_node, which already has the correct data array and value set.
+	 * If the node that is replaced is an intermediate one, turn it into a
+	 * 'real' node.
+	 */
+	if ((*node)->prefixlen == matchlen) {
+		struct lpm_trie_node *tmp;
+
+		new_node->child[0] = (*node)->child[0];
+		new_node->child[1] = (*node)->child[1];
+
+		tmp = rcu_dereference(*node);
+		if (!(tmp->flags & LPM_TREE_NODE_FLAG_IM))
+			trie->n_entries--;
+
+		rcu_assign_pointer(*node, new_node);
+		kfree_rcu(tmp, rcu);
+
+		goto out;
+	}
+
+	/*
+	 * If the new node matches the prefix completely, it must be an
+	 * inserted as an ancestor. Simply insert it between @node and @*node.
+	 */
+	if (matchlen == key->prefixlen) {
+		new_node->child[extract_bit((*node)->data, matchlen)] = *node;
+		rcu_assign_pointer(*node, new_node);
+		goto out;
+	}
+
+	/* Create an intermediate node and place it inbetween */
+	im_node = lpm_trie_node_alloc(trie->data_size);
+	if (!im_node) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	im_node->prefixlen = matchlen;
+	im_node->flags |= LPM_TREE_NODE_FLAG_IM;
+	memcpy(im_node->data, (*node)->data, trie->data_size);
+
+	/* Now determine which child to install in which slot */
+	if (extract_bit(key->data, matchlen)) {
+		im_node->child[0] = *node;
+		im_node->child[1] = new_node;
+	} else {
+		im_node->child[0] = new_node;
+		im_node->child[1] = *node;
+	}
+
+	/* Finally, assign the intermediate node to the determined spot */
+	rcu_assign_pointer(*node, im_node);
+
+out:
+	if (ret) {
+		if (new_node)
+			trie->n_entries--;
+
+		kfree(new_node);
+		kfree(im_node);
+	}
+
+	spin_unlock(&trie->lock);
+
+	return ret;
+}
+
+static struct bpf_map *trie_alloc(union bpf_attr *attr)
+{
+	struct lpm_trie *trie;
+
+	/* check sanity of attributes */
+	if (attr->max_entries == 0 || attr->map_flags ||
+	    attr->key_size < sizeof(struct bpf_lpm_trie_key) + 1   ||
+	    attr->key_size > sizeof(struct bpf_lpm_trie_key) + 256 ||
+	    attr->value_size != sizeof(u64))
+		return ERR_PTR(-EINVAL);
+
+	trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
+	if (!trie)
+		return NULL;
+
+	/* copy mandatory map attributes */
+	trie->map.map_type = attr->map_type;
+	trie->map.key_size = attr->key_size;
+	trie->map.value_size = attr->value_size;
+	trie->map.max_entries = attr->max_entries;
+	trie->data_size = attr->key_size -
+				offsetof(struct bpf_lpm_trie_key, data);
+	trie->max_prefixlen = trie->data_size * 8;
+
+	spin_lock_init(&trie->lock);
+
+	return &trie->map;
+}
+
+static void trie_free(struct bpf_map *map)
+{
+	struct lpm_trie_node **node;
+	struct lpm_trie *trie =
+		container_of(map, struct lpm_trie, map);
+
+	spin_lock(&trie->lock);
+
+	/*
+	 * Always start at the root and walk down to a node that has no
+	 * children. Then free that node, nullify its parent pointer and
+	 * start over.
+	 */
+
+	for (;;) {
+		node = &trie->root;
+		if (!*node)
+			break;
+
+		for (;;) {
+			if ((*node)->child[0]) {
+				node = &(*node)->child[0];
+				continue;
+			}
+
+			if ((*node)->child[1]) {
+				node = &(*node)->child[1];
+				continue;
+			}
+
+			kfree(*node);
+			*node = NULL;
+			break;
+		}
+	}
+
+	spin_unlock(&trie->lock);
+}
+
+static const struct bpf_map_ops trie_ops = {
+	.map_alloc = trie_alloc,
+	.map_free = trie_free,
+	.map_lookup_elem = trie_lookup_elem,
+	.map_update_elem = trie_update_elem,
+};
+
+static struct bpf_map_type_list trie_type __read_mostly = {
+	.ops = &trie_ops,
+	.type = BPF_MAP_TYPE_LPM_TRIE,
+};
+
+static int __init register_trie_map(void)
+{
+	bpf_register_map_type(&trie_type);
+	return 0;
+}
+late_initcall(register_trie_map);
-- 
2.9.3

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ