[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20161217152122.19677.qmail@ns.sciencehorizons.net>
Date: 17 Dec 2016 10:21:22 -0500
From: "George Spelvin" <linux@...encehorizons.net>
To: tom@...bertland.com
Cc: ak@...ux.intel.com, davem@...emloft.net, David.Laight@...lab.com,
djb@...yp.to, ebiggers3@...il.com, hannes@...essinduktion.org,
Jason@...c4.com, jeanphilippe.aumasson@...il.com,
kernel-hardening@...ts.openwall.com, linux-crypto@...r.kernel.org,
linux-kernel@...r.kernel.org, linux@...encehorizons.net,
luto@...capital.net, netdev@...r.kernel.org,
torvalds@...ux-foundation.org, tytso@....edu,
vegard.nossum@...il.com
Subject: Re: [PATCH v5 1/4] siphash: add cryptographically secure PRF
To follow up on my comments that your benchmark results were peculiar,
here's my benchmark code.
It just computes the hash of all n*(n+1)/2 possible non-empty substrings
of a buffer of n (called "max" below) bytes. "cpb" is "cycles per byte".
(The average length is (n+2)/3, c.f. https://oeis.org/A000292)
On x86-32, HSipHash is asymptotically twice the speed of SipHash,
rising to 2.5x for short strings:
SipHash/HSipHash benchmark, sizeof(long) = 4
SipHash: max= 4 cycles= 10495 cpb=524.7500 (sum=47a4f5554869fa97)
HSipHash: max= 4 cycles= 3400 cpb=170.0000 (sum=146a863e)
SipHash: max= 8 cycles= 24468 cpb=203.9000 (sum=21c41a86355affcc)
HSipHash: max= 8 cycles= 9237 cpb= 76.9750 (sum=d3b5e0cd)
SipHash: max= 16 cycles= 94622 cpb=115.9583 (sum=26d816b72721e48f)
HSipHash: max= 16 cycles= 34499 cpb= 42.2782 (sum=16bb7475)
SipHash: max= 32 cycles= 418767 cpb= 69.9811 (sum=dd5a97694b8a832d)
HSipHash: max= 32 cycles= 156695 cpb= 26.1857 (sum=eed00fcb)
SipHash: max= 64 cycles= 2119152 cpb= 46.3101 (sum=a2a725aecc09ed00)
HSipHash: max= 64 cycles= 1008678 cpb= 22.0428 (sum=99b9f4f)
SipHash: max= 128 cycles= 12728659 cpb= 35.5788 (sum=420878cd20272817)
HSipHash: max= 128 cycles= 5452931 cpb= 15.2419 (sum=f1f4ad18)
SipHash: max= 256 cycles= 38931946 cpb= 13.7615 (sum=e05dfb28b90dfd98)
HSipHash: max= 256 cycles= 13807312 cpb= 4.8805 (sum=ceeafcc1)
SipHash: max= 512 cycles= 205537380 cpb= 9.1346 (sum=7d129d4de145fbea)
HSipHash: max= 512 cycles= 103420960 cpb= 4.5963 (sum=7f15a313)
SipHash: max=1024 cycles=1540259472 cpb= 8.5817 (sum=cca7cbdc778ca8af)
HSipHash: max=1024 cycles= 796090824 cpb= 4.4355 (sum=d8f3374f)
On x86-64, SipHash is consistently faster, asymptotically approaching 2x
for long strings:
SipHash/HSipHash benchmark, sizeof(long) = 8
SipHash: max= 4 cycles= 2642 cpb=132.1000 (sum=47a4f5554869fa97)
HSipHash: max= 4 cycles= 2498 cpb=124.9000 (sum=146a863e)
SipHash: max= 8 cycles= 5270 cpb= 43.9167 (sum=21c41a86355affcc)
HSipHash: max= 8 cycles= 7140 cpb= 59.5000 (sum=d3b5e0cd)
SipHash: max= 16 cycles= 19950 cpb= 24.4485 (sum=26d816b72721e48f)
HSipHash: max= 16 cycles= 23546 cpb= 28.8554 (sum=16bb7475)
SipHash: max= 32 cycles= 80188 cpb= 13.4004 (sum=dd5a97694b8a832d)
HSipHash: max= 32 cycles= 101218 cpb= 16.9148 (sum=eed00fcb)
SipHash: max= 64 cycles= 373286 cpb= 8.1575 (sum=a2a725aecc09ed00)
HSipHash: max= 64 cycles= 535568 cpb= 11.7038 (sum=99b9f4f)
SipHash: max= 128 cycles= 2075224 cpb= 5.8006 (sum=420878cd20272817)
HSipHash: max= 128 cycles= 3336820 cpb= 9.3270 (sum=f1f4ad18)
SipHash: max= 256 cycles= 14276278 cpb= 5.0463 (sum=e05dfb28b90dfd98)
HSipHash: max= 256 cycles= 28847880 cpb= 10.1970 (sum=ceeafcc1)
SipHash: max= 512 cycles= 50135180 cpb= 2.2281 (sum=7d129d4de145fbea)
HSipHash: max= 512 cycles= 86145916 cpb= 3.8286 (sum=7f15a313)
SipHash: max=1024 cycles= 334111900 cpb= 1.8615 (sum=cca7cbdc778ca8af)
HSipHash: max=1024 cycles= 640432452 cpb= 3.5682 (sum=d8f3374f)
Here's the code; compile with -DSELFTEST. (The main purpose of
printing the sum is to prevent dead code elimination.)
#if SELFTEST
#include <stdint.h>
#include <stdlib.h>
static inline uint64_t rol64(uint64_t word, unsigned int shift)
{
return word << shift | word >> (64 - shift);
}
static inline uint32_t rol32(uint32_t word, unsigned int shift)
{
return word << shift | word >> (32 - shift);
}
static inline uint64_t get_unaligned_le64(void const *p)
{
return *(uint64_t const *)p;
}
static inline uint32_t get_unaligned_le32(void const *p)
{
return *(uint32_t const *)p;
}
static inline uint64_t le64_to_cpup(uint64_t const *p)
{
return *p;
}
static inline uint32_t le32_to_cpup(uint32_t const *p)
{
return *p;
}
#else
#include <linux/bitops.h> /* For rol64 */
#include <linux/cryptohash.h>
#include <asm/byteorder.h>
#include <asm/unaligned.h>
#endif
/* The basic ARX mixing function, taken from Skein */
#define SIP_MIX(a, b, s) ((a) += (b), (b) = rol64(b, s), (b) ^= (a))
/*
* The complete SipRound. Note that, when unrolled twice like below,
* the 32-bit rotates drop out on 32-bit machines.
*/
#define SIP_ROUND(a, b, c, d) \
(SIP_MIX(a, b, 13), SIP_MIX(c, d, 16), (a) = rol64(a, 32), \
SIP_MIX(c, b, 17), SIP_MIX(a, d, 21), (c) = rol64(c, 32))
/*
* This is rolled up more than most implementations, resulting in about
* 55% the code size. Speed is a few precent slower. A crude benchmark
* (for (i=1; i <= max; i++) for (j = 0; j < 4096-i; j++) hash(buf+j, i);)
* produces the following timings (in usec):
*
* i386 i386 i386 x86_64 x86_64 x86_64 x86_64
* Length small unroll halfmd4 small unroll halfmd4 teahash
* 1..4 1069 1029 1608 195 160 399 690
* 1..8 2483 2381 3851 410 360 988 1659
* 1..12 4303 4152 6207 690 618 1642 2690
* 1..16 6122 5931 8668 968 876 2363 3786
* 1..20 8348 8137 11245 1323 1185 3162 5567
* 1..24 10580 10327 13935 1657 1504 4066 7635
* 1..28 13211 12956 16803 2069 1871 5028 9759
* 1..32 15843 15572 19725 2470 2260 6084 11932
* 1..36 18864 18609 24259 2934 2678 7566 14794
* 1..1024 5890194 6130242 10264816 881933 881244 3617392 7589036
*
* The performance penalty is quite minor, decreasing for long strings,
* and it's significantly faster than half_md4, so I'm going for the
* I-cache win.
*/
uint64_t
siphash24(char const *in, size_t len, uint32_t const seed[4])
{
uint64_t a = 0x736f6d6570736575; /* somepseu */
uint64_t b = 0x646f72616e646f6d; /* dorandom */
uint64_t c = 0x6c7967656e657261; /* lygenera */
uint64_t d = 0x7465646279746573; /* tedbytes */
uint64_t m = 0;
uint8_t padbyte = len;
m = seed[2] | (uint64_t)seed[3] << 32;
b ^= m;
d ^= m;
m = seed[0] | (uint64_t)seed[1] << 32;
/* a ^= m; is done in loop below */
c ^= m;
/*
* By using the same SipRound code for all iterations, we
* save space, at the expense of some branch prediction. But
* branch prediction is hard because of variable length anyway.
*/
len = len/8 + 3; /* Now number of rounds to perform */
do {
a ^= m;
switch (--len) {
unsigned bytes;
default: /* Full words */
d ^= m = get_unaligned_le64(in);
in += 8;
break;
case 2: /* Final partial word */
/*
* We'd like to do one 64-bit fetch rather than
* mess around with bytes, but reading past the end
* might hit a protection boundary. Fortunately,
* we know that protection boundaries are aligned,
* so we can consider only three cases:
* - The remainder occupies zero words
* - The remainder fits into one word
* - The remainder straddles two words
*/
bytes = padbyte & 7;
if (bytes == 0) {
m = 0;
} else {
unsigned offset = (unsigned)(uintptr_t)in & 7;
if (offset + bytes <= 8) {
m = le64_to_cpup((uint64_t const *)
(in - offset));
m >>= 8*offset;
} else {
m = get_unaligned_le64(in);
}
m &= ((uint64_t)1 << 8*bytes) - 1;
}
/* Could use | or +, but ^ allows associativity */
d ^= m ^= (uint64_t)padbyte << 56;
break;
case 1: /* Beginning of finalization */
m = 0;
c ^= 0xff;
/*FALLTHROUGH*/
case 0: /* Second half of finalization */
break;
}
SIP_ROUND(a, b, c, d);
SIP_ROUND(a, b, c, d);
} while (len);
return a ^ b ^ c ^ d;
}
#undef SIP_ROUND
#undef SIP_MIX
#define HSIP_MIX(a, b, s) ((a) += (b), (b) = rol32(b, s), (b) ^= (a))
/*
* These are the PRELIMINARY rotate constants suggested by
* Jean-Philippe Aumasson. Update to final when available.
*/
#define HSIP_ROUND(a, b, c, d) \
(HSIP_MIX(a, b, 5), HSIP_MIX(c, d, 8), (a) = rol32(a, 16), \
HSIP_MIX(c, b, 7), HSIP_MIX(a, d, 13), (c) = rol32(c, 16))
uint32_t
hsiphash24(char const *in, size_t len, uint32_t const key[2])
{
uint32_t c = key[0];
uint32_t d = key[1];
uint32_t a = 0x6c796765 ^ 0x736f6d65;
uint32_t b = d ^ 0x74656462 ^ 0x646f7261;
uint32_t m = c;
uint8_t padbyte = len;
/*
* By using the same SipRound code for all iterations, we
* save space, at the expense of some branch prediction. But
* branch prediction is hard because of variable length anyway.
*/
len = len/sizeof(m) + 3; /* Now number of rounds to perform */
do {
a ^= m;
switch (--len) {
unsigned bytes;
default: /* Full words */
d ^= m = get_unaligned_le32(in);
in += sizeof(m);
break;
case 2: /* Final partial word */
/*
* We'd like to do one 32-bit fetch rather than
* mess around with bytes, but reading past the end
* might hit a protection boundary. Fortunately,
* we know that protection boundaries are aligned,
* so we can consider only three cases:
* - The remainder occupies zero words
* - The remainder fits into one word
* - The remainder straddles two words
*/
bytes = padbyte & 3;
if (bytes == 0) {
m = 0;
} else {
unsigned offset = (unsigned)(uintptr_t)in & 3;
if (offset + bytes <= 4) {
m = le32_to_cpup((uint32_t const *)
(in - offset));
m >>= 8*offset;
} else {
m = get_unaligned_le32(in);
}
m &= ((uint32_t)1 << 8*bytes) - 1;
}
/* Could use | or +, but ^ allows associativity */
d ^= m ^= (uint32_t)padbyte << 24;
break;
case 1: /* Beginning of finalization */
m = 0;
c ^= 0xff;
/*FALLTHROUGH*/
case 0: /* Second half of finalization */
break;
}
HSIP_ROUND(a, b, c, d);
HSIP_ROUND(a, b, c, d);
} while (len);
return a ^ b ^ c ^ d;
// return c + d;
}
#undef HSIP_ROUND
#undef HSIP_MIX
/*
* No objection to EXPORT_SYMBOL, but we should probably figure out
* how the seed[] array should work first. Homework for the first
* person to want to call it from a module!
*/
#if SELFTEST
#include <stdio.h>
static uint64_t rdtsc()
{
uint32_t eax, edx;
asm volatile ("rdtsc" : "=a" (eax), "=d" (edx));
return (uint64_t)edx << 32 | eax;
}
int
main(void)
{
static char const buf[1024] = { 0 };
unsigned max;
static const uint32_t key[4] = { 1, 2, 3, 4 };
printf("SipHash/HSipHash benchmark, sizeof(long) = %u\n",
(unsigned)sizeof(long));
for (unsigned max = 4; max <= 1024; max *= 2) {
uint64_t sum1 = 0;
uint32_t sum2 = 0;
uint64_t cycles;
uint32_t bytes = 0;
/* A less lazy person could figure out the closed form */
for (int i = 1; i <= max; i++)
bytes += i * (max + 1 - i);
cycles = rdtsc();
for (int i = 1; i <= max; i++)
for (int j = 0; j <= max-i; j++)
sum1 += siphash24(buf+j, i, key);
cycles = rdtsc() - cycles;
printf(" SipHash: max=%4u cycles=%10llu cpb=%8.4f (sum=%llx)\n",
max, cycles, (double)cycles/bytes, sum1);
cycles = rdtsc();
for (int i = 1; i <= max; i++)
for (int j = 0; j <= max-i; j++)
sum2 += hsiphash24(buf+j, i, key);
cycles = rdtsc() - cycles;
printf("HSipHash: max=%4u cycles=%10llu cpb=%8.4f (sum=%lx)\n",
max, cycles, (double)cycles/bytes, sum2);
}
return 0;
}
#endif
Powered by blists - more mailing lists