[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <e8678d06-20e0-5501-7cff-62de57a2cdf2@fb.com>
Date: Fri, 1 Mar 2019 18:58:28 +0000
From: Yonghong Song <yhs@...com>
To: Andrii Nakryiko <andrii.nakryiko@...il.com>
CC: Daniel Borkmann <daniel@...earbox.net>,
Alexei Starovoitov <ast@...com>,
"bpf@...r.kernel.org" <bpf@...r.kernel.org>,
"netdev@...r.kernel.org" <netdev@...r.kernel.org>,
"joe@...d.net.nz" <joe@...d.net.nz>,
"john.fastabend@...il.com" <john.fastabend@...il.com>,
"tgraf@...g.ch" <tgraf@...g.ch>, Andrii Nakryiko <andriin@...com>,
"jakub.kicinski@...ronome.com" <jakub.kicinski@...ronome.com>,
"lmb@...udflare.com" <lmb@...udflare.com>
Subject: Re: [PATCH bpf-next v2 5/7] bpf, libbpf: support global
data/bss/rodata sections
On 3/1/19 10:48 AM, Andrii Nakryiko wrote:
> On Fri, Mar 1, 2019 at 10:31 AM Yonghong Song <yhs@...com> wrote:
>>
>>
>>
>> On 2/28/19 3:18 PM, Daniel Borkmann wrote:
>>> This work adds BPF loader support for global data sections
>>> to libbpf. This allows to write BPF programs in more natural
>>> C-like way by being able to define global variables and const
>>> data.
>>>
>>> Back at LPC 2018 [0] we presented a first prototype which
>>> implemented support for global data sections by extending BPF
>>> syscall where union bpf_attr would get additional memory/size
>>> pair for each section passed during prog load in order to later
>>> add this base address into the ldimm64 instruction along with
>>> the user provided offset when accessing a variable. Consensus
>>> from LPC was that for proper upstream support, it would be
>>> more desirable to use maps instead of bpf_attr extension as
>>> this would allow for introspection of these sections as well
>>> as potential life updates of their content. This work follows
>>> this path by taking the following steps from loader side:
>>>
>>> 1) In bpf_object__elf_collect() step we pick up ".data",
>>> ".rodata", and ".bss" section information.
>>>
>>> 2) If present, in bpf_object__init_global_maps() we create
>>> a map that corresponds to each of the present sections.
>>> Given section size and access properties can differ, a
>>> single entry array map is created with value size that
>>> is corresponding to the ELF section size of .data, .bss
>>> or .rodata. In the latter case, the map is created as
>>> read-only from program side such that verifier rejects
>>> any write attempts into .rodata. In a subsequent step,
>>> for .data and .rodata sections, the section content is
>>> copied into the map through bpf_map_update_elem(). For
>>> .bss this is not necessary since array map is already
>>> zero-initialized by default.
>>>
>>> 3) In bpf_program__collect_reloc() step, we record the
>>> corresponding map, insn index, and relocation type for
>>> the global data.
>>>
>>> 4) And last but not least in the actual relocation step in
>>> bpf_program__relocate(), we mark the ldimm64 instruction
>>> with src_reg = BPF_PSEUDO_MAP_VALUE where in the first
>>> imm field the map's file descriptor is stored as similarly
>>> done as in BPF_PSEUDO_MAP_FD, and in the second imm field
>>> (as ldimm64 is 2-insn wide) we store the access offset
>>> into the section.
>>>
>>> 5) On kernel side, this special marked BPF_PSEUDO_MAP_VALUE
>>> load will then store the actual target address in order
>>> to have a 'map-lookup'-free access. That is, the actual
>>> map value base address + offset. The destination register
>>> in the verifier will then be marked as PTR_TO_MAP_VALUE,
>>> containing the fixed offset as reg->off and backing BPF
>>> map as reg->map_ptr. Meaning, it's treated as any other
>>> normal map value from verification side, only with
>>> efficient, direct value access instead of actual call to
>>> map lookup helper as in the typical case.
>>>
>>> Simple example dump of program using globals vars in each
>>> section:
>>>
>>> # readelf -a test_global_data.o
>>> [...]
>>> [ 6] .bss NOBITS 0000000000000000 00000328
>>> 0000000000000010 0000000000000000 WA 0 0 8
>>> [ 7] .data PROGBITS 0000000000000000 00000328
>>> 0000000000000010 0000000000000000 WA 0 0 8
>>> [ 8] .rodata PROGBITS 0000000000000000 00000338
>>> 0000000000000018 0000000000000000 A 0 0 8
>>> [...]
>>> 95: 0000000000000000 8 OBJECT LOCAL DEFAULT 6 static_bss
>>> 96: 0000000000000008 8 OBJECT LOCAL DEFAULT 6 static_bss2
>>> 97: 0000000000000000 8 OBJECT LOCAL DEFAULT 7 static_data
>>> 98: 0000000000000008 8 OBJECT LOCAL DEFAULT 7 static_data2
>>> 99: 0000000000000000 8 OBJECT LOCAL DEFAULT 8 static_rodata
>>> 100: 0000000000000008 8 OBJECT LOCAL DEFAULT 8 static_rodata2
>>> 101: 0000000000000010 8 OBJECT LOCAL DEFAULT 8 static_rodata3
>>> [...]
>>>
>>> # bpftool prog
>>> 103: sched_cls name load_static_dat tag 37a8b6822fc39a29 gpl
>>> loaded_at 2019-02-28T02:02:35+0000 uid 0
>>> xlated 712B jited 426B memlock 4096B map_ids 63,64,65,66
>>> # bpftool map show id 63
>>> 63: array name .bss flags 0x0 <-- .bss area, rw
>>> key 4B value 16B max_entries 1 memlock 4096B
>>> # bpftool map show id 64
>>> 64: array name .data flags 0x0 <-- .data area, rw
>>> key 4B value 16B max_entries 1 memlock 4096B
>>> # bpftool map show id 65
>>> 65: array name .rodata flags 0x80 <-- .rodata area, ro
>>> key 4B value 24B max_entries 1 memlock 4096B
>>>
>>> # bpftool prog dump xlated id 103
>>> int load_static_data(struct __sk_buff * skb):
>>> ; int load_static_data(struct __sk_buff *skb)
>>> 0: (b7) r1 = 0
>>> ; key = 0;
>>> 1: (63) *(u32 *)(r10 -4) = r1
>>> 2: (bf) r6 = r10
>>> ; int load_static_data(struct __sk_buff *skb)
>>> 3: (07) r6 += -4
>>> ; bpf_map_update_elem(&result, &key, &static_bss, 0);
>>> 4: (18) r1 = map[id:66]
>>> 6: (bf) r2 = r6
>>> 7: (18) r3 = map[id:63][0]+0 <-- direct static_bss addr in .bss area
>>> 9: (b7) r4 = 0
>>> 10: (85) call array_map_update_elem#99888
>>> 11: (b7) r1 = 1
>>> ; key = 1;
>>> 12: (63) *(u32 *)(r10 -4) = r1
>>> ; bpf_map_update_elem(&result, &key, &static_data, 0);
>>> 13: (18) r1 = map[id:66]
>>> 15: (bf) r2 = r6
>>> 16: (18) r3 = map[id:64][0]+0 <-- direct static_data addr in .data area
>>> 18: (b7) r4 = 0
>>> 19: (85) call array_map_update_elem#99888
>>> 20: (b7) r1 = 2
>>> ; key = 2;
>>> 21: (63) *(u32 *)(r10 -4) = r1
>>> ; bpf_map_update_elem(&result, &key, &static_rodata, 0);
>>> 22: (18) r1 = map[id:66]
>>> 24: (bf) r2 = r6
>>> 25: (18) r3 = map[id:65][0]+0 <-- direct static_rodata addr in .rodata area
>>> 27: (b7) r4 = 0
>>> 28: (85) call array_map_update_elem#99888
>>> 29: (b7) r1 = 3
>>> ; key = 3;
>>> 30: (63) *(u32 *)(r10 -4) = r1
>>> ; bpf_map_update_elem(&result, &key, &static_bss2, 0);
>>> 31: (18) r7 = map[id:63][0]+8 <--.
>>> 33: (18) r1 = map[id:66] |
>>> 35: (bf) r2 = r6 |
>>> 36: (18) r3 = map[id:63][0]+8 <-- direct static_bss2 addr in .bss area
>>> 38: (b7) r4 = 0
>>> 39: (85) call array_map_update_elem#99888
>>> [...]
>>>
>>> For now .data/.rodata/.bss maps are not exposed via API to the
>>> user, but this could be done in a subsequent step.
>>>
>>> Based upon recent fix in LLVM, commit c0db6b6bd444 ("[BPF] Don't
>>> fail for static variables").
>>>
>>> Joint work with Joe Stringer.
>>>
>>> [0] LPC 2018, BPF track, "ELF relocation for static data in BPF",
>>> http://vger.kernel.org/lpc-bpf2018.html#session-3
>>>
>>> Signed-off-by: Daniel Borkmann <daniel@...earbox.net>
>>> Signed-off-by: Joe Stringer <joe@...d.net.nz>
>>> ---
>>> tools/include/uapi/linux/bpf.h | 10 +-
>>> tools/lib/bpf/libbpf.c | 259 +++++++++++++++++++++++++++------
>>> 2 files changed, 226 insertions(+), 43 deletions(-)
>>>
>>> diff --git a/tools/include/uapi/linux/bpf.h b/tools/include/uapi/linux/bpf.h
>>> index 8884072e1a46..04b26f59b413 100644
>>> --- a/tools/include/uapi/linux/bpf.h
>>> +++ b/tools/include/uapi/linux/bpf.h
>>> @@ -287,7 +287,7 @@ enum bpf_attach_type {
>>> [...]
>>> @@ -999,8 +1120,10 @@ bpf_program__collect_reloc(struct bpf_program *prog, GElf_Shdr *shdr,
>>> (long long) (rel.r_info >> 32),
>>> (long long) sym.st_value, sym.st_name);
>>>
>>> - if (sym.st_shndx != maps_shndx && sym.st_shndx != text_shndx) {
>>> - pr_warning("Program '%s' contains non-map related relo data pointing to section %u\n",
>>> + if (sym.st_shndx != maps_shndx && sym.st_shndx != text_shndx &&
>>> + sym.st_shndx != data_shndx && sym.st_shndx != rodata_shndx &&
>>> + sym.st_shndx != bss_shndx) {
>>> + pr_warning("Program '%s' contains unrecognized relo data pointing to section %u\n",
>>> prog->section_name, sym.st_shndx);
>>> return -LIBBPF_ERRNO__RELOC;
>>> }
>>> @@ -1045,6 +1168,30 @@ bpf_program__collect_reloc(struct bpf_program *prog, GElf_Shdr *shdr,
>>> prog->reloc_desc[i].type = RELO_LD64;
>>> prog->reloc_desc[i].insn_idx = insn_idx;
>>> prog->reloc_desc[i].map_idx = map_idx;
>>> + } else if (sym.st_shndx == data_shndx ||
>>> + sym.st_shndx == rodata_shndx ||
>>> + sym.st_shndx == bss_shndx) {
>>> + int type = (sym.st_shndx == data_shndx) ? RELO_DATA :
>>> + (sym.st_shndx == rodata_shndx) ? RELO_RODATA :
>>> + RELO_BSS;
>>> +
>>> + for (map_idx = 0; map_idx < nr_maps_global; map_idx++) {
>>> + if (maps_global[map_idx].global_type == type) {
>>> + pr_debug("relocation: find map %zd (%s) for insn %u\n",
>>> + map_idx, maps_global[map_idx].name, insn_idx);
>>> + break;
>>> + }
>>> + }
>>> +
>>> + if (map_idx >= nr_maps_global) {
>>> + pr_warning("bpf relocation: map_idx %d large than %d\n",
>>> + (int)map_idx, (int)nr_maps_global - 1);
>>> + return -LIBBPF_ERRNO__RELOC;
>>> + }
>>> +
>>> + prog->reloc_desc[i].type = type;
>>> + prog->reloc_desc[i].insn_idx = insn_idx;
>>> + prog->reloc_desc[i].map_idx = map_idx;
>>> }
>>> }
>>> return 0;
>>> @@ -1176,15 +1323,58 @@ bpf_object__probe_caps(struct bpf_object *obj)
>>> }
>>>
>>> static int
>> [...]
>>> +
>>> +static int
>>> +bpf_object__create_maps(struct bpf_object *obj)
>>> +{
>>> unsigned int i;
>>> int err;
>>>
>>> for (i = 0; i < obj->nr_maps; i++) {
>>> struct bpf_map *map = &obj->maps[i];
>>> - struct bpf_map_def *def = &map->def;
>>> char *cp, errmsg[STRERR_BUFSIZE];
>>> int *pfd = &map->fd;
>>>
>>> @@ -1193,41 +1383,7 @@ bpf_object__create_maps(struct bpf_object *obj)
>>> map->name, map->fd);
>>> continue;
>>> }
>>> -
>>> - if (obj->caps.name)
>>> - create_attr.name = map->name;
>>> - create_attr.map_ifindex = map->map_ifindex;
>>> - create_attr.map_type = def->type;
>>> - create_attr.map_flags = def->map_flags;
>>> - create_attr.key_size = def->key_size;
>>> - create_attr.value_size = def->value_size;
>>> - create_attr.max_entries = def->max_entries;
>>> - create_attr.btf_fd = 0;
>>> - create_attr.btf_key_type_id = 0;
>>> - create_attr.btf_value_type_id = 0;
>>> - if (bpf_map_type__is_map_in_map(def->type) &&
>>> - map->inner_map_fd >= 0)
>>> - create_attr.inner_map_fd = map->inner_map_fd;
>>> -
>>> - if (obj->btf && !bpf_map_find_btf_info(map, obj->btf)) {
>>> - create_attr.btf_fd = btf__fd(obj->btf);
>>> - create_attr.btf_key_type_id = map->btf_key_type_id;
>>> - create_attr.btf_value_type_id = map->btf_value_type_id;
>>> - }
>>> -
>>> - *pfd = bpf_create_map_xattr(&create_attr);
>>> - if (*pfd < 0 && create_attr.btf_key_type_id) {
>>> - cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
>>> - pr_warning("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
>>> - map->name, cp, errno);
>>> - create_attr.btf_fd = 0;
>>> - create_attr.btf_key_type_id = 0;
>>> - create_attr.btf_value_type_id = 0;
>>> - map->btf_key_type_id = 0;
>>> - map->btf_value_type_id = 0;
>>> - *pfd = bpf_create_map_xattr(&create_attr);
>>> - }
>>> -
>>> + *pfd = bpf_object__create_map(obj, map);
>>> if (*pfd < 0) {
>>> size_t j;
>>>
>>> @@ -1412,6 +1568,24 @@ bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj)
>>> &prog->reloc_desc[i]);
>>> if (err)
>>> return err;
>>> + } else if (prog->reloc_desc[i].type == RELO_DATA ||
>>> + prog->reloc_desc[i].type == RELO_RODATA ||
>>> + prog->reloc_desc[i].type == RELO_BSS) {
>>> + struct bpf_insn *insns = prog->insns;
>>> + int insn_idx, map_idx, data_off;
>>> +
>>> + insn_idx = prog->reloc_desc[i].insn_idx;
>>> + map_idx = prog->reloc_desc[i].map_idx;
>>> + data_off = insns[insn_idx].imm;
>>
>> I want to point to a subtle difference here between handling pure global
>> variables and static global variables. The "imm" value is only available
>> for static variables. For example,
>>
>> -bash-4.4$ cat g.c
>> static volatile long sg = 2;
>> static volatile int si = 3;
>> long g = 4;
>> int i = 5;
>> int test() { return sg + si + g + i; }
>> -bash-4.4$
>> -bash-4.4$ clang -target bpf -O2 -c g.c
>>
>> -bash-4.4$ readelf -s g.o
>>
>>
>> Symbol table '.symtab' contains 8 entries:
>> Num: Value Size Type Bind Vis Ndx Name
>> 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
>> 1: 0000000000000000 0 FILE LOCAL DEFAULT ABS g.c
>> 2: 0000000000000010 8 OBJECT LOCAL DEFAULT 4 sg
>> 3: 0000000000000018 4 OBJECT LOCAL DEFAULT 4 si
>> 4: 0000000000000000 0 SECTION LOCAL DEFAULT 4
>> 5: 0000000000000000 8 OBJECT GLOBAL DEFAULT 4 g
>> 6: 0000000000000008 4 OBJECT GLOBAL DEFAULT 4 i
>> 7: 0000000000000000 128 FUNC GLOBAL DEFAULT 2 test
>> -bash-4.4$
>> -bash-4.4$ llvm-readelf -r g.o
>>
>> Relocation section '.rel.text' at offset 0x1d8 contains 4 entries:
>> Offset Info Type Symbol's
>> Value Symbol's Name
>> 0000000000000000 0000000400000001 R_BPF_64_64
>> 0000000000000000 .data
>> 0000000000000018 0000000400000001 R_BPF_64_64
>> 0000000000000000 .data
>> 0000000000000038 0000000500000001 R_BPF_64_64 0000000000000000 g
>> 0000000000000058 0000000600000001 R_BPF_64_64 0000000000000008 i
>> -bash-4.4$ llvm-objdump -d g.o
>>
>> g.o: file format ELF64-BPF
>>
>> Disassembly of section .text:
>> 0000000000000000 test:
>> 0: 18 01 00 00 10 00 00 00 00 00 00 00 00 00 00 00
>> r1 = 16 ll
>> 2: 79 11 00 00 00 00 00 00 r1 = *(u64 *)(r1 + 0)
>> 3: 18 02 00 00 18 00 00 00 00 00 00 00 00 00 00 00
>> r2 = 24 ll
>> 5: 61 22 00 00 00 00 00 00 r2 = *(u32 *)(r2 + 0)
>> 6: 0f 21 00 00 00 00 00 00 r1 += r2
>> 7: 18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>> r2 = 0 ll
>> 9: 79 22 00 00 00 00 00 00 r2 = *(u64 *)(r2 + 0)
>> 10: 0f 21 00 00 00 00 00 00 r1 += r2
>> 11: 18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>> r2 = 0 ll
>> 13: 61 20 00 00 00 00 00 00 r0 = *(u32 *)(r2 + 0)
>> 14: 0f 10 00 00 00 00 00 00 r0 += r1
>> 15: 95 00 00 00 00 00 00 00 exit
>> -bash-4.4$
>>
>> You can see the above, the non-static global access does not have its
>> in-section offset encoded in the insn itself. The difference is due to
>> llvm treating static global and non-static global differently.
>>
>> To support both cases, during relocation recording stage, you can
>> also record:
>> . symbol binding (GELF_ST_BIND(sym.st_info)),
>> non-static global has binding STB_GLOBAL and static
>> global has binding STB_LOCAL
>> . symbol value (sym.st_value)
>>
>> During the above relocation resolution, if symbol bind is local, do
>> what you already did here. If symbol bind is global, assign data_off
>> with symbol value.
>>
>> This applied to both .data and .rodata sections.
>>
>> The non initialized
>> global variable will not be in any allocated section in ELF file,
>> it is in a COM section which is to be allocated by loader.
>> So user defines some like
>> int g;
>> and later on uses it. Right now, it will not work. The workaround
>> is "int g = 4", or "static int g". I guess it should be
>> okay, we should encourage users to use "static" variables instead.
>
> Would it be reasonable to just plain disable usage of uninitialized
> global variables, as it kind of goes against BPF's philosophy that
> everything should be written to, before can be read? So while we can
> just implicitly zero-out everything beforehand, it might be a good
> idea to remind and enforce that explictly?
There will be a verifier error, so the program with "int g" will not
run, the same as today.
We could improve by flagging the error at compiler error or libbpf time.
But it is not required. I am mentioning just for completeness.
>
>>
>>> +
>>> + if (insn_idx + 1 >= (int)prog->insns_cnt) {
>>> + pr_warning("relocation out of range: '%s'\n",
>>> + prog->section_name);
>>> + return -LIBBPF_ERRNO__RELOC;
>>> + }
>>> + insns[insn_idx].src_reg = BPF_PSEUDO_MAP_VALUE;
>>> + insns[insn_idx].imm = obj->maps_global[map_idx].fd;
>>> + insns[insn_idx + 1].imm = data_off;
>>> }
>>> }
>>>
>>> @@ -1717,6 +1891,7 @@ __bpf_object__open(const char *path, void *obj_buf, size_t obj_buf_sz,
>>>
>>> CHECK_ERR(bpf_object__elf_init(obj), err, out);
>>> CHECK_ERR(bpf_object__check_endianness(obj), err, out);
>>> + CHECK_ERR(bpf_object__probe_caps(obj), err, out);
>>> CHECK_ERR(bpf_object__elf_collect(obj, flags), err, out);
>>> CHECK_ERR(bpf_object__collect_reloc(obj), err, out);
>>> CHECK_ERR(bpf_object__validate(obj, needs_kver), err, out);
>>> @@ -1789,7 +1964,8 @@ int bpf_object__unload(struct bpf_object *obj)
>>>
>>> for (i = 0; i < obj->nr_maps; i++)
>>> zclose(obj->maps[i].fd);
>>> -
>>> + for (i = 0; i < obj->nr_maps_global; i++)
>>> + zclose(obj->maps_global[i].fd);
>>> for (i = 0; i < obj->nr_programs; i++)
>>> bpf_program__unload(&obj->programs[i]);
>>>
>>> @@ -1810,7 +1986,6 @@ int bpf_object__load(struct bpf_object *obj)
>>>
>>> obj->loaded = true;
>>>
>>> - CHECK_ERR(bpf_object__probe_caps(obj), err, out);
>>> CHECK_ERR(bpf_object__create_maps(obj), err, out);
>>> CHECK_ERR(bpf_object__relocate(obj), err, out);
>>> CHECK_ERR(bpf_object__load_progs(obj), err, out);
>>>
Powered by blists - more mailing lists