[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <CAPhsuW5=h=EZPDy5tH8U7yy72c2sg7+Odnv=M25nbu2x2_oR7w@mail.gmail.com>
Date: Fri, 12 Apr 2019 11:01:57 -0700
From: Song Liu <liu.song.a23@...il.com>
To: Jesper Dangaard Brouer <brouer@...hat.com>
Cc: Networking <netdev@...r.kernel.org>,
Daniel Borkmann <borkmann@...earbox.net>,
Alexei Starovoitov <alexei.starovoitov@...il.com>,
"David S. Miller" <davem@...emloft.net>,
Song Liu <songliubraving@...com>,
Toke Høiland-Jørgensen <toke@...e.dk>,
Ilias Apalodimas <ilias.apalodimas@...aro.org>,
Edward Cree <ecree@...arflare.com>, bpf <bpf@...r.kernel.org>
Subject: Re: [PATCH bpf-next V2 3/4] bpf: cpumap do bulk allocation of SKBs
On Fri, Apr 12, 2019 at 8:08 AM Jesper Dangaard Brouer
<brouer@...hat.com> wrote:
>
> As cpumap now batch consume xdp_frame's from the ptr_ring, it knows how many
> SKBs it need to allocate. Thus, lets bulk allocate these SKBs via
> kmem_cache_alloc_bulk() API, and use the previously introduced function
> build_skb_around().
>
> Notice that the flag __GFP_ZERO asks the slab/slub allocator to clear the
> memory for us. This does clear a larger area than needed, but my micro
> benchmarks on Intel CPUs show that this is slightly faster due to being a
> cacheline aligned area is cleared for the SKBs. (For SLUB allocator, there
> is a future optimization potential, because SKBs will with high probability
> originate from same page. If we can find/identify continuous memory areas
> then the Intel CPU memset rep stos will have a real performance gain.)
>
> Signed-off-by: Jesper Dangaard Brouer <brouer@...hat.com>
Acked-by: Song Liu <songliubraving@...com>
> ---
> kernel/bpf/cpumap.c | 22 +++++++++++++++-------
> 1 file changed, 15 insertions(+), 7 deletions(-)
>
> diff --git a/kernel/bpf/cpumap.c b/kernel/bpf/cpumap.c
> index 430103e182a0..732d6ced3987 100644
> --- a/kernel/bpf/cpumap.c
> +++ b/kernel/bpf/cpumap.c
> @@ -160,12 +160,12 @@ static void cpu_map_kthread_stop(struct work_struct *work)
> }
>
> static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
> - struct xdp_frame *xdpf)
> + struct xdp_frame *xdpf,
> + struct sk_buff *skb)
> {
> unsigned int hard_start_headroom;
> unsigned int frame_size;
> void *pkt_data_start;
> - struct sk_buff *skb;
>
> /* Part of headroom was reserved to xdpf */
> hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom;
> @@ -191,8 +191,8 @@ static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
> SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
>
> pkt_data_start = xdpf->data - hard_start_headroom;
> - skb = build_skb(pkt_data_start, frame_size);
> - if (!skb)
> + skb = build_skb_around(skb, pkt_data_start, frame_size);
> + if (unlikely(!skb))
> return NULL;
>
> skb_reserve(skb, hard_start_headroom);
> @@ -256,7 +256,9 @@ static int cpu_map_kthread_run(void *data)
> while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
> unsigned int drops = 0, sched = 0;
> void *frames[CPUMAP_BATCH];
> - int i, n;
> + void *skbs[CPUMAP_BATCH];
> + gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
> + int i, n, m;
>
> /* Release CPU reschedule checks */
> if (__ptr_ring_empty(rcpu->queue)) {
> @@ -278,14 +280,20 @@ static int cpu_map_kthread_run(void *data)
> * consume side valid as no-resize allowed of queue.
> */
> n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
> + m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
> + if (unlikely(m == 0)) {
> + for (i = 0; i < n; i++)
> + skbs[i] = NULL; /* effect: xdp_return_frame */
> + drops = n;
> + }
>
> local_bh_disable();
> for (i = 0; i < n; i++) {
> struct xdp_frame *xdpf = frames[i];
> - struct sk_buff *skb;
> + struct sk_buff *skb = skbs[i];
> int ret;
>
> - skb = cpu_map_build_skb(rcpu, xdpf);
> + skb = cpu_map_build_skb(rcpu, xdpf, skb);
> if (!skb) {
> xdp_return_frame(xdpf);
> continue;
>
Powered by blists - more mailing lists