[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20190704130336.GN3402@hirez.programming.kicks-ass.net>
Date: Thu, 4 Jul 2019 15:03:36 +0200
From: Peter Zijlstra <peterz@...radead.org>
To: Kris Van Hees <kris.van.hees@...cle.com>
Cc: netdev@...r.kernel.org, bpf@...r.kernel.org,
dtrace-devel@....oracle.com, linux-kernel@...r.kernel.org,
rostedt@...dmis.org, mhiramat@...nel.org, acme@...nel.org,
ast@...nel.org, daniel@...earbox.net, Chris Mason <clm@...com>
Subject: Re: [PATCH 1/1] tools/dtrace: initial implementation of DTrace
On Wed, Jul 03, 2019 at 08:14:30PM -0700, Kris Van Hees wrote:
> +/*
> + * Read the data_head offset from the header page of the ring buffer. The
> + * argument is declared 'volatile' because it references a memory mapped page
> + * that the kernel may be writing to while we access it here.
> + */
> +static u64 read_rb_head(volatile struct perf_event_mmap_page *rb_page)
> +{
> + u64 head = rb_page->data_head;
> +
> + asm volatile("" ::: "memory");
> +
> + return head;
> +}
> +
> +/*
> + * Write the data_tail offset in the header page of the ring buffer. The
> + * argument is declared 'volatile' because it references a memory mapped page
> + * that the kernel may be writing to while we access it here.
s/writing/reading/
> + */
> +static void write_rb_tail(volatile struct perf_event_mmap_page *rb_page,
> + u64 tail)
> +{
> + asm volatile("" ::: "memory");
> +
> + rb_page->data_tail = tail;
> +}
That volatile usage is atrocious (kernel style would have you use
{READ,WRITE}_ONCE()). Also your comments fail to mark these as
load_acquire and store_release. And by only using a compiler barrier
you're hard assuming TSO, which is somewhat fragile at best.
Alternatively, you can use the C11 bits and write:
return __atomic_load_n(&rb_page->data_head, __ATOMIC_ACQUIRE);
__atomic_store_n(&rb_page->data_tail, tail, __ATOMIC_RELEASE);
> +/*
> + * Process and output the probe data at the supplied address.
> + */
> +static int output_event(int cpu, u64 *buf)
> +{
> + u8 *data = (u8 *)buf;
> + struct perf_event_header *hdr;
> +
> + hdr = (struct perf_event_header *)data;
> + data += sizeof(struct perf_event_header);
> +
> + if (hdr->type == PERF_RECORD_SAMPLE) {
> + u8 *ptr = data;
> + u32 i, size, probe_id;
> +
> + /*
> + * struct {
> + * struct perf_event_header header;
> + * u32 size;
> + * u32 probe_id;
> + * u32 gap;
> + * u64 data[n];
> + * }
> + * and data points to the 'size' member at this point.
> + */
> + if (ptr > (u8 *)buf + hdr->size) {
> + fprintf(stderr, "BAD: corrupted sample header\n");
> + goto out;
> + }
> +
> + size = *(u32 *)data;
> + data += sizeof(size);
> + ptr += sizeof(size) + size;
> + if (ptr != (u8 *)buf + hdr->size) {
> + fprintf(stderr, "BAD: invalid sample size\n");
> + goto out;
> + }
> +
> + probe_id = *(u32 *)data;
> + data += sizeof(probe_id);
> + size -= sizeof(probe_id);
> + data += sizeof(u32); /* skip 32-bit gap */
> + size -= sizeof(u32);
> + buf = (u64 *)data;
> +
> + printf("%3d %6d ", cpu, probe_id);
> + for (i = 0, size /= sizeof(u64); i < size; i++)
> + printf("%#016lx ", buf[i]);
> + printf("\n");
> + } else if (hdr->type == PERF_RECORD_LOST) {
> + u64 lost;
> +
> + /*
> + * struct {
> + * struct perf_event_header header;
> + * u64 id;
> + * u64 lost;
> + * }
> + * and data points to the 'id' member at this point.
> + */
> + lost = *(u64 *)(data + sizeof(u64));
> +
> + printf("[%ld probes dropped]\n", lost);
> + } else
> + fprintf(stderr, "UNKNOWN: record type %d\n", hdr->type);
> +
> +out:
> + return hdr->size;
> +}
I see a distinct lack of wrapping support. AFAICT when buf+hdr->size
wraps you're doing out-of-bounds accesses.
> +/*
> + * Process the available probe data in the given buffer.
> + */
> +static void process_data(struct dtrace_buffer *buf)
> +{
> + /* This is volatile because the kernel may be updating the content. */
> + volatile struct perf_event_mmap_page *rb_page = buf->base;
> + u8 *base = (u8 *)buf->base +
> + buf->page_size;
> + u64 head = read_rb_head(rb_page);
> +
> + while (rb_page->data_tail != head) {
> + u64 tail = rb_page->data_tail;
> + u64 *ptr = (u64 *)(base + tail % buf->data_size);
> + int len;
> +
> + len = output_event(buf->cpu, ptr);
> +
> + write_rb_tail(rb_page, tail + len);
> + head = read_rb_head(rb_page);
> + }
> +}
more volatile yuck.
Also:
for (;;) {
head = __atomic_load_n(&rb_page->data_head, __ATOMIC_ACQUIRE);
tail = __atomic_load_n(&rb_page->data_tail, __ATOMIC_RELAXED);
if (head == tail)
break;
do {
hdr = buf->base + (tail & ((1UL << buf->data_shift) - 1));
if ((tail >> buf->data_shift) !=
((tail + hdr->size) >> buf->data_shift))
/* handle wrap case */
else
/* normal case */
tail += hdr->size;
} while (tail != head);
__atomic_store_n(&rb_page->data_tail, tail, __ATOMIC_RELEASE);
}
Or something.
> +/*
> + * Wait for data to become available in any of the buffers.
> + */
> +int dt_buffer_poll(int epoll_fd, int timeout)
> +{
> + struct epoll_event events[dt_numcpus];
> + int i, cnt;
> +
> + cnt = epoll_wait(epoll_fd, events, dt_numcpus, timeout);
> + if (cnt < 0)
> + return -errno;
> +
> + for (i = 0; i < cnt; i++)
> + process_data((struct dtrace_buffer *)events[i].data.ptr);
> +
> + return cnt;
> +}
Or make sure to read on the CPU by having a poll thread per CPU, then
you can do away with the memory barriers.
Powered by blists - more mailing lists