[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <2D563869-72E5-4623-B239-173EE2313084@fb.com>
Date: Thu, 25 Jul 2019 19:32:55 +0000
From: Song Liu <songliubraving@...com>
To: Andrii Nakryiko <andriin@...com>
CC: bpf <bpf@...r.kernel.org>, Networking <netdev@...r.kernel.org>,
"Alexei Starovoitov" <ast@...com>,
Daniel Borkmann <daniel@...earbox.net>,
"Yonghong Song" <yhs@...com>,
Andrii Nakryiko <andrii.nakryiko@...il.com>,
Kernel Team <Kernel-team@...com>
Subject: Re: [PATCH bpf-next 02/10] libbpf: implement BPF CO-RE offset
relocation algorithm
> On Jul 24, 2019, at 12:27 PM, Andrii Nakryiko <andriin@...com> wrote:
>
> This patch implements the core logic for BPF CO-RE offsets relocations.
> All the details are described in code comments.
Some description in the change log is still useful. Please at least
copy-paste key comments here.
And, this is looooong. I think it is totally possible to split it into
multiple smaller patches.
I haven't finished all of it. Please see my comments below of parts I
have covered.
Thanks,
Song
>
> Signed-off-by: Andrii Nakryiko <andriin@...com>
> ---
> tools/lib/bpf/libbpf.c | 866 ++++++++++++++++++++++++++++++++++++++++-
> tools/lib/bpf/libbpf.h | 1 +
> 2 files changed, 861 insertions(+), 6 deletions(-)
>
> diff --git a/tools/lib/bpf/libbpf.c b/tools/lib/bpf/libbpf.c
> index 8741c39adb1c..86d87bf10d46 100644
> --- a/tools/lib/bpf/libbpf.c
> +++ b/tools/lib/bpf/libbpf.c
> @@ -38,6 +38,7 @@
> #include <sys/stat.h>
> #include <sys/types.h>
> #include <sys/vfs.h>
> +#include <sys/utsname.h>
> #include <tools/libc_compat.h>
> #include <libelf.h>
> #include <gelf.h>
> @@ -47,6 +48,7 @@
> #include "btf.h"
> #include "str_error.h"
> #include "libbpf_internal.h"
> +#include "hashmap.h"
>
> #ifndef EM_BPF
> #define EM_BPF 247
> @@ -1013,16 +1015,22 @@ static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
> }
>
> static const struct btf_type *skip_mods_and_typedefs(const struct btf *btf,
> - __u32 id)
> + __u32 id,
> + __u32 *res_id)
> {
> const struct btf_type *t = btf__type_by_id(btf, id);
Maybe have a local "__u32 rid;"
>
> + if (res_id)
> + *res_id = id;
> +
and do "rid = id;" here
> while (true) {
> switch (BTF_INFO_KIND(t->info)) {
> case BTF_KIND_VOLATILE:
> case BTF_KIND_CONST:
> case BTF_KIND_RESTRICT:
> case BTF_KIND_TYPEDEF:
> + if (res_id)
> + *res_id = t->type;
and here
> t = btf__type_by_id(btf, t->type);
> break;
> default:
and "*res_id = rid;" right before return?
> @@ -1041,7 +1049,7 @@ static const struct btf_type *skip_mods_and_typedefs(const struct btf *btf,
> static bool get_map_field_int(const char *map_name, const struct btf *btf,
> const struct btf_type *def,
> const struct btf_member *m, __u32 *res) {
> - const struct btf_type *t = skip_mods_and_typedefs(btf, m->type);
> + const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
> const char *name = btf__name_by_offset(btf, m->name_off);
> const struct btf_array *arr_info;
> const struct btf_type *arr_t;
> @@ -1107,7 +1115,7 @@ static int bpf_object__init_user_btf_map(struct bpf_object *obj,
> return -EOPNOTSUPP;
> }
>
> - def = skip_mods_and_typedefs(obj->btf, var->type);
> + def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
> if (BTF_INFO_KIND(def->info) != BTF_KIND_STRUCT) {
> pr_warning("map '%s': unexpected def kind %u.\n",
> map_name, BTF_INFO_KIND(var->info));
> @@ -2289,6 +2297,845 @@ bpf_program_reloc_btf_ext(struct bpf_program *prog, struct bpf_object *obj,
> return 0;
> }
>
> +#define BPF_CORE_SPEC_MAX_LEN 64
> +
> +/* represents BPF CO-RE field or array element accessor */
> +struct bpf_core_accessor {
> + __u32 type_id; /* struct/union type or array element type */
> + __u32 idx; /* field index or array index */
> + const char *name; /* field name or NULL for array accessor */
> +};
> +
> +struct bpf_core_spec {
> + const struct btf *btf;
> + /* high-level spec: named fields and array indicies only */
typo: indices
> + struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
> + /* high-level spec length */
> + int len;
> + /* raw, low-level spec: 1-to-1 with accessor spec string */
> + int raw_spec[BPF_CORE_SPEC_MAX_LEN];
> + /* raw spec length */
> + int raw_len;
> + /* field byte offset represented by spec */
> + __u32 offset;
> +};
> +
> +static bool str_is_empty(const char *s)
> +{
> + return !s || !s[0];
> +}
> +
> +static int btf_kind(const struct btf_type *t)
> +{
> + return BTF_INFO_KIND(t->info);
> +}
> +
> +static bool btf_is_composite(const struct btf_type *t)
> +{
> + int kind = btf_kind(t);
> +
> + return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
> +}
> +
> +static bool btf_is_array(const struct btf_type *t)
> +{
> + return btf_kind(t) == BTF_KIND_ARRAY;
> +}
> +
> +/*
> + * Turn bpf_offset_reloc into a low- and high-level spec representation,
> + * validating correctness along the way, as well as calculating resulting
> + * field offset (in bytes), specified by accessor string. Low-level spec
> + * captures every single level of nestedness, including traversing anonymous
> + * struct/union members. High-level one only captures semantically meaningful
> + * "turning points": named fields and array indicies.
> + * E.g., for this case:
> + *
> + * struct sample {
> + * int __unimportant;
> + * struct {
> + * int __1;
> + * int __2;
> + * int a[7];
> + * };
> + * };
> + *
> + * struct sample *s = ...;
> + *
> + * int x = &s->a[3]; // access string = '0:1:2:3'
> + *
> + * Low-level spec has 1:1 mapping with each element of access string (it's
> + * just a parsed access string representation): [0, 1, 2, 3].
> + *
> + * High-level spec will capture only 3 points:
> + * - intial zero-index access by pointer (&s->... is the same as &s[0]...);
> + * - field 'a' access (corresponds to '2' in low-level spec);
> + * - array element #3 access (corresponds to '3' in low-level spec).
> + *
> + */
IIUC, high-level points are subset of low-level points. How about we introduce
"anonymous" high-level points, so that high-level points and low-level points
are 1:1 mapping?
> +static int bpf_core_spec_parse(const struct btf *btf,
> + __u32 type_id,
> + const char *spec_str,
> + struct bpf_core_spec *spec)
> +{
> + int access_idx, parsed_len, i;
> + const struct btf_type *t;
> + __u32 id = type_id;
> + const char *name;
> + __s64 sz;
> +
> + if (str_is_empty(spec_str) || *spec_str == ':')
> + return -EINVAL;
> +
> + memset(spec, 0, sizeof(*spec));
> + spec->btf = btf;
> +
> + /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
> + while (*spec_str) {
> + if (*spec_str == ':')
> + ++spec_str;
> + if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
> + return -EINVAL;
> + if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
> + return -E2BIG;
> + spec_str += parsed_len;
> + spec->raw_spec[spec->raw_len++] = access_idx;
> + }
> +
> + if (spec->raw_len == 0)
> + return -EINVAL;
> +
> + for (i = 0; i < spec->raw_len; i++) {
> + t = skip_mods_and_typedefs(btf, id, &id);
> + if (!t)
> + return -EINVAL;
> +
> + access_idx = spec->raw_spec[i];
> +
> + if (i == 0) {
> + /* first spec value is always reloc type array index */
> + spec->spec[spec->len].type_id = id;
> + spec->spec[spec->len].idx = access_idx;
> + spec->len++;
> +
> + sz = btf__resolve_size(btf, id);
> + if (sz < 0)
> + return sz;
> + spec->offset += access_idx * sz;
spec->offset = access_idx * sz; should be enough
> + continue;
> + }
Maybe pull i == 0 case out of the for loop?
> +
> + if (btf_is_composite(t)) {
> + const struct btf_member *m = (void *)(t + 1);
> + __u32 offset;
> +
> + if (access_idx >= BTF_INFO_VLEN(t->info))
> + return -EINVAL;
> +
> + m = &m[access_idx];
> +
> + if (BTF_INFO_KFLAG(t->info)) {
> + if (BTF_MEMBER_BITFIELD_SIZE(m->offset))
> + return -EINVAL;
> + offset = BTF_MEMBER_BIT_OFFSET(m->offset);
> + } else {
> + offset = m->offset;
> + }
> + if (m->offset % 8)
> + return -EINVAL;
> + spec->offset += offset / 8;
> +
> + if (m->name_off) {
> + name = btf__name_by_offset(btf, m->name_off);
> + if (str_is_empty(name))
> + return -EINVAL;
> +
> + spec->spec[spec->len].type_id = id;
> + spec->spec[spec->len].idx = access_idx;
> + spec->spec[spec->len].name = name;
> + spec->len++;
> + }
> +
> + id = m->type;
> + } else if (btf_is_array(t)) {
> + const struct btf_array *a = (void *)(t + 1);
> +
> + t = skip_mods_and_typedefs(btf, a->type, &id);
> + if (!t || access_idx >= a->nelems)
> + return -EINVAL;
> +
> + spec->spec[spec->len].type_id = id;
> + spec->spec[spec->len].idx = access_idx;
> + spec->len++;
> +
> + sz = btf__resolve_size(btf, id);
> + if (sz < 0)
> + return sz;
> + spec->offset += access_idx * sz;
> + } else {
> + pr_warning("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %d\n",
> + type_id, spec_str, i, id, btf_kind(t));
> + return -EINVAL;
> + }
> + }
> +
> + if (spec->len == 0)
> + return -EINVAL;
Can this ever happen?
> +
> + return 0;
> +}
> +
> +/* Given 'some_struct_name___with_flavor' return the length of a name prefix
> + * before last triple underscore. Struct name part after last triple
> + * underscore is ignored by BPF CO-RE relocation during relocation matching.
> + */
> +static size_t bpf_core_essential_name_len(const char *name)
> +{
> + size_t n = strlen(name);
> + int i = n - 3;
> +
> + while (i > 0) {
> + if (name[i] == '_' && name[i + 1] == '_' && name[i + 2] == '_')
> + return i;
> + i--;
> + }
> + return n;
> +}
> +
> +/* dynamically sized list of type IDs */
> +struct ids_vec {
> + __u32 *data;
> + int len;
> +};
> +
> +static void bpf_core_free_cands(struct ids_vec *cand_ids)
> +{
> + free(cand_ids->data);
> + free(cand_ids);
> +}
> +
> +static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf,
> + __u32 local_type_id,
> + const struct btf *targ_btf)
> +{
> + size_t local_essent_len, targ_essent_len;
> + const char *local_name, *targ_name;
> + const struct btf_type *t;
> + struct ids_vec *cand_ids;
> + __u32 *new_ids;
> + int i, err, n;
> +
> + t = btf__type_by_id(local_btf, local_type_id);
> + if (!t)
> + return ERR_PTR(-EINVAL);
> +
> + local_name = btf__name_by_offset(local_btf, t->name_off);
> + if (str_is_empty(local_name))
> + return ERR_PTR(-EINVAL);
> + local_essent_len = bpf_core_essential_name_len(local_name);
> +
> + cand_ids = calloc(1, sizeof(*cand_ids));
> + if (!cand_ids)
> + return ERR_PTR(-ENOMEM);
> +
> + n = btf__get_nr_types(targ_btf);
> + for (i = 1; i <= n; i++) {
> + t = btf__type_by_id(targ_btf, i);
> + targ_name = btf__name_by_offset(targ_btf, t->name_off);
> + if (str_is_empty(targ_name))
> + continue;
> +
> + targ_essent_len = bpf_core_essential_name_len(targ_name);
> + if (targ_essent_len != local_essent_len)
> + continue;
> +
> + if (strncmp(local_name, targ_name, local_essent_len) == 0) {
> + pr_debug("[%d] (%s): found candidate [%d] (%s)\n",
> + local_type_id, local_name, i, targ_name);
> + new_ids = realloc(cand_ids->data, cand_ids->len + 1);
> + if (!new_ids) {
> + err = -ENOMEM;
> + goto err_out;
> + }
> + cand_ids->data = new_ids;
> + cand_ids->data[cand_ids->len++] = i;
> + }
> + }
> + return cand_ids;
> +err_out:
> + bpf_core_free_cands(cand_ids);
> + return ERR_PTR(err);
> +}
> +
> +/* Check two types for compatibility, skipping const/volatile/restrict and
> + * typedefs, to ensure we are relocating offset to the compatible entities:
> + * - any two STRUCTs/UNIONs are compatible and can be mixed;
> + * - any two FWDs are compatible;
> + * - any two PTRs are always compatible;
> + * - for ENUMs, check sizes, names are ignored;
> + * - for INT, size and bitness should match, signedness is ignored;
> + * - for ARRAY, dimensionality is ignored, element types are checked for
> + * compatibility recursively;
> + * - everything else shouldn't be ever a target of relocation.
> + * These rules are not set in stone and probably will be adjusted as we get
> + * more experience with using BPF CO-RE relocations.
> + */
> +static int bpf_core_fields_are_compat(const struct btf *local_btf,
> + __u32 local_id,
> + const struct btf *targ_btf,
> + __u32 targ_id)
> +{
> + const struct btf_type *local_type, *targ_type;
> + __u16 kind;
> +
> +recur:
> + local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
> + targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
> + if (!local_type || !targ_type)
> + return -EINVAL;
> +
> + if (btf_is_composite(local_type) && btf_is_composite(targ_type))
> + return 1;
> + if (BTF_INFO_KIND(local_type->info) != BTF_INFO_KIND(targ_type->info))
> + return 0;
> +
> + kind = BTF_INFO_KIND(local_type->info);
> + switch (kind) {
> + case BTF_KIND_FWD:
> + case BTF_KIND_PTR:
> + return 1;
> + case BTF_KIND_ENUM:
> + return local_type->size == targ_type->size;
> + case BTF_KIND_INT: {
> + __u32 loc_int = *(__u32 *)(local_type + 1);
> + __u32 targ_int = *(__u32 *)(targ_type + 1);
> +
> + return BTF_INT_OFFSET(loc_int) == 0 &&
> + BTF_INT_OFFSET(targ_int) == 0 &&
> + local_type->size == targ_type->size &&
> + BTF_INT_BITS(loc_int) == BTF_INT_BITS(targ_int);
> + }
> + case BTF_KIND_ARRAY: {
> + const struct btf_array *loc_a, *targ_a;
> +
> + loc_a = (void *)(local_type + 1);
> + targ_a = (void *)(targ_type + 1);
> + local_id = loc_a->type;
> + targ_id = targ_a->type;
> + goto recur;
> + }
> + default:
> + pr_warning("unexpected kind %d relocated, local [%d], target [%d]\n",
> + kind, local_id, targ_id);
> + return 0;
> + }
> +}
> +
> +/*
> + * Given single high-level accessor (either named field or array index) in
> + * local type, find corresponding high-level accessor for a target type. Along
> + * the way, maintain low-level spec for target as well. Also keep updating
> + * target offset.
> + */
Please describe the recursive algorithm here. I am kinda lost.
Also, please document the meaning of zero, positive, negative return values.
> +static int bpf_core_match_member(const struct btf *local_btf,
> + const struct bpf_core_accessor *local_acc,
> + const struct btf *targ_btf,
> + __u32 targ_id,
> + struct bpf_core_spec *spec,
> + __u32 *next_targ_id)
> +{
> + const struct btf_type *local_type, *targ_type;
> + const struct btf_member *local_member, *m;
> + const char *local_name, *targ_name;
> + __u32 local_id;
> + int i, n, found;
> +
> + targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
> + if (!targ_type)
> + return -EINVAL;
> + if (!btf_is_composite(targ_type))
> + return 0;
> +
> + local_id = local_acc->type_id;
> + local_type = btf__type_by_id(local_btf, local_id);
> + local_member = (void *)(local_type + 1);
> + local_member += local_acc->idx;
> + local_name = btf__name_by_offset(local_btf, local_member->name_off);
> +
> + n = BTF_INFO_VLEN(targ_type->info);
> + m = (void *)(targ_type + 1);
> + for (i = 0; i < n; i++, m++) {
> + __u32 offset;
> +
> + /* bitfield relocations not supported */
> + if (BTF_INFO_KFLAG(targ_type->info)) {
> + if (BTF_MEMBER_BITFIELD_SIZE(m->offset))
> + continue;
> + offset = BTF_MEMBER_BIT_OFFSET(m->offset);
> + } else {
> + offset = m->offset;
> + }
> + if (offset % 8)
> + continue;
> +
> + /* too deep struct/union/array nesting */
> + if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
> + return -E2BIG;
> +
> + /* speculate this member will be the good one */
> + spec->offset += offset / 8;
> + spec->raw_spec[spec->raw_len++] = i;
> +
> + targ_name = btf__name_by_offset(targ_btf, m->name_off);
> + if (str_is_empty(targ_name)) {
> + /* embedded struct/union, we need to go deeper */
> + found = bpf_core_match_member(local_btf, local_acc,
> + targ_btf, m->type,
> + spec, next_targ_id);
> + if (found) /* either found or error */
> + return found;
> + } else if (strcmp(local_name, targ_name) == 0) {
> + /* matching named field */
> + struct bpf_core_accessor *targ_acc;
> +
> + targ_acc = &spec->spec[spec->len++];
> + targ_acc->type_id = targ_id;
> + targ_acc->idx = i;
> + targ_acc->name = targ_name;
> +
> + *next_targ_id = m->type;
> + found = bpf_core_fields_are_compat(local_btf,
> + local_member->type,
> + targ_btf, m->type);
> + if (!found)
> + spec->len--; /* pop accessor */
> + return found;
> + }
> + /* member turned out to be not we looked for */
> + spec->offset -= offset / 8;
> + spec->raw_len--;
> + }
> +
> + return 0;
> +}
> +
> +/*
> + * Try to match local spec to a target type and, if successful, produce full
> + * target spec (high-level, low-level + offset).
> + */
> +static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
> + const struct btf *targ_btf, __u32 targ_id,
> + struct bpf_core_spec *targ_spec)
> +{
> + const struct btf_type *targ_type;
> + const struct bpf_core_accessor *local_acc;
> + struct bpf_core_accessor *targ_acc;
> + int i, sz, matched;
> +
> + memset(targ_spec, 0, sizeof(*targ_spec));
> + targ_spec->btf = targ_btf;
> +
> + local_acc = &local_spec->spec[0];
> + targ_acc = &targ_spec->spec[0];
> +
> + for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
> + targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
> + &targ_id);
> + if (!targ_type)
> + return -EINVAL;
> +
> + if (local_acc->name) {
> + if (!btf_is_composite(targ_type))
> + return 0;
> +
> + matched = bpf_core_match_member(local_spec->btf,
> + local_acc,
> + targ_btf, targ_id,
> + targ_spec, &targ_id);
> + if (matched <= 0)
> + return matched;
> + } else {
> + /* for i=0, targ_id is already treated as array element
> + * type (because it's the original struct), for others
> + * we should find array element type first
> + */
> + if (i > 0) {
i == 0 case would go into "if (local_acc->name)" branch, no?
> + const struct btf_array *a;
> +
> + if (!btf_is_array(targ_type))
> + return 0;
> +
> + a = (void *)(targ_type + 1);
> + if (local_acc->idx >= a->nelems)
> + return 0;
> + if (!skip_mods_and_typedefs(targ_btf, a->type,
> + &targ_id))
> + return -EINVAL;
> + }
> +
> + /* too deep struct/union/array nesting */
> + if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
> + return -E2BIG;
> +
> + targ_acc->type_id = targ_id;
> + targ_acc->idx = local_acc->idx;
> + targ_acc->name = NULL;
> + targ_spec->len++;
> + targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
> + targ_spec->raw_len++;
> +
> + sz = btf__resolve_size(targ_btf, targ_id);
> + if (sz < 0)
> + return sz;
> + targ_spec->offset += local_acc->idx * sz;
> + }
> + }
> +
> + return 1;
> +}
> +
> +/*
> + * Patch relocatable BPF instruction.
> + * Expected insn->imm value is provided for validation, as well as the new
> + * relocated value.
> + *
> + * Currently three kinds of BPF instructions are supported:
> + * 1. rX = <imm> (assignment with immediate operand);
> + * 2. rX += <imm> (arithmetic operations with immediate operand);
> + * 3. *(rX) = <imm> (indirect memory assignment with immediate operand).
> + *
> + * If actual insn->imm value is wrong, bail out.
> + */
> +static int bpf_core_reloc_insn(struct bpf_program *prog, int insn_off,
> + __u32 orig_off, __u32 new_off)
> +{
> + struct bpf_insn *insn;
> + int insn_idx;
> + __u8 class;
> +
> + if (insn_off % sizeof(struct bpf_insn))
> + return -EINVAL;
> + insn_idx = insn_off / sizeof(struct bpf_insn);
> +
> + insn = &prog->insns[insn_idx];
> + class = BPF_CLASS(insn->code);
> +
> + if (class == BPF_ALU || class == BPF_ALU64) {
> + if (BPF_SRC(insn->code) != BPF_K)
> + return -EINVAL;
> + if (insn->imm != orig_off)
> + return -EINVAL;
> + insn->imm = new_off;
> + pr_debug("prog '%s': patched insn #%d (ALU/ALU64) imm %d -> %d\n",
> + bpf_program__title(prog, false),
> + insn_idx, orig_off, new_off);
> + } else if (class == BPF_ST && BPF_MODE(insn->code) == BPF_MEM) {
> + if (insn->imm != orig_off)
> + return -EINVAL;
> + insn->imm = new_off;
> + pr_debug("prog '%s': patched insn #%d (ST | MEM) imm %d -> %d\n",
> + bpf_program__title(prog, false),
> + insn_idx, orig_off, new_off);
> + } else {
> + pr_warning("prog '%s': trying to relocate unrecognized insn #%d, code:%x, src:%x, dst:%x, off:%x, imm:%x\n",
> + bpf_program__title(prog, false),
> + insn_idx, insn->code, insn->src_reg, insn->dst_reg,
> + insn->off, insn->imm);
> + return -EINVAL;
> + }
> + return 0;
> +}
> +
> +/*
> + * Probe few well-known locations for vmlinux kernel image and try to load BTF
> + * data out of it to use for target BTF.
> + */
> +static struct btf *bpf_core_find_kernel_btf(void)
> +{
> + const char *locations[] = {
> + "/lib/modules/%1$s/vmlinux-%1$s",
> + "/usr/lib/modules/%1$s/kernel/vmlinux",
> + };
> + char path[PATH_MAX + 1];
> + struct utsname buf;
> + struct btf *btf;
> + int i, err;
> +
> + err = uname(&buf);
> + if (err) {
> + pr_warning("failed to uname(): %d\n", err);
> + return ERR_PTR(err);
> + }
> +
> + for (i = 0; i < ARRAY_SIZE(locations); i++) {
> + snprintf(path, PATH_MAX, locations[i], buf.release);
> + pr_debug("attempting to load kernel BTF from '%s'\n", path);
> +
> + if (access(path, R_OK))
> + continue;
> +
> + btf = btf__parse_elf(path, NULL);
> + if (IS_ERR(btf))
> + continue;
> +
> + pr_debug("successfully loaded kernel BTF from '%s'\n", path);
> + return btf;
> + }
> +
> + pr_warning("failed to find valid kernel BTF\n");
> + return ERR_PTR(-ESRCH);
> +}
> +
> +static size_t bpf_core_hash_fn(const void *key, void *ctx)
> +{
> + return (size_t)key;
> +}
> +
> +static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
> +{
> + return k1 == k2;
> +}
> +
> +static void *u32_to_ptr(__u32 x)
> +{
> + return (void *)(uintptr_t)x;
> +}
> +
> +/*
> + * CO-RE relocate single instruction.
> + *
> + * The outline and important points of the algorithm:
> + * 1. For given local type, find corresponding candidate target types.
> + * Candidate type is a type with the same "essential" name, ignoring
> + * everything after last triple underscore (___). E.g., `sample`,
> + * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
> + * for each other. Names with triple underscore are referred to as
> + * "flavors" and are useful, among other things, to allow to
> + * specify/support incompatible variations of the same kernel struct, which
> + * might differ between different kernel versions and/or build
> + * configurations.
> + * 2. For each candidate type, try to match local specification to this
> + * candidate target type. Matching involves finding corresponding
> + * high-level spec accessors, meaning that all named fields should match,
> + * as well as all array accesses should be within the actual bounds. Also,
> + * types should be compatible (see bpf_core_fields_are_compat for details).
> + * 3. It is supported and expected that there might be multiple flavors
> + * matching the spec. As long as all the specs resolve to the same set of
> + * offsets across all candidates, there is not error. If there is any
> + * ambiguity, CO-RE relocation will fail. This is necessary to accomodate
> + * imprefection of BTF deduplication, which can cause slight duplication of
> + * the same BTF type, if some directly or indirectly referenced (by
> + * pointer) type gets resolved to different actual types in different
> + * object files. If such situation occurs, deduplicated BTF will end up
> + * with two (or more) structurally identical types, which differ only in
> + * types they refer to through pointer. This should be OK in most cases and
> + * is not an error.
> + * 4. Candidate types search is performed by linearly scanning through all
> + * types in target BTF. It is anticipated that this is overall more
> + * efficient memory-wise and not significantly worse (if not better)
> + * CPU-wise compared to prebuilding a map from all local type names to
> + * a list of candidate type names. It's also sped up by caching resolved
> + * list of matching candidates per each local "root" type ID, that has at
> + * least one bpf_offset_reloc associated with it. This list is shared
> + * between multiple relocations for the same type ID and is updated as some
> + * of the candidates are pruned due to structural incompatibility.
> + */
> +static int bpf_core_reloc_offset(struct bpf_program *prog,
> + const struct bpf_offset_reloc *relo,
> + int relo_idx,
> + const struct btf *local_btf,
> + const struct btf *targ_btf,
> + struct hashmap *cand_cache)
> +{
> + const char *prog_name = bpf_program__title(prog, false);
> + struct bpf_core_spec local_spec, cand_spec, targ_spec;
> + const void *type_key = u32_to_ptr(relo->type_id);
> + const struct btf_type *local_type, *cand_type;
> + const char *local_name, *cand_name;
> + struct ids_vec *cand_ids;
> + __u32 local_id, cand_id;
> + const char *spec_str;
> + int i, j, err;
> +
> + local_id = relo->type_id;
> + local_type = btf__type_by_id(local_btf, local_id);
> + if (!local_type)
> + return -EINVAL;
> +
> + local_name = btf__name_by_offset(local_btf, local_type->name_off);
> + if (str_is_empty(local_name))
> + return -EINVAL;
> +
> + spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
> + if (str_is_empty(spec_str))
> + return -EINVAL;
> +
> + pr_debug("prog '%s': relo #%d: insn_off=%d, [%d] (%s) + %s\n",
> + prog_name, relo_idx, relo->insn_off,
> + local_id, local_name, spec_str);
> +
> + err = bpf_core_spec_parse(local_btf, local_id, spec_str, &local_spec);
> + if (err) {
> + pr_warning("prog '%s': relo #%d: parsing [%d] (%s) + %s failed: %d\n",
> + prog_name, relo_idx, local_id, local_name, spec_str,
> + err);
> + return -EINVAL;
> + }
> + pr_debug("prog '%s': relo #%d: [%d] (%s) + %s is off %u, len %d, raw_len %d\n",
> + prog_name, relo_idx, local_id, local_name, spec_str,
> + local_spec.offset, local_spec.len, local_spec.raw_len);
> +
> + if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) {
> + cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf);
> + if (IS_ERR(cand_ids)) {
> + pr_warning("prog '%s': relo #%d: target candidate search failed for [%d] (%s) + %s: %ld\n",
> + prog_name, relo_idx, local_id, local_name,
> + spec_str, PTR_ERR(cand_ids));
> + return PTR_ERR(cand_ids);
> + }
> + err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL);
> + if (err) {
> + bpf_core_free_cands(cand_ids);
> + return err;
> + }
> + }
> +
> + for (i = 0, j = 0; i < cand_ids->len; i++) {
> + cand_id = cand_ids->data[j];
> + cand_type = btf__type_by_id(targ_btf, cand_id);
> + cand_name = btf__name_by_offset(targ_btf, cand_type->name_off);
> +
> + err = bpf_core_spec_match(&local_spec, targ_btf,
> + cand_id, &cand_spec);
> + if (err < 0) {
> + pr_warning("prog '%s': relo #%d: failed to match spec [%d] (%s) + %s to candidate #%d [%d] (%s): %d\n",
> + prog_name, relo_idx, local_id, local_name,
> + spec_str, i, cand_id, cand_name, err);
> + return err;
> + }
> + if (err == 0) {
> + pr_debug("prog '%s': relo #%d: candidate #%d [%d] (%s) doesn't match spec\n",
> + prog_name, relo_idx, i, cand_id, cand_name);
> + continue;
> + }
> +
> + pr_debug("prog '%s': relo #%d: candidate #%d ([%d] %s) is off %u, len %d, raw_len %d\n",
> + prog_name, relo_idx, i, cand_id, cand_name,
> + cand_spec.offset, cand_spec.len, cand_spec.raw_len);
> +
> + if (j == 0) {
> + targ_spec = cand_spec;
> + } else if (cand_spec.offset != targ_spec.offset) {
> + /* if there are many candidates, they should all
> + * resolve to the same offset
> + */
> + pr_warning("prog '%s': relo #%d: candidate #%d ([%d] %s): conflicting offset found (%u != %u)\n",
> + prog_name, relo_idx, i, cand_id, cand_name,
> + cand_spec.offset, targ_spec.offset);
> + return -EINVAL;
> + }
> +
> + cand_ids->data[j++] = cand_spec.spec[0].type_id;
> + }
> +
> + cand_ids->len = j;
> + if (cand_ids->len == 0) {
> + pr_warning("prog '%s': relo #%d: no matching targets found for [%d] (%s) + %s\n",
> + prog_name, relo_idx, local_id, local_name, spec_str);
> + return -ESRCH;
> + }
> +
> + err = bpf_core_reloc_insn(prog, relo->insn_off,
> + local_spec.offset, targ_spec.offset);
> + if (err) {
> + pr_warning("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n",
> + prog_name, relo_idx, relo->insn_off, err);
> + return -EINVAL;
> + }
> +
> + return 0;
> +}
> +
> +static int
> +bpf_core_reloc_offsets(struct bpf_object *obj, const char *targ_btf_path)
> +{
> + const struct btf_ext_info_sec *sec;
> + const struct bpf_offset_reloc *rec;
> + const struct btf_ext_info *seg;
> + struct hashmap_entry *entry;
> + struct hashmap *cand_cache = NULL;
> + struct bpf_program *prog;
> + struct btf *targ_btf;
> + const char *sec_name;
> + int i, err = 0;
> +
> + if (targ_btf_path)
> + targ_btf = btf__parse_elf(targ_btf_path, NULL);
> + else
> + targ_btf = bpf_core_find_kernel_btf();
> + if (IS_ERR(targ_btf)) {
> + pr_warning("failed to get target BTF: %ld\n",
> + PTR_ERR(targ_btf));
> + return PTR_ERR(targ_btf);
> + }
> +
> + cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
> + if (IS_ERR(cand_cache)) {
> + err = PTR_ERR(cand_cache);
> + goto out;
> + }
> +
> + seg = &obj->btf_ext->offset_reloc_info;
> + for_each_btf_ext_sec(seg, sec) {
> + sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
> + if (str_is_empty(sec_name)) {
> + err = -EINVAL;
> + goto out;
> + }
> + prog = bpf_object__find_program_by_title(obj, sec_name);
> + if (!prog) {
> + pr_warning("failed to find program '%s' for CO-RE offset relocation\n",
> + sec_name);
> + err = -EINVAL;
> + goto out;
> + }
> +
> + pr_debug("prog '%s': performing %d CO-RE offset relocs\n",
> + sec_name, sec->num_info);
> +
> + for_each_btf_ext_rec(seg, sec, i, rec) {
> + err = bpf_core_reloc_offset(prog, rec, i, obj->btf,
> + targ_btf, cand_cache);
> + if (err) {
> + pr_warning("prog '%s': relo #%d: failed to relocate: %d\n",
> + sec_name, i, err);
> + goto out;
> + }
> + }
> + }
> +
> +out:
> + btf__free(targ_btf);
> + if (!IS_ERR_OR_NULL(cand_cache)) {
> + hashmap__for_each_entry(cand_cache, entry, i) {
> + bpf_core_free_cands(entry->value);
> + }
> + hashmap__free(cand_cache);
> + }
> + return err;
> +}
> +
> +static int
> +bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
> +{
> + int err = 0;
> +
> + if (obj->btf_ext->offset_reloc_info.len)
> + err = bpf_core_reloc_offsets(obj, targ_btf_path);
> +
> + return err;
> +}
> +
> static int
> bpf_program__reloc_text(struct bpf_program *prog, struct bpf_object *obj,
> struct reloc_desc *relo)
> @@ -2396,14 +3243,21 @@ bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj)
> return 0;
> }
>
> -
> static int
> -bpf_object__relocate(struct bpf_object *obj)
> +bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
> {
> struct bpf_program *prog;
> size_t i;
> int err;
>
> + if (obj->btf_ext) {
> + err = bpf_object__relocate_core(obj, targ_btf_path);
> + if (err) {
> + pr_warning("failed to perform CO-RE relocations: %d\n",
> + err);
> + return err;
> + }
> + }
> for (i = 0; i < obj->nr_programs; i++) {
> prog = &obj->programs[i];
>
> @@ -2804,7 +3658,7 @@ int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
> obj->loaded = true;
>
> CHECK_ERR(bpf_object__create_maps(obj), err, out);
> - CHECK_ERR(bpf_object__relocate(obj), err, out);
> + CHECK_ERR(bpf_object__relocate(obj, attr->target_btf_path), err, out);
> CHECK_ERR(bpf_object__load_progs(obj, attr->log_level), err, out);
>
> return 0;
> diff --git a/tools/lib/bpf/libbpf.h b/tools/lib/bpf/libbpf.h
> index 5cbf459ece0b..6004bfe1ebf0 100644
> --- a/tools/lib/bpf/libbpf.h
> +++ b/tools/lib/bpf/libbpf.h
> @@ -92,6 +92,7 @@ LIBBPF_API void bpf_object__close(struct bpf_object *object);
> struct bpf_object_load_attr {
> struct bpf_object *obj;
> int log_level;
> + const char *target_btf_path;
> };
>
> /* Load/unload object into/from kernel */
> --
> 2.17.1
>
Powered by blists - more mailing lists