[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20191030224930.3990755-6-jhubbard@nvidia.com>
Date: Wed, 30 Oct 2019 15:49:16 -0700
From: John Hubbard <jhubbard@...dia.com>
To: Andrew Morton <akpm@...ux-foundation.org>
CC: Al Viro <viro@...iv.linux.org.uk>,
Alex Williamson <alex.williamson@...hat.com>,
Benjamin Herrenschmidt <benh@...nel.crashing.org>,
Björn Töpel <bjorn.topel@...el.com>,
Christoph Hellwig <hch@...radead.org>,
Dan Williams <dan.j.williams@...el.com>,
Daniel Vetter <daniel@...ll.ch>,
Dave Chinner <david@...morbit.com>,
David Airlie <airlied@...ux.ie>,
"David S . Miller" <davem@...emloft.net>,
Ira Weiny <ira.weiny@...el.com>, Jan Kara <jack@...e.cz>,
Jason Gunthorpe <jgg@...pe.ca>, Jens Axboe <axboe@...nel.dk>,
Jonathan Corbet <corbet@....net>,
Jérôme Glisse <jglisse@...hat.com>,
Magnus Karlsson <magnus.karlsson@...el.com>,
Mauro Carvalho Chehab <mchehab@...nel.org>,
Michael Ellerman <mpe@...erman.id.au>,
Michal Hocko <mhocko@...e.com>,
Mike Kravetz <mike.kravetz@...cle.com>,
Paul Mackerras <paulus@...ba.org>,
Shuah Khan <shuah@...nel.org>,
Vlastimil Babka <vbabka@...e.cz>, <bpf@...r.kernel.org>,
<dri-devel@...ts.freedesktop.org>, <kvm@...r.kernel.org>,
<linux-block@...r.kernel.org>, <linux-doc@...r.kernel.org>,
<linux-fsdevel@...r.kernel.org>, <linux-kselftest@...r.kernel.org>,
<linux-media@...r.kernel.org>, <linux-rdma@...r.kernel.org>,
<linuxppc-dev@...ts.ozlabs.org>, <netdev@...r.kernel.org>,
<linux-mm@...ck.org>, LKML <linux-kernel@...r.kernel.org>,
John Hubbard <jhubbard@...dia.com>
Subject: [PATCH 05/19] mm/gup: introduce pin_user_pages*() and FOLL_PIN
Introduce pin_user_pages*() variations of get_user_pages*() calls,
and also pin_longterm_pages*() variations.
These variants all set FOLL_PIN, which is also introduced, and
basically documented. (An upcoming patch provides more extensive
documentation.) The second set (pin_longterm*) also sets
FOLL_LONGTERM:
pin_user_pages()
pin_user_pages_remote()
pin_user_pages_fast()
pin_longterm_pages()
pin_longterm_pages_remote()
pin_longterm_pages_fast()
All pages that are pinned via the above calls, must be unpinned via
put_user_page().
The underlying rules are:
* These are gup-internal flags, so the call sites should not directly
set FOLL_PIN nor FOLL_LONGTERM. That behavior is enforced with
assertions, for the new FOLL_PIN flag. However, for the pre-existing
FOLL_LONGTERM flag, which has some call sites that still directly
set FOLL_LONGTERM, there is no assertion yet.
* Call sites that want to indicate that they are going to do DirectIO
("DIO") or something with similar characteristics, should call a
get_user_pages()-like wrapper call that sets FOLL_PIN. These wrappers
will:
* Start with "pin_user_pages" instead of "get_user_pages". That
makes it easy to find and audit the call sites.
* Set FOLL_PIN
* For pages that are received via FOLL_PIN, those pages must be returned
via put_user_page().
Signed-off-by: John Hubbard <jhubbard@...dia.com>
---
include/linux/mm.h | 53 ++++++++-
mm/gup.c | 284 +++++++++++++++++++++++++++++++++++++++++----
2 files changed, 311 insertions(+), 26 deletions(-)
diff --git a/include/linux/mm.h b/include/linux/mm.h
index cc292273e6ba..62c838a3e6c7 100644
--- a/include/linux/mm.h
+++ b/include/linux/mm.h
@@ -1526,9 +1526,23 @@ long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas, int *locked);
+long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
+ unsigned long start, unsigned long nr_pages,
+ unsigned int gup_flags, struct page **pages,
+ struct vm_area_struct **vmas, int *locked);
+long pin_longterm_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
+ unsigned long start, unsigned long nr_pages,
+ unsigned int gup_flags, struct page **pages,
+ struct vm_area_struct **vmas, int *locked);
long get_user_pages(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas);
+long pin_user_pages(unsigned long start, unsigned long nr_pages,
+ unsigned int gup_flags, struct page **pages,
+ struct vm_area_struct **vmas);
+long pin_longterm_pages(unsigned long start, unsigned long nr_pages,
+ unsigned int gup_flags, struct page **pages,
+ struct vm_area_struct **vmas);
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages, int *locked);
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
@@ -1536,6 +1550,10 @@ long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
int get_user_pages_fast(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages);
+int pin_user_pages_fast(unsigned long start, int nr_pages,
+ unsigned int gup_flags, struct page **pages);
+int pin_longterm_pages_fast(unsigned long start, int nr_pages,
+ unsigned int gup_flags, struct page **pages);
int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
@@ -2594,13 +2612,15 @@ struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
#define FOLL_ANON 0x8000 /* don't do file mappings */
#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
+#define FOLL_PIN 0x40000 /* pages must be released via put_user_page() */
/*
- * NOTE on FOLL_LONGTERM:
+ * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
+ * other. Here is what they mean, and how to use them:
*
* FOLL_LONGTERM indicates that the page will be held for an indefinite time
- * period _often_ under userspace control. This is contrasted with
- * iov_iter_get_pages() where usages which are transient.
+ * period _often_ under userspace control. This is in contrast to
+ * iov_iter_get_pages(), where usages which are transient.
*
* FIXME: For pages which are part of a filesystem, mappings are subject to the
* lifetime enforced by the filesystem and we need guarantees that longterm
@@ -2615,11 +2635,32 @@ struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
* Currently only get_user_pages() and get_user_pages_fast() support this flag
* and calls to get_user_pages_[un]locked are specifically not allowed. This
* is due to an incompatibility with the FS DAX check and
- * FAULT_FLAG_ALLOW_RETRY
+ * FAULT_FLAG_ALLOW_RETRY.
*
- * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
- * that region. And so CMA attempts to migrate the page before pinning when
+ * In the CMA case: long term pins in a CMA region would unnecessarily fragment
+ * that region. And so, CMA attempts to migrate the page before pinning, when
* FOLL_LONGTERM is specified.
+ *
+ * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
+ * but an additional pin counting system) will be invoked. This is intended for
+ * anything that gets a page reference and then touches page data (for example,
+ * Direct IO). This lets the filesystem know that some non-file-system entity is
+ * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
+ * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
+ * a call to put_user_page().
+ *
+ * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
+ * and separate refcounting mechanisms, however, and that means that each has
+ * its own acquire and release mechanisms:
+ *
+ * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
+ *
+ * FOLL_PIN: pin_user_pages*() or pin_longterm_pages*() to acquire, and
+ * put_user_pages to release.
+ *
+ * FOLL_PIN and FOLL_GET are mutually exclusive.
+ *
+ * Please see Documentation/vm/pin_user_pages.rst for more information.
*/
static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
diff --git a/mm/gup.c b/mm/gup.c
index 8fb0d9cdfaf5..8694bc7b3df3 100644
--- a/mm/gup.c
+++ b/mm/gup.c
@@ -179,6 +179,10 @@ static struct page *follow_page_pte(struct vm_area_struct *vma,
spinlock_t *ptl;
pte_t *ptep, pte;
+ /* FOLL_GET and FOLL_PIN are mutually exclusive. */
+ if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
+ (FOLL_PIN | FOLL_GET)))
+ return ERR_PTR(-EINVAL);
retry:
if (unlikely(pmd_bad(*pmd)))
return no_page_table(vma, flags);
@@ -790,7 +794,7 @@ static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
start = untagged_addr(start);
- VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
+ VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
/*
* If FOLL_FORCE is set then do not force a full fault as the hinting
@@ -1014,7 +1018,16 @@ static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
BUG_ON(*locked != 1);
}
- if (pages)
+ /*
+ * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
+ * is to set FOLL_GET if the caller wants pages[] filled in (but has
+ * carelessly failed to specify FOLL_GET), so keep doing that, but only
+ * for FOLL_GET, not for the newer FOLL_PIN.
+ *
+ * FOLL_PIN always expects pages to be non-null, but no need to assert
+ * that here, as any failures will be obvious enough.
+ */
+ if (pages && !(flags & FOLL_PIN))
flags |= FOLL_GET;
pages_done = 0;
@@ -1133,6 +1146,12 @@ static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
* is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
* be called after the page is finished with, and before put_page is called.
*
+ * A note on gup_flags: FOLL_PIN must only be set internally by the
+ * pin_user_page*() and pin_longterm_*() APIs, never directly by the caller.
+ * That's in order to help avoid mismatches when releasing pages:
+ * get_user_pages*() pages must be released via put_page(), while
+ * pin_user_pages*() pages must be released via put_user_page().
+ *
* get_user_pages is typically used for fewer-copy IO operations, to get a
* handle on the memory by some means other than accesses via the user virtual
* addresses. The pages may be submitted for DMA to devices or accessed via
@@ -1151,6 +1170,14 @@ long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas, int *locked)
{
+ /*
+ * As detailed above, FOLL_PIN must only be set internally by the
+ * pin_user_page*() and pin_longterm_*() APIs, never directly by the
+ * caller, so enforce that with an assertion:
+ */
+ if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
+ return -EINVAL;
+
/*
* FIXME: Current FOLL_LONGTERM behavior is incompatible with
* FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
@@ -1603,11 +1630,25 @@ static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
* and mm being operated on are the current task's and don't allow
* passing of a locked parameter. We also obviously don't pass
* FOLL_REMOTE in here.
+ *
+ * A note on gup_flags: FOLL_PIN should only be set internally by the
+ * pin_user_page*() and pin_longterm_*() APIs, never directly by the caller.
+ * That's in order to help avoid mismatches when releasing pages:
+ * get_user_pages*() pages must be released via put_page(), while
+ * pin_user_pages*() pages must be released via put_user_page().
*/
long get_user_pages(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas)
{
+ /*
+ * As detailed above, FOLL_PIN must only be set internally by the
+ * pin_user_page*() and pin_longterm_*() APIs, never directly by the
+ * caller, so enforce that with an assertion:
+ */
+ if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
+ return -EINVAL;
+
return __gup_longterm_locked(current, current->mm, start, nr_pages,
pages, vmas, gup_flags | FOLL_TOUCH);
}
@@ -2366,24 +2407,9 @@ static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
return ret;
}
-/**
- * get_user_pages_fast() - pin user pages in memory
- * @start: starting user address
- * @nr_pages: number of pages from start to pin
- * @gup_flags: flags modifying pin behaviour
- * @pages: array that receives pointers to the pages pinned.
- * Should be at least nr_pages long.
- *
- * Attempt to pin user pages in memory without taking mm->mmap_sem.
- * If not successful, it will fall back to taking the lock and
- * calling get_user_pages().
- *
- * Returns number of pages pinned. This may be fewer than the number
- * requested. If nr_pages is 0 or negative, returns 0. If no pages
- * were pinned, returns -errno.
- */
-int get_user_pages_fast(unsigned long start, int nr_pages,
- unsigned int gup_flags, struct page **pages)
+static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
+ unsigned int gup_flags,
+ struct page **pages)
{
unsigned long addr, len, end;
int nr = 0, ret = 0;
@@ -2428,4 +2454,222 @@ int get_user_pages_fast(unsigned long start, int nr_pages,
return ret;
}
+
+/**
+ * get_user_pages_fast() - pin user pages in memory
+ * @start: starting user address
+ * @nr_pages: number of pages from start to pin
+ * @gup_flags: flags modifying pin behaviour
+ * @pages: array that receives pointers to the pages pinned.
+ * Should be at least nr_pages long.
+ *
+ * Attempt to pin user pages in memory without taking mm->mmap_sem.
+ * If not successful, it will fall back to taking the lock and
+ * calling get_user_pages().
+ *
+ * A note on gup_flags: FOLL_PIN must only be set internally by the
+ * pin_user_page*() and pin_longterm_*() APIs, never directly by the caller.
+ * That's in order to help avoid mismatches when releasing pages:
+ * get_user_pages*() pages must be released via put_page(), while
+ * pin_user_pages*() pages must be released via put_user_page().
+ *
+ * Returns number of pages pinned. This may be fewer than the number requested.
+ * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
+ * -errno.
+ */
+int get_user_pages_fast(unsigned long start, int nr_pages,
+ unsigned int gup_flags, struct page **pages)
+{
+ /*
+ * As detailed above, FOLL_PIN must only be set internally by the
+ * pin_user_page*() and pin_longterm_*() APIs, never directly by the
+ * caller, so enforce that:
+ */
+ if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
+ return -EINVAL;
+
+ return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
+}
EXPORT_SYMBOL_GPL(get_user_pages_fast);
+
+/**
+ * pin_user_pages_fast() - pin user pages in memory without taking locks
+ *
+ * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
+ * get_user_pages_fast() for documentation on the function arguments, because
+ * the arguments here are identical.
+ *
+ * FOLL_PIN means that the pages must be released via put_user_page(). Please
+ * see Documentation/vm/pin_user_pages.rst for further details.
+ *
+ * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
+ * is NOT intended for Case 2 (RDMA: long-term pins).
+ */
+int pin_user_pages_fast(unsigned long start, int nr_pages,
+ unsigned int gup_flags, struct page **pages)
+{
+ /* FOLL_GET and FOLL_PIN are mutually exclusive. */
+ if (WARN_ON_ONCE(gup_flags & FOLL_GET))
+ return -EINVAL;
+
+ gup_flags |= FOLL_PIN;
+ return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
+}
+EXPORT_SYMBOL_GPL(pin_user_pages_fast);
+
+/**
+ * pin_longterm_pages_fast() - pin user pages in memory without taking locks
+ *
+ * Nearly the same as get_user_pages_fast(), except that FOLL_PIN and
+ * FOLL_LONGTERM are set. See get_user_pages_fast() for documentation on the
+ * function arguments, because the arguments here are identical.
+ *
+ * FOLL_PIN means that the pages must be released via put_user_page(). Please
+ * see Documentation/vm/pin_user_pages.rst for further details.
+ *
+ * FOLL_LONGTERM means that the pages are being pinned for "long term" use,
+ * typically by a non-CPU device, and we cannot be sure that waiting for a
+ * pinned page to become unpin will be effective.
+ *
+ * This is intended for Case 2 (RDMA: long-term pins) of the FOLL_PIN
+ * documentation.
+ */
+int pin_longterm_pages_fast(unsigned long start, int nr_pages,
+ unsigned int gup_flags, struct page **pages)
+{
+ /* FOLL_GET and FOLL_PIN are mutually exclusive. */
+ if (WARN_ON_ONCE(gup_flags & FOLL_GET))
+ return -EINVAL;
+
+ gup_flags |= (FOLL_PIN | FOLL_LONGTERM);
+ return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
+}
+EXPORT_SYMBOL_GPL(pin_longterm_pages_fast);
+
+/**
+ * pin_user_pages_remote() - pin pages for (typically) use by Direct IO, and
+ * return the pages to the user.
+ *
+ * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
+ * get_user_pages_remote() for documentation on the function arguments, because
+ * the arguments here are identical.
+ *
+ * FOLL_PIN means that the pages must be released via put_user_page(). Please
+ * see Documentation/vm/pin_user_pages.rst for details.
+ *
+ * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
+ * is NOT intended for Case 2 (RDMA: long-term pins).
+ */
+long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
+ unsigned long start, unsigned long nr_pages,
+ unsigned int gup_flags, struct page **pages,
+ struct vm_area_struct **vmas, int *locked)
+{
+ /* FOLL_GET and FOLL_PIN are mutually exclusive. */
+ if (WARN_ON_ONCE(gup_flags & FOLL_GET))
+ return -EINVAL;
+
+ gup_flags |= FOLL_TOUCH | FOLL_REMOTE | FOLL_PIN;
+
+ return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
+ locked, gup_flags);
+}
+EXPORT_SYMBOL(pin_user_pages_remote);
+
+/**
+ * pin_longterm_pages_remote() - pin pages for (typically) use by Direct IO, and
+ * return the pages to the user.
+ *
+ * Nearly the same as get_user_pages_remote(), but note that FOLL_TOUCH is not
+ * set, and FOLL_PIN and FOLL_LONGTERM are set. See get_user_pages_remote() for
+ * documentation on the function arguments, because the arguments here are
+ * identical.
+ *
+ * FOLL_PIN means that the pages must be released via put_user_page(). Please
+ * see Documentation/vm/pin_user_pages.rst for further details.
+ *
+ * FOLL_LONGTERM means that the pages are being pinned for "long term" use,
+ * typically by a non-CPU device, and we cannot be sure that waiting for a
+ * pinned page to become unpin will be effective.
+ *
+ * This is intended for Case 2 (RDMA: long-term pins) in
+ * Documentation/vm/pin_user_pages.rst.
+ */
+long pin_longterm_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
+ unsigned long start, unsigned long nr_pages,
+ unsigned int gup_flags, struct page **pages,
+ struct vm_area_struct **vmas, int *locked)
+{
+ /* FOLL_GET and FOLL_PIN are mutually exclusive. */
+ if (WARN_ON_ONCE(gup_flags & FOLL_GET))
+ return -EINVAL;
+
+ /*
+ * FIXME: as noted in the get_user_pages_remote() implementation, it
+ * is not yet possible to safely set FOLL_LONGTERM here. FOLL_LONGTERM
+ * needs to be set, but for now the best we can do is a "TODO" item.
+ */
+ gup_flags |= FOLL_REMOTE | FOLL_PIN;
+
+ return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
+ locked, gup_flags);
+}
+EXPORT_SYMBOL(pin_longterm_pages_remote);
+
+/**
+ * pin_user_pages() - pin user pages in memory for use by other devices
+ *
+ * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
+ * FOLL_PIN is set.
+ *
+ * FOLL_PIN means that the pages must be released via put_user_page(). Please
+ * see Documentation/vm/pin_user_pages.rst for details.
+ *
+ * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
+ * is NOT intended for Case 2 (RDMA: long-term pins).
+ */
+long pin_user_pages(unsigned long start, unsigned long nr_pages,
+ unsigned int gup_flags, struct page **pages,
+ struct vm_area_struct **vmas)
+{
+ /* FOLL_GET and FOLL_PIN are mutually exclusive. */
+ if (WARN_ON_ONCE(gup_flags & FOLL_GET))
+ return -EINVAL;
+
+ gup_flags |= FOLL_PIN;
+ return __gup_longterm_locked(current, current->mm, start, nr_pages,
+ pages, vmas, gup_flags);
+}
+EXPORT_SYMBOL(pin_user_pages);
+
+/**
+ * pin_longterm_pages() - pin user pages in memory for long-term use (RDMA,
+ * typically)
+ *
+ * Nearly the same as get_user_pages(), except that FOLL_PIN and FOLL_LONGTERM
+ * are set. See get_user_pages_fast() for documentation on the function
+ * arguments, because the arguments here are identical.
+ *
+ * FOLL_PIN means that the pages must be released via put_user_page(). Please
+ * see Documentation/vm/pin_user_pages.rst for further details.
+ *
+ * FOLL_LONGTERM means that the pages are being pinned for "long term" use,
+ * typically by a non-CPU device, and we cannot be sure that waiting for a
+ * pinned page to become unpin will be effective.
+ *
+ * This is intended for Case 2 (RDMA: long-term pins) in
+ * Documentation/vm/pin_user_pages.rst.
+ */
+long pin_longterm_pages(unsigned long start, unsigned long nr_pages,
+ unsigned int gup_flags, struct page **pages,
+ struct vm_area_struct **vmas)
+{
+ /* FOLL_GET and FOLL_PIN are mutually exclusive. */
+ if (WARN_ON_ONCE(gup_flags & FOLL_GET))
+ return -EINVAL;
+
+ gup_flags |= FOLL_PIN | FOLL_LONGTERM;
+ return __gup_longterm_locked(current, current->mm, start, nr_pages,
+ pages, vmas, gup_flags);
+}
+EXPORT_SYMBOL(pin_longterm_pages);
--
2.23.0
Powered by blists - more mailing lists