lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  PHC 
Open Source and information security mailing list archives
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Mon, 27 Jan 2020 18:35:30 +0530
Cc:,,,, Sunil Goutham <>
Subject: [PATCH v6 16/17] Documentation: net: octeontx2: Add RVU HW and drivers overview

From: Sunil Goutham <>

Added high level overview of OcteonTx2 RVU HW and functionality of
various drivers which will be upstreamed.

Signed-off-by: Sunil Goutham <>
 Documentation/networking/device_drivers/index.rst  |   1 +
 .../device_drivers/marvell/octeontx2.rst           | 159 +++++++++++++++++++++
 MAINTAINERS                                        |   1 +
 3 files changed, 161 insertions(+)
 create mode 100644 Documentation/networking/device_drivers/marvell/octeontx2.rst

diff --git a/Documentation/networking/device_drivers/index.rst b/Documentation/networking/device_drivers/index.rst
index 4bc6ff2..a191faa 100644
--- a/Documentation/networking/device_drivers/index.rst
+++ b/Documentation/networking/device_drivers/index.rst
@@ -22,6 +22,7 @@ Contents:
+   marvell/octeontx2
diff --git a/Documentation/networking/device_drivers/marvell/octeontx2.rst b/Documentation/networking/device_drivers/marvell/octeontx2.rst
new file mode 100644
index 0000000..88f5083
--- /dev/null
+++ b/Documentation/networking/device_drivers/marvell/octeontx2.rst
@@ -0,0 +1,159 @@
+.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+Marvell OcteonTx2 RVU Kernel Drivers
+Copyright (c) 2020 Marvell International Ltd.
+- `Overview`_
+- `Drivers`_
+- `Basic packet flow`_
+Resource virtualization unit (RVU) on Marvell's OcteonTX2 SOC maps HW
+resources from the network, crypto and other functional blocks into
+PCI-compatible physical and virtual functions. Each functional block
+again has multiple local functions (LFs) for provisioning to PCI devices.
+RVU supports multiple PCIe SRIOV physical functions (PFs) and virtual
+functions (VFs). PF0 is called the administrative / admin function (AF)
+and has privileges to provision RVU functional block's LFs to each of the
+RVU managed networking functional blocks
+ - Network pool or buffer allocator (NPA)
+ - Network interface controller (NIX)
+ - Network parser CAM (NPC)
+ - Schedule/Synchronize/Order unit (SSO)
+ - Loopback interface (LBK)
+RVU managed non-networking functional blocks
+ - Crypto accelerator (CPT)
+ - Scheduled timers unit (TIM)
+ - Schedule/Synchronize/Order unit (SSO)
+   Used for both networking and non networking usecases
+Resource provisioning examples
+ - A PF/VF with NIX-LF & NPA-LF resources works as a pure network device
+ - A PF/VF with CPT-LF resource works as a pure crypto offload device.
+RVU functional blocks are highly configurable as per software requirements.
+Firmware setups following stuff before kernel boots
+ - Enables required number of RVU PFs based on number of physical links.
+ - Number of VFs per PF are either static or configurable at compile time.
+   Based on config, firmware assigns VFs to each of the PFs.
+ - Also assigns MSIX vectors to each of PF and VFs.
+ - These are not changed after kernel boot.
+Linux kernel will have multiple drivers registering to different PF and VFs
+of RVU. Wrt networking there will be 3 flavours of drivers.
+Admin Function driver
+As mentioned above RVU PF0 is called the admin function (AF), this driver
+supports resource provisioning and configuration of functional blocks.
+Doesn't handle any I/O. It sets up few basic stuff but most of the
+funcionality is achieved via configuration requests from PFs and VFs.
+PF/VFs communicates with AF via a shared memory region (mailbox). Upon
+receiving requests AF does resource provisioning and other HW configuration.
+AF is always attached to host kernel, but PFs and their VFs may be used by host
+kernel itself, or attached to VMs or to userspace applications like
+DPDK etc. So AF has to handle provisioning/configuration requests sent
+by any device from any domain.
+AF driver also interacts with underlying firmware to
+ - Manage physical ethernet links ie CGX LMACs.
+ - Retrieve information like speed, duplex, autoneg etc
+ - Retrieve PHY EEPROM and stats.
+ - Configure FEC, PAM modes
+ - etc
+From pure networking side AF driver supports following functionality.
+ - Map a physical link to a RVU PF to which a netdev is registered.
+ - Attach NIX and NPA block LFs to RVU PF/VF which provide buffer pools, RQs, SQs
+   for regular networking functionality.
+ - Flow control (pause frames) enable/disable/config.
+ - HW PTP timestamping related config.
+ - NPC parser profile config, basically how to parse pkt and what info to extract.
+ - NPC extract profile config, what to extract from the pkt to match data in MCAM entries.
+ - Manage NPC MCAM entries, upon request can frame and install requested packet forwarding rules.
+ - Defines receive side scaling (RSS) algorithms.
+ - Defines segmentation offload algorithms (eg TSO)
+ - VLAN stripping, capture and insertion config.
+ - SSO and TIM blocks config which provide packet scheduling support.
+ - Debugfs support, to check current resource provising, current status of
+   NPA pools, NIX RQ, SQ and CQs, various stats etc which helps in debugging issues.
+ - And many more.
+Physical Function driver
+This RVU PF handles IO, is mapped to a physical ethernet link and this
+driver registers a netdev. This supports SR-IOV. As said above this driver
+communicates with AF with a mailbox. To retrieve information from physical
+links this driver talks to AF and AF gets that info from firmware and responds
+back ie cannot talk to firmware directly.
+Supports ethtool for configuring links, RSS, queue count, queue size,
+flow control, ntuple filters, dump PHY EEPROM, config FEC etc.
+Virtual Function driver
+There are two types VFs, VFs that share the physical link with their parent
+SR-IOV PF and the VFs which work in pairs using internal HW loopback channels (LBK).
+ - These VFs and their parent PF share a physical link and used for outside communication.
+ - VFs cannot communicate with AF directly, they send mbox message to PF and PF
+   forwards that to AF. AF after processing, responds back to PF and PF forwards
+   the reply to VF.
+ - From functionality point of view there is no difference between PF and VF as same type
+   HW resources are attached to both. But user would be able to configure few stuff only
+   from PF as PF is treated as owner/admin of the link.
+ - RVU PF0 ie admin function creates these VFs and maps them to loopback block's channels.
+ - A set of two VFs (VF0 & VF1, VF2 & VF3 .. so on) works as a pair ie pkts sent out of
+   VF0 will be received by VF1 and viceversa.
+ - These VFs can be used by applications or virtual machines to communicate between them
+   without sending traffic outside. There is no switch present in HW, hence the support
+   for loopback VFs.
+ - These communicate directly with AF (PF0) via mbox.
+Except for the IO channels or links used for packet reception and transmission there is
+no other difference between these VF types. AF driver takes care of IO channel mapping,
+hence same VF driver works for both types of devices.
+Basic packet flow
+1. CGX LMAC receives packet.
+2. Forwards the packet to the NIX block.
+3. Then submitted to NPC block for parsing and then MCAM lookup to get the destination RVU device.
+4. NIX LF attached to the destination RVU device allocates a buffer from RQ mapped buffer pool of NPA block LF.
+5. RQ may be selected by RSS or by configuring MCAM rule with a RQ number.
+6. Packet is DMA'ed and driver is notified.
+1. Driver prepares a send descriptor and submits to SQ for transmission.
+2. The SQ is already configured (by AF) to transmit on a specific link/channel.
+3. The SQ descriptor ring is maintained in buffers allocated from SQ mapped pool of NPA block LF.
+4. NIX block transmits the pkt on the designated channel.
+5. NPC MCAM entries can be installed to divert pkt onto a different channel.
index 31084bd..681ba1d 100644
@@ -10000,6 +10000,7 @@ M:	Jerin Jacob <>
 S:	Supported
 F:	drivers/net/ethernet/marvell/octeontx2/af/
+F:	Documentation/networking/device_drivers/marvell/octeontx2.rst

Powered by blists - more mailing lists