[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <1b9b3c40-f933-59c3-09e6-aa6c3dda438f@nvidia.com>
Date: Wed, 3 Nov 2021 16:02:54 +0200
From: Maxim Mikityanskiy <maximmi@...dia.com>
To: Yonghong Song <yhs@...com>
CC: Toke Høiland-Jørgensen <toke@...hat.com>,
"Lorenz Bauer" <lmb@...udflare.com>,
Alexei Starovoitov <ast@...nel.org>,
"Daniel Borkmann" <daniel@...earbox.net>,
Andrii Nakryiko <andrii@...nel.org>,
"Martin KaFai Lau" <kafai@...com>,
Song Liu <songliubraving@...com>,
John Fastabend <john.fastabend@...il.com>,
KP Singh <kpsingh@...nel.org>,
Eric Dumazet <edumazet@...gle.com>,
"David S. Miller" <davem@...emloft.net>,
"Jakub Kicinski" <kuba@...nel.org>,
Hideaki YOSHIFUJI <yoshfuji@...ux-ipv6.org>,
David Ahern <dsahern@...nel.org>,
Jesper Dangaard Brouer <hawk@...nel.org>,
Nathan Chancellor <nathan@...nel.org>,
Nick Desaulniers <ndesaulniers@...gle.com>,
Brendan Jackman <jackmanb@...gle.com>,
"Florent Revest" <revest@...omium.org>,
Joe Stringer <joe@...ium.io>, Tariq Toukan <tariqt@...dia.com>,
Networking <netdev@...r.kernel.org>, bpf <bpf@...r.kernel.org>,
<clang-built-linux@...glegroups.com>
Subject: Re: [PATCH bpf-next 09/10] bpf: Add a helper to issue timestamp
cookies in XDP
On 2021-11-03 04:10, Yonghong Song wrote:
>
>
> On 11/1/21 4:14 AM, Maxim Mikityanskiy wrote:
>> On 2021-10-20 19:16, Toke Høiland-Jørgensen wrote:
>>> Lorenz Bauer <lmb@...udflare.com> writes:
>>>
>>>>> +bool cookie_init_timestamp_raw(struct tcphdr *th, __be32 *tsval,
>>>>> __be32 *tsecr)
>>>>
>>>> I'm probably missing context, Is there something in this function that
>>>> means you can't implement it in BPF?
>>>
>>> I was about to reply with some other comments but upon closer inspection
>>> I ended up at the same conclusion: this helper doesn't seem to be needed
>>> at all?
>>
>> After trying to put this code into BPF (replacing the underlying
>> ktime_get_ns with ktime_get_mono_fast_ns), I experienced issues with
>> passing the verifier.
>>
>> In addition to comparing ptr to end, I had to add checks that compare
>> ptr to data_end, because the verifier can't deduce that end <=
>> data_end. More branches will add a certain slowdown (not measured).
>>
>> A more serious issue is the overall program complexity. Even though
>> the loop over the TCP options has an upper bound, and the pointer
>> advances by at least one byte every iteration, I had to limit the
>> total number of iterations artificially. The maximum number of
>> iterations that makes the verifier happy is 10. With more iterations,
>> I have the following error:
>>
>> BPF program is too large. Processed 1000001 insn
>>
>> processed 1000001 insns (limit 1000000)
>> max_states_per_insn 29 total_states 35489 peak_states 596 mark_read 45
>>
>> I assume that BPF_COMPLEXITY_LIMIT_INSNS (1 million) is the
>> accumulated amount of instructions that the verifier can process in
>> all branches, is that right? It doesn't look realistic that my program
>> can run 1 million instructions in a single run, but it might be that
>> if you take all possible flows and add up the instructions from these
>> flows, it will exceed 1 million.
>>
>> The limitation of maximum 10 TCP options might be not enough, given
>> that valid packets are permitted to include more than 10 NOPs. An
>> alternative of using bpf_load_hdr_opt and calling it three times
>> doesn't look good either, because it will be about three times slower
>> than going over the options once. So maybe having a helper for that is
>> better than trying to fit it into BPF?
>>
>> One more interesting fact is the time that it takes for the verifier
>> to check my program. If it's limited to 10 iterations, it does it
>> pretty fast, but if I try to increase the number to 11 iterations, it
>> takes several minutes for the verifier to reach 1 million instructions
>> and print the error then. I also tried grouping the NOPs in an inner
>> loop to count only 10 real options, and the verifier has been running
>> for a few hours without any response. Is it normal?
>
> Maxim, this may expose a verifier bug. Do you have a reproducer I can
> access? I would like to debug this to see what is the root case. Thanks!
Thanks, I appreciate your help in debugging it. The reproducer is based
on the modified XDP program from patch 10 in this series. You'll need to
apply at least patches 6, 7, 8 from this series to get new BPF helpers
needed for the XDP program (tell me if that's a problem, I can try to
remove usage of new helpers, but it will affect the program length and
may produce different results in the verifier).
See the C code of the program that passes the verifier (compiled with
clang version 12.0.0-1ubuntu1) in the bottom of this email. If you
increase the loop boundary from 10 to at least 11 in
cookie_init_timestamp_raw(), it fails the verifier after a few minutes.
If you apply this tiny change, it fails the verifier after about 3 hours:
--- a/samples/bpf/syncookie_kern.c
+++ b/samples/bpf/syncookie_kern.c
@@ -167,6 +167,7 @@ static __always_inline bool cookie_init_
for (i = 0; i < 10; i++) {
u8 opcode, opsize;
+skip_nop:
if (ptr >= end)
break;
if (ptr + 1 > data_end)
@@ -178,7 +179,7 @@ static __always_inline bool cookie_init_
break;
if (opcode == TCPOPT_NOP) {
++ptr;
- continue;
+ goto skip_nop;
}
if (ptr + 1 >= end)
--cut--
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
/* Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights
reserved. */
#include <stdbool.h>
#include <stddef.h>
#include <uapi/linux/errno.h>
#include <uapi/linux/bpf.h>
#include <uapi/linux/pkt_cls.h>
#include <uapi/linux/if_ether.h>
#include <uapi/linux/in.h>
#include <uapi/linux/ip.h>
#include <uapi/linux/ipv6.h>
#include <uapi/linux/tcp.h>
#include <uapi/linux/netfilter/nf_conntrack_common.h>
#include <linux/minmax.h>
#include <vdso/time64.h>
#include <asm/unaligned.h>
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_endian.h>
#define DEFAULT_MSS4 1460
#define DEFAULT_MSS6 1440
#define DEFAULT_WSCALE 7
#define DEFAULT_TTL 64
#define MAX_ALLOWED_PORTS 8
struct bpf_map_def SEC("maps") values = {
.type = BPF_MAP_TYPE_ARRAY,
.key_size = sizeof(__u32),
.value_size = sizeof(__u64),
.max_entries = 2,
};
struct bpf_map_def SEC("maps") allowed_ports = {
.type = BPF_MAP_TYPE_ARRAY,
.key_size = sizeof(__u32),
.value_size = sizeof(__u16),
.max_entries = MAX_ALLOWED_PORTS,
};
#define IP_DF 0x4000
#define IP_MF 0x2000
#define IP_OFFSET 0x1fff
#define NEXTHDR_TCP 6
#define TCPOPT_NOP 1
#define TCPOPT_EOL 0
#define TCPOPT_MSS 2
#define TCPOPT_WINDOW 3
#define TCPOPT_SACK_PERM 4
#define TCPOPT_TIMESTAMP 8
#define TCPOLEN_MSS 4
#define TCPOLEN_WINDOW 3
#define TCPOLEN_SACK_PERM 2
#define TCPOLEN_TIMESTAMP 10
#define TCP_MAX_WSCALE 14U
#define TS_OPT_WSCALE_MASK 0xf
#define TS_OPT_SACK BIT(4)
#define TS_OPT_ECN BIT(5)
#define TSBITS 6
#define TSMASK (((__u32)1 << TSBITS) - 1)
#define TCP_TS_HZ 1000
#define IPV4_MAXLEN 60
#define TCP_MAXLEN 60
static __always_inline void swap_eth_addr(__u8 *a, __u8 *b)
{
__u8 tmp[ETH_ALEN];
__builtin_memcpy(tmp, a, ETH_ALEN);
__builtin_memcpy(a, b, ETH_ALEN);
__builtin_memcpy(b, tmp, ETH_ALEN);
}
static __always_inline __u16 csum_fold(__u32 csum)
{
csum = (csum & 0xffff) + (csum >> 16);
csum = (csum & 0xffff) + (csum >> 16);
return (__u16)~csum;
}
static __always_inline __u16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
__u32 len, __u8 proto,
__u32 csum)
{
__u64 s = csum;
s += (__u32)saddr;
s += (__u32)daddr;
#if defined(__BIG_ENDIAN__)
s += proto + len;
#elif defined(__LITTLE_ENDIAN__)
s += (proto + len) << 8;
#else
#error Unknown endian
#endif
s = (s & 0xffffffff) + (s >> 32);
s = (s & 0xffffffff) + (s >> 32);
return csum_fold((__u32)s);
}
static __always_inline __u16 csum_ipv6_magic(const struct in6_addr *saddr,
const struct in6_addr *daddr,
__u32 len, __u8 proto, __u32 csum)
{
__u64 sum = csum;
int i;
#pragma unroll
for (i = 0; i < 4; i++)
sum += (__u32)saddr->s6_addr32[i];
#pragma unroll
for (i = 0; i < 4; i++)
sum += (__u32)daddr->s6_addr32[i];
// Don't combine additions to avoid 32-bit overflow.
sum += bpf_htonl(len);
sum += bpf_htonl(proto);
sum = (sum & 0xffffffff) + (sum >> 32);
sum = (sum & 0xffffffff) + (sum >> 32);
return csum_fold((__u32)sum);
}
static __always_inline u64 tcp_clock_ns(void)
{
return bpf_ktime_get_ns();
}
static __always_inline __u32 tcp_ns_to_ts(__u64 ns)
{
return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
}
static __always_inline __u32 tcp_time_stamp_raw(void)
{
return tcp_ns_to_ts(tcp_clock_ns());
}
static __always_inline bool cookie_init_timestamp_raw(struct tcphdr
*tcp_header,
__u16 tcp_len,
__be32 *tsval,
__be32 *tsecr,
void *data_end)
{
u8 wscale = TS_OPT_WSCALE_MASK;
bool option_timestamp = false;
bool option_sack = false;
u8 *ptr, *end;
u32 cookie;
int i;
ptr = (u8 *)(tcp_header + 1);
end = (u8 *)tcp_header + tcp_len;
for (i = 0; i < 10; i++) {
u8 opcode, opsize;
if (ptr >= end)
break;
if (ptr + 1 > data_end)
return false;
opcode = ptr[0];
if (opcode == TCPOPT_EOL)
break;
if (opcode == TCPOPT_NOP) {
++ptr;
continue;
}
if (ptr + 1 >= end)
break;
if (ptr + 2 > data_end)
return false;
opsize = ptr[1];
if (opsize < 2)
break;
if (ptr + opsize > end)
break;
switch (opcode) {
case TCPOPT_WINDOW:
if (opsize == TCPOLEN_WINDOW) {
if (ptr + TCPOLEN_WINDOW > data_end)
return false;
wscale = min_t(u8, ptr[2], TCP_MAX_WSCALE);
}
break;
case TCPOPT_TIMESTAMP:
if (opsize == TCPOLEN_TIMESTAMP) {
if (ptr + TCPOLEN_TIMESTAMP > data_end)
return false;
option_timestamp = true;
/* Client's tsval becomes our tsecr. */
*tsecr = get_unaligned((__be32 *)(ptr + 2));
}
break;
case TCPOPT_SACK_PERM:
if (opsize == TCPOLEN_SACK_PERM)
option_sack = true;
break;
}
ptr += opsize;
}
if (!option_timestamp)
return false;
cookie = tcp_time_stamp_raw() & ~TSMASK;
cookie |= wscale & TS_OPT_WSCALE_MASK;
if (option_sack)
cookie |= TS_OPT_SACK;
if (tcp_header->ece && tcp_header->cwr)
cookie |= TS_OPT_ECN;
*tsval = cpu_to_be32(cookie);
return true;
}
static __always_inline void values_get_tcpipopts(__u16 *mss, __u8 *wscale,
__u8 *ttl, bool ipv6)
{
__u32 key = 0;
__u64 *value;
value = bpf_map_lookup_elem(&values, &key);
if (value && *value != 0) {
if (ipv6)
*mss = (*value >> 32) & 0xffff;
else
*mss = *value & 0xffff;
*wscale = (*value >> 16) & 0xf;
*ttl = (*value >> 24) & 0xff;
return;
}
*mss = ipv6 ? DEFAULT_MSS6 : DEFAULT_MSS4;
*wscale = DEFAULT_WSCALE;
*ttl = DEFAULT_TTL;
}
static __always_inline void values_inc_synacks(void)
{
__u32 key = 1;
__u32 *value;
value = bpf_map_lookup_elem(&values, &key);
if (value)
__sync_fetch_and_add(value, 1);
}
static __always_inline bool check_port_allowed(__u16 port)
{
__u32 i;
for (i = 0; i < MAX_ALLOWED_PORTS; i++) {
__u32 key = i;
__u16 *value;
value = bpf_map_lookup_elem(&allowed_ports, &key);
if (!value)
break;
// 0 is a terminator value. Check it first to avoid matching on
// a forbidden port == 0 and returning true.
if (*value == 0)
break;
if (*value == port)
return true;
}
return false;
}
struct header_pointers {
struct ethhdr *eth;
struct iphdr *ipv4;
struct ipv6hdr *ipv6;
struct tcphdr *tcp;
__u16 tcp_len;
};
static __always_inline int tcp_dissect(void *data, void *data_end,
struct header_pointers *hdr)
{
hdr->eth = data;
if (hdr->eth + 1 > data_end)
return XDP_DROP;
switch (bpf_ntohs(hdr->eth->h_proto)) {
case ETH_P_IP:
hdr->ipv6 = NULL;
hdr->ipv4 = (void *)hdr->eth + sizeof(*hdr->eth);
if (hdr->ipv4 + 1 > data_end)
return XDP_DROP;
if (hdr->ipv4->ihl * 4 < sizeof(*hdr->ipv4))
return XDP_DROP;
if (hdr->ipv4->version != 4)
return XDP_DROP;
if (hdr->ipv4->protocol != IPPROTO_TCP)
return XDP_PASS;
hdr->tcp = (void *)hdr->ipv4 + hdr->ipv4->ihl * 4;
break;
case ETH_P_IPV6:
hdr->ipv4 = NULL;
hdr->ipv6 = (void *)hdr->eth + sizeof(*hdr->eth);
if (hdr->ipv6 + 1 > data_end)
return XDP_DROP;
if (hdr->ipv6->version != 6)
return XDP_DROP;
// XXX: Extension headers are not supported and could circumvent
// XDP SYN flood protection.
if (hdr->ipv6->nexthdr != NEXTHDR_TCP)
return XDP_PASS;
hdr->tcp = (void *)hdr->ipv6 + sizeof(*hdr->ipv6);
break;
default:
// XXX: VLANs will circumvent XDP SYN flood protection.
return XDP_PASS;
}
if (hdr->tcp + 1 > data_end)
return XDP_DROP;
hdr->tcp_len = hdr->tcp->doff * 4;
if (hdr->tcp_len < sizeof(*hdr->tcp))
return XDP_DROP;
return XDP_TX;
}
static __always_inline __u8 tcp_mkoptions(__be32 *buf, __be32 *tsopt,
__u16 mss,
__u8 wscale)
{
__be32 *start = buf;
*buf++ = bpf_htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss);
if (!tsopt)
return buf - start;
if (tsopt[0] & bpf_htonl(1 << 4))
*buf++ = bpf_htonl((TCPOPT_SACK_PERM << 24) |
(TCPOLEN_SACK_PERM << 16) |
(TCPOPT_TIMESTAMP << 8) |
TCPOLEN_TIMESTAMP);
else
*buf++ = bpf_htonl((TCPOPT_NOP << 24) |
(TCPOPT_NOP << 16) |
(TCPOPT_TIMESTAMP << 8) |
TCPOLEN_TIMESTAMP);
*buf++ = tsopt[0];
*buf++ = tsopt[1];
if ((tsopt[0] & bpf_htonl(0xf)) != bpf_htonl(0xf))
*buf++ = bpf_htonl((TCPOPT_NOP << 24) |
(TCPOPT_WINDOW << 16) |
(TCPOLEN_WINDOW << 8) |
wscale);
return buf - start;
}
static __always_inline void tcp_gen_synack(struct tcphdr *tcp_header,
__u32 cookie, __be32 *tsopt,
__u16 mss, __u8 wscale)
{
void *tcp_options;
tcp_flag_word(tcp_header) = TCP_FLAG_SYN | TCP_FLAG_ACK;
if (tsopt && (tsopt[0] & bpf_htonl(1 << 5)))
tcp_flag_word(tcp_header) |= TCP_FLAG_ECE;
tcp_header->doff = 5; // doff is part of tcp_flag_word.
swap(tcp_header->source, tcp_header->dest);
tcp_header->ack_seq = bpf_htonl(bpf_ntohl(tcp_header->seq) + 1);
tcp_header->seq = bpf_htonl(cookie);
tcp_header->window = 0;
tcp_header->urg_ptr = 0;
tcp_header->check = 0; // Rely on hardware checksum offload.
tcp_options = (void *)(tcp_header + 1);
tcp_header->doff += tcp_mkoptions(tcp_options, tsopt, mss, wscale);
}
static __always_inline void tcpv4_gen_synack(struct header_pointers *hdr,
__u32 cookie, __be32 *tsopt)
{
__u8 wscale;
__u16 mss;
__u8 ttl;
values_get_tcpipopts(&mss, &wscale, &ttl, false);
swap_eth_addr(hdr->eth->h_source, hdr->eth->h_dest);
swap(hdr->ipv4->saddr, hdr->ipv4->daddr);
hdr->ipv4->check = 0; // Rely on hardware checksum offload.
hdr->ipv4->tos = 0;
hdr->ipv4->id = 0;
hdr->ipv4->ttl = ttl;
tcp_gen_synack(hdr->tcp, cookie, tsopt, mss, wscale);
hdr->tcp_len = hdr->tcp->doff * 4;
hdr->ipv4->tot_len = bpf_htons(sizeof(*hdr->ipv4) + hdr->tcp_len);
}
static __always_inline void tcpv6_gen_synack(struct header_pointers *hdr,
__u32 cookie, __be32 *tsopt)
{
__u8 wscale;
__u16 mss;
__u8 ttl;
values_get_tcpipopts(&mss, &wscale, &ttl, true);
swap_eth_addr(hdr->eth->h_source, hdr->eth->h_dest);
swap(hdr->ipv6->saddr, hdr->ipv6->daddr);
*(__be32 *)hdr->ipv6 = bpf_htonl(0x60000000);
hdr->ipv6->hop_limit = ttl;
tcp_gen_synack(hdr->tcp, cookie, tsopt, mss, wscale);
hdr->tcp_len = hdr->tcp->doff * 4;
hdr->ipv6->payload_len = bpf_htons(hdr->tcp_len);
}
static __always_inline int syncookie_handle_syn(struct header_pointers *hdr,
struct xdp_md *ctx,
void *data, void *data_end)
{
__u32 old_pkt_size, new_pkt_size;
// Unlike clang 10, clang 11 and 12 generate code that doesn't pass the
// BPF verifier if tsopt is not volatile. Volatile forces it to store
// the pointer value and use it directly, otherwise tcp_mkoptions is
// (mis)compiled like this:
// if (!tsopt)
// return buf - start;
// reg = stored_return_value_of_bpf_tcp_raw_gen_tscookie;
// if (reg == 0)
// tsopt = tsopt_buf;
// else
// tsopt = NULL;
// ...
// *buf++ = tsopt[1];
// It creates a dead branch where tsopt is assigned NULL, but the
// verifier can't prove it's dead and blocks the program.
__be32 * volatile tsopt = NULL;
__be32 tsopt_buf[2];
void *ip_header;
__u16 ip_len;
__u32 cookie;
__s64 value;
if (hdr->ipv4) {
// Check the IPv4 and TCP checksums before creating a SYNACK.
value = bpf_csum_diff(0, 0, (void *)hdr->ipv4, hdr->ipv4->ihl * 4, 0);
if (value < 0)
return XDP_ABORTED;
if (csum_fold(value) != 0)
return XDP_DROP; // Bad IPv4 checksum.
value = bpf_csum_diff(0, 0, (void *)hdr->tcp, hdr->tcp_len, 0);
if (value < 0)
return XDP_ABORTED;
if (csum_tcpudp_magic(hdr->ipv4->saddr, hdr->ipv4->daddr,
hdr->tcp_len, IPPROTO_TCP, value) != 0)
return XDP_DROP; // Bad TCP checksum.
ip_header = hdr->ipv4;
ip_len = sizeof(*hdr->ipv4);
} else if (hdr->ipv6) {
// Check the TCP checksum before creating a SYNACK.
value = bpf_csum_diff(0, 0, (void *)hdr->tcp, hdr->tcp_len, 0);
if (value < 0)
return XDP_ABORTED;
if (csum_ipv6_magic(&hdr->ipv6->saddr, &hdr->ipv6->daddr,
hdr->tcp_len, IPPROTO_TCP, value) != 0)
return XDP_DROP; // Bad TCP checksum.
ip_header = hdr->ipv6;
ip_len = sizeof(*hdr->ipv6);
} else {
return XDP_ABORTED;
}
// Issue SYN cookies on allowed ports, drop SYN packets on
// blocked ports.
if (!check_port_allowed(bpf_ntohs(hdr->tcp->dest)))
return XDP_DROP;
value = bpf_tcp_raw_gen_syncookie(ip_header, ip_len,
(void *)hdr->tcp, hdr->tcp_len);
if (value < 0)
return XDP_ABORTED;
cookie = (__u32)value;
if (cookie_init_timestamp_raw((void *)hdr->tcp, hdr->tcp_len,
&tsopt_buf[0], &tsopt_buf[1], data_end))
tsopt = tsopt_buf;
// Check that there is enough space for a SYNACK. It also covers
// the check that the destination of the __builtin_memmove below
// doesn't overflow.
if (data + sizeof(*hdr->eth) + ip_len + TCP_MAXLEN > data_end)
return XDP_ABORTED;
if (hdr->ipv4) {
if (hdr->ipv4->ihl * 4 > sizeof(*hdr->ipv4)) {
struct tcphdr *new_tcp_header;
new_tcp_header = data + sizeof(*hdr->eth) + sizeof(*hdr->ipv4);
__builtin_memmove(new_tcp_header, hdr->tcp, sizeof(*hdr->tcp));
hdr->tcp = new_tcp_header;
hdr->ipv4->ihl = sizeof(*hdr->ipv4) / 4;
}
tcpv4_gen_synack(hdr, cookie, tsopt);
} else if (hdr->ipv6) {
tcpv6_gen_synack(hdr, cookie, tsopt);
} else {
return XDP_ABORTED;
}
// Recalculate checksums.
hdr->tcp->check = 0;
value = bpf_csum_diff(0, 0, (void *)hdr->tcp, hdr->tcp_len, 0);
if (value < 0)
return XDP_ABORTED;
if (hdr->ipv4) {
hdr->tcp->check = csum_tcpudp_magic(hdr->ipv4->saddr,
hdr->ipv4->daddr,
hdr->tcp_len,
IPPROTO_TCP,
value);
hdr->ipv4->check = 0;
value = bpf_csum_diff(0, 0, (void *)hdr->ipv4, sizeof(*hdr->ipv4), 0);
if (value < 0)
return XDP_ABORTED;
hdr->ipv4->check = csum_fold(value);
} else if (hdr->ipv6) {
hdr->tcp->check = csum_ipv6_magic(&hdr->ipv6->saddr,
&hdr->ipv6->daddr,
hdr->tcp_len,
IPPROTO_TCP,
value);
} else {
return XDP_ABORTED;
}
// Set the new packet size.
old_pkt_size = data_end - data;
new_pkt_size = sizeof(*hdr->eth) + ip_len + hdr->tcp->doff * 4;
if (bpf_xdp_adjust_tail(ctx, new_pkt_size - old_pkt_size))
return XDP_ABORTED;
values_inc_synacks();
return XDP_TX;
}
static __always_inline int syncookie_handle_ack(struct header_pointers *hdr)
{
int err;
if (hdr->ipv4)
err = bpf_tcp_raw_check_syncookie(hdr->ipv4, sizeof(*hdr->ipv4),
(void *)hdr->tcp, hdr->tcp_len);
else if (hdr->ipv6)
err = bpf_tcp_raw_check_syncookie(hdr->ipv6, sizeof(*hdr->ipv6),
(void *)hdr->tcp, hdr->tcp_len);
else
return XDP_ABORTED;
if (err)
return XDP_DROP;
return XDP_PASS;
}
SEC("xdp/syncookie")
int syncookie_xdp(struct xdp_md *ctx)
{
void *data_end = (void *)(long)ctx->data_end;
void *data = (void *)(long)ctx->data;
struct header_pointers hdr;
struct bpf_sock_tuple tup;
struct bpf_nf_conn *ct;
__u32 tup_size;
__s64 value;
int ret;
ret = tcp_dissect(data, data_end, &hdr);
if (ret != XDP_TX)
return ret;
if (hdr.ipv4) {
// TCP doesn't normally use fragments, and XDP can't reassemble them.
if ((hdr.ipv4->frag_off & bpf_htons(IP_DF | IP_MF | IP_OFFSET)) !=
bpf_htons(IP_DF))
return XDP_DROP;
tup.ipv4.saddr = hdr.ipv4->saddr;
tup.ipv4.daddr = hdr.ipv4->daddr;
tup.ipv4.sport = hdr.tcp->source;
tup.ipv4.dport = hdr.tcp->dest;
tup_size = sizeof(tup.ipv4);
} else if (hdr.ipv6) {
__builtin_memcpy(tup.ipv6.saddr, &hdr.ipv6->saddr,
sizeof(tup.ipv6.saddr));
__builtin_memcpy(tup.ipv6.daddr, &hdr.ipv6->daddr,
sizeof(tup.ipv6.daddr));
tup.ipv6.sport = hdr.tcp->source;
tup.ipv6.dport = hdr.tcp->dest;
tup_size = sizeof(tup.ipv6);
} else {
// The verifier can't track that either ipv4 or ipv6 is not NULL.
return XDP_ABORTED;
}
value = 0; // Flags.
ct = bpf_ct_lookup_tcp(ctx, &tup, tup_size, BPF_F_CURRENT_NETNS, &value);
if (ct) {
unsigned long status = ct->status;
bpf_ct_release(ct);
if (status & IPS_CONFIRMED_BIT)
return XDP_PASS;
} else if (value != -ENOENT) {
return XDP_ABORTED;
}
// value == -ENOENT || !(status & IPS_CONFIRMED_BIT)
if ((hdr.tcp->syn ^ hdr.tcp->ack) != 1)
return XDP_DROP;
// Grow the TCP header to TCP_MAXLEN to be able to pass any hdr.tcp_len
// to bpf_tcp_raw_gen_syncookie and pass the verifier.
if (bpf_xdp_adjust_tail(ctx, TCP_MAXLEN - hdr.tcp_len))
return XDP_ABORTED;
data_end = (void *)(long)ctx->data_end;
data = (void *)(long)ctx->data;
if (hdr.ipv4) {
hdr.eth = data;
hdr.ipv4 = (void *)hdr.eth + sizeof(*hdr.eth);
// IPV4_MAXLEN is needed when calculating checksum.
// At least sizeof(struct iphdr) is needed here to access ihl.
if ((void *)hdr.ipv4 + IPV4_MAXLEN > data_end)
return XDP_ABORTED;
hdr.tcp = (void *)hdr.ipv4 + hdr.ipv4->ihl * 4;
} else if (hdr.ipv6) {
hdr.eth = data;
hdr.ipv6 = (void *)hdr.eth + sizeof(*hdr.eth);
hdr.tcp = (void *)hdr.ipv6 + sizeof(*hdr.ipv6);
} else {
return XDP_ABORTED;
}
if ((void *)hdr.tcp + TCP_MAXLEN > data_end)
return XDP_ABORTED;
// We run out of registers, tcp_len gets spilled to the stack, and the
// verifier forgets its min and max values checked above in tcp_dissect.
hdr.tcp_len = hdr.tcp->doff * 4;
if (hdr.tcp_len < sizeof(*hdr.tcp))
return XDP_ABORTED;
return hdr.tcp->syn ? syncookie_handle_syn(&hdr, ctx, data, data_end) :
syncookie_handle_ack(&hdr);
}
SEC("xdp/dummy")
int dummy_xdp(struct xdp_md *ctx)
{
// veth requires XDP programs to be set on both sides.
return XDP_PASS;
}
char _license[] SEC("license") = "GPL";
Powered by blists - more mailing lists