
1

TCP FlexiS: A New Approach To Incipient
Congestion Detection and Control

Qian Li

Abstract—Best effort congestion controls strive to achieve an
equitable distribution of network resources among competing
flows. However, fair resource allocation becomes undesirable
when a bandwidth/delay sensitive application shares a bottleneck
with a greedy background application. Less than Best Effort
(LBE) Congestion Control Algorithms (CCA) are specially de-
signed for background applications, which do not have strict
bandwidth/delay requirements. LBE CCAs give foreground ap-
plications higher priority in resource allocation by only utilizing
spare bandwidth. This can greatly improve network utility at
times of congestion. We propose FlexiS – a Flexible Sender side
LBE CCA. Unlike most conventional LBE CCAs, which use
queue size based congestion detectors and linear rate controllers,
FlexiS employs a queue trend based congestion detector and
a cubic increase multiplicative decrease rate controller. We
have compared FlexiS with LEDBAT and LEDBAT++. Extensive
emulation and preliminary Internet tests showed that: (1) FlexiS
has comparatively low impact on concurrent best effort TCP
flows; (2) it scales to a wide range of available bandwidths;
(3) FlexiS flows in aggregation can efficiently utilize available
bandwidth; (4) contending FlexiS flows can, in most cases, equally
share available bandwidth; (5) it adapts to route changes quickly;
and (6) it maintains low priority even when AQM algorithms or
shallow buffers are deployed.

Index Terms—Lower than Best Effort, LBE, Low Priority,
Congestion Control Algorithms.

I. INTRODUCTION

The Internet is a packet switched network. Packets of
different applications share a common set of network resources
including transmission medium, switching and routing devices
and device buffers. Packets that cannot be transmitted imme-
diately are placed in a buffer and are usually served in First
Come and First Served (FCFS) order. Packets are dropped
when the buffer is full. The most widely adopted mechanism
for network resource allocation so far has been based on
end points through Congestion Control Algorithms (CCA). A
CCA determines at what rate a transmitter should be sending,
which further determines the bandwidth share of a flow (a
sequence of packets that have the same source IP, source port,
destination IP, destination port and protocol). Fairly sharing
network resources among competing flows has been one of the
design goals of many CCAs. These CCAs are usually referred
to as Best Effort (BE) CCAs. The dominant BE CCAs use
loss as a signal of congestion.

However, allocating network resources fairly among com-
peting flows is not always desirable. Consider the following
scenario. While Alice is enjoying Video on Demand (VoD)
streaming (APP A), a software update (APP B) is initiated
by a server to transfer 1 GB of software patches to Bob’s

Q. Li was with the Department of Informatics, University of Oslo, Oslo,
Norway. E-mail: li qian pro@hotmail.com

computer in the background. APPs A and B share the same
bottleneck and both use BE CCAs. The fair competition of
APP B makes APP A lose a portion of bandwidth, which
causes stalls during video play back. Consequently, the Quality
of Experience (QoE) of Alice is degraded. In comparison, if
APP B employs a Less than Best Effort (LBE) CCA that can
detect APP A and never acquires bandwidth more than what
is available, the minimum bandwidth requirements of APP A
can be guaranteed and the QoE of Alice will not be affected.
In the meantime, Bob will not notice the increased download
time of software patches since the software update runs in
the background. Clearly, priority-based resource allocation is
more preferable over fair allocation in the above scenario.

In reality, scenarios similar to the one illustrated above are
not uncommon. When QoS sensitive foreground applications
(such as VoIP, online gaming, video streaming and web
browsing) compete fairly with QoS tolerant background ap-
plications (e.g., software update, client-to-cloud backup, inter-
data-center synchronization and peer-to-peer file sharing), the
QoE of foreground application users will be degraded. LBE
CCAs are specially designed for background applications.
They opportunistically scavenge spare bandwidth (henceforth,
used interchangeably with available bandwidth) left by other
applications, thus maximize QoE of all Internet users. Some
LBE CCAs have been proposed in the literature [1] [2] [3]
and Microsoft has incorporated two – LEDBAT++ [4] and
rLEDBAT [5] – in its Windows Servers to limit bandwidth
consumption of software updates and error reporting [6].

In this article, we propose a new LBE CCA named FlexiS
– a Flexible Sender side LBE CCA. The objectives of FlexiS
are: (1) low intrusion on concurrent foreground applications;
(2) high bandwidth utilization; and (3) equally sharing Avail-
able Bandwidth (AB) between contending FlexiS flows. The
objectives are listed in order of priority. FlexiS has been
implemented as a Linux kernel module. The source code is
available as open source software at [7].

Most existing LBE CCAs [1], [2], [3] and delay based CCAs
[8], [9], [10], [11] need to estimate base delay in order to
detect incipient congestion. Base delay is the time spent by
a packet to traverse an unloaded route. In practice, it is very
difficult to estimate. On the one hand, it can change with the
change of route. If a route consists of wireless links, its base
delay can change even when route is not changed [12]. On the
other hand, a connection might not be able to observe the true
base delay during its lifetime if the bottleneck is persistently
overloaded. A wrong estimation of base delay can make an
LBE CCA fail to meet its design objectives. For instance,
LEDBAT has been shown to suffer from a latecomer advantage
problem [3] [13] and to induce increasing Queuing Delay (QD)

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

2

until buffer overflow [14] due to wrong estimation of base
delay.

We had been searching for an alternative incipient con-
gestion detection technique. We discovered that an increasing
trend in Round Trip Time (RTT) serves as a good indication of
early congestion because congestion is usually accompanied
by increased QD. Extensive evaluation showed that FlexiS
does not suffer from problems related to inaccurate base delay
estimation. In particular, it adapts to route changes quickly.

Recent LBE CCAs such as LEDBAT [3] and LEDBAT++
[4] use fixed delay TARGETs as congestion thresholds. This
technique has two major drawbacks. On the one hand, a fixed
amount of extra QD is added to the estimated base delay for
most of the time. On the other hand, if the bottleneck has a
small buffer or Active Queue Management (AQM) algorithms
are deployed, packet loss can occur before the LBE CCAs
reach their delay targets. This will make them as aggressive
as some BE CCAs in certain scenarios [15]. With the ongoing
effort on tackling buffer bloat, recent years witnessed rapid
AQM deployment in home gateways [16]. It has become a
must-have feature of LBE CCAs to retain low priority in the
presence of AQMs.

FlexiS does not maintain a fixed QD. It reduces rate when
RTT samples have an obvious increasing trend. Experiments
showed that the extra QD induced by FlexiS is much smaller
than that inflicted by LEDBAT and LEDBAT++ in most
cases and that FlexiS can preserve low priority even with the
presence of AQMs or shallow buffers. Further, backing off
earlier can reduce the number of packets dropped by AQMs
or buffer overflow, therefore improve bandwidth utilization in
such situations.

Another problem with many conventional LBE CCAs [2]
[1] [3] [4] is the use of linear controls for rate adaptation.
The merit of linear control is simplicity and the potential of
converging to fairness – the equal distribution of bandwidth
between contending flows. It is proven by Chiu and Jain in [17]
that Additive Increase Multiplicative Decrease (AIMD) is the
most feasible and efficient linear control to realize fairness.
Although theoretically sound, AIMD has various issues in
practice. The typical application of AIMD is to increase
congestion window (CWND) by one Maximum Segment Size
(MSS) per RTT and reduce it by half. However, this appli-
cation does not guarantee fairness between connections with
different RTTs. Floyd proposed in [18] that all connections
despite their RTTs should increase their rates by a constant
amount of a packets/second during each second. However,
it was later on substantiated that this increase function is
difficult to successfully deploy in an operational network [19].
In addition to the fairness problem, AIMD used by standard
TCP is also known to have low bandwidth utilization problem
in large Bandwidth Delay Product (BDP) networks. It is shown
in [20] that an unrealistically small Bit Error Rate (BER) is
required for standard TCP to achieve full bandwidth utilization
in such networks.

We evaluated a variety of rate increase/decrease functions.
Finally, a cubic increase multiplicative decrease rate controller
was chosen. To be specific, FlexiS increases sending rate
using a cubic function of time and decreases rate by a fixed

percentage point. FlexiS does not have a slow start phase,
the same rate increase function is applied whenever rate
should be increased. Experiments showed that with FlexiS’
cubic increase function, the initial long delay and high loss
caused by slow start can be avoided. Cubic increase makes
FlexiS scalable across a wide range of ABs. And it improves
bandwidth utilization in large BDP networks with random loss.
Cubic increase multiplicative decrease together contribute to
FlexiS’ high intra- and inter-RTT fairness.

The rest of the paper is organized as follows. In section II
we review related work. Section III elaborates on the design
of FlexiS. Extensive evaluation results are presented in sec-
tion IV. Finally, section V concludes the paper.

II. RELATED WORK

In this section, we review previous work that either inspired
FlexiS or that are similar to FlexiS in objectives or in design.

A. Work that Inspired FlexiS

The design of FlexiS’ congestion detector is greatly influ-
enced by Pathload [21], which is an AB estimator. A pathload
sender transmits a fleet of UDP packet streams to a receiver
with a predetermined stream rate and inter-stream interval.
Upon the receipt of all probe packets and One Way Delay
(OWD) samples of a stream, the receiver analyzes the trend
in OWD using two statistics. If the majority of the streams in
a fleet cause OWD to have an increasing trend, the rate of the
fleet is considered higher than the AB, otherwise lower. AB
can be discovered by sending out multiple fleets with different
rates. Inspired by pathload, FlexiS uses an increasing trend in
delay as the indicator of incipient congestion. Unlike pathload,
FlexiS uses in-band TCP packets as probe packets and employs
linear regression to determine the trend in RTT. Further, it uses
RTT in congestion detection so that a sender does not need
the support of a receiver.

B. Work Similar in Design

Similar to FlexiS, Some CCAs also use trend in delay or de-
lay gradients in congestion detection. They differ from FlexiS
mainly in how delay gradient is calculated and utilized. ImTCP
[22] employs the two statistics technique proposed in [21]
to estimate the trend in RTT. Probe Control Protocol (PCP)
[23] derives the trend in OWD using least squares. CDG [24]
uses the minimum or maximum RTTs measured in consecutive
round trips to derive delay gradients. If the average of last n
delay gradients is greater than zero, congestion is concluded.
Timely [25] uses a positive delay gradient as an indicator of
congestion. The delay gradient is a ratio between the average
(EWMA) RTT difference between consecutive RTT samples
and the minimum RTT. PCC-Vivace [26] and PCC-Proteus
[27] use linear regression to generate RTT gradients, which
is used as an independent variable of a utility function. In
contrast, FlexiS uses a Theil-Sen estimator to determine the
slope of the linear regression line of RTT samples. Slope
exceeding a threshold is used to indicate congestion.

Some other CCAs employ similar increase functions as
FlexiS. CUBIC [28] uses a cubic function of elapsed time

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

3

since last congestion event as its window growth function. It
uses both the concave and convex profiles of a cubic function.
Similarly, FlexiS also employs a cubic function of time elapsed
since the start of the increase epoch for rate increase. But
it only uses the convex profile of a cubic function. TCP-
LoLa [29] employs two cubic functions for rate increase.
One is CUBIC’s CWND growth function. Another is a cubic
function of time elapsed since the start of fair flow balancing.
It is used to calculate a dynamic queue occupancy target
to achieve fairness. This latter function resembles FlexiS’
increase function no matter in the function itself but also in
objectives. Unlike CUBIC and TCP-LoLa, in order to speed
up initial rate increase, FlexiS adds a first degree term to its
increase function.

C. Work Similar in Objectives

The CCAs presented in this subsection all have LBE as their
design objectives.

TCP Nice [1] and TCP-LP [2] are two early LBE CCAs.
Both of them use (filtered) QD exceeding a certain percent of
maximum QD as congestion indicator. CWND is halved when
congestion is detected. Linearly increase functions are used to
grow CWND. Eclipse [30] is a hybrid of three LBE CCAs.
Its target QD calculation is based on TCP Nice and TCP-LP
and its rate controller is based on LEDBAT.

ImTCP-bg [31] and TCP Westwood Low Priority [32] are
LBE CCAs that are adapted from BE CCAs. The former uses
the AB estimated by ImTCP to calculate an upper limit for
CWND. The latter adds a backlog based incipient congestion
detector to TCP Westwood.

FLOWER [33] adjusts CWND with a fuzzy controller. DA-
LBE [34] is a deadline aware LBE framework that is capable
of making any non-LBE CCAs to have LBE behavior and the
degree of LBEness can be changed according to remaining
time to deadline.

D. Work Used for Comparison

Low Extra Delay BAckground Transport (LEDBAT) [3] and
LEDBAT++ [4] are two recent LBE CCAs. Both published
specifications with IETF and carry real world traffic in the
Internet. In this article, FlexiS is compared with them.

LEDBAT uses QD exceeding a TARGET (100 ms by de-
fault) as an indication of congestion. If QD is below TARGET,
CWND is additively increased, otherwise additively decreased.
The amount of increase/decrease is in proportion to off target
= (TARGET - QD) / TARGET. QD is the difference between
the current OWD and base delay. LEDBAT adjusts CWND
with the following function. CWND = CWND + GAIN ×
off target × bytes newly acked × MSS / CWND. GAIN
determines the rate at which the CWND responds to changes
in QD. Base delay is the minimum OWD observed during past
a few minutes.

LEDBAT++ improves LEDBAT using a number of tech-
niques. It replaces OWD with RTT in QD calculation. Slow
start quits when QD exceeds 3/4 TARGET to reduce initial in-
trusion. LEDBAT’s linear controller is replaced by an additive
increase multiplicative decrease controller, which is borrowed

from fLEDBAT [35]. The authors of fLEDBAT propose to
use constant increase to replace proportional increase to speed
up convergence and improve efficiency. Additive decrease
is attributed to the cause of unfairness and is replaced by
multiplicative decrease. In LEDBAT++, the pre-configured
increase GAIN is replaced by a dynamic GAIN which is in
proportion to a connection’s RTT. LEDBAT++ periodically
reduces CWND to 2 packets in order to discover a true base
RTT.

III. DESIGN

A. Overview

FlexiS uses an increasing trend in RTT to indicate con-
gestion. On the receipt of the ith ACK, an RTT sample di
and a timestamp ti are obtained. ti is the sending time (in
ms) of the acknowledged data packet. (ti, di) are put into a
data structure called RTT sack (denoted as D) as one data
point. If enough data points are gathered in D, the slope of
the linear regression line of all data points in D is derived
and the oldest data point (t1, d1) is removed. If the slope is
equal to or greater than a threshold θ, RTT is considered to
have an increasing trend and FlexiS will reduce its CWND by
a fixed percentage point. Otherwise, CWND will be increased
according to a CUBIC function of elapsed time. FlexiS halves
its CWND when packet loss is detected. It does not distinguish
algorithmically between slow start and congestion avoidance.
Algorithm 1 shows a pseudo-code of the main logic of FlexiS.

Algorithm 1 The main logic of FlexiS
Variables
LD: length of D in ms
ND: size of D in number of data points
SD: the slope of the regression line of data points in D
σ: the minimum number of data points in D required to
make a trend analysis. default: 3
τ : the minimum length of D required to make a trend
analysis. default: 60 ms
θ: the minimum slope that makes FlexiS reduce rate. default:
30
On the receipt of the ith ACK
put (ti, di) into D
LD ← ti − t1
if LD < τ then

CWND is unchanged
else

if ND < σ then
increase CWND per Equations 1 & 2 (Section III-C)

else
calculate SD

if SD ≥ θ then
decrease CWND per Equation 3 (Section III-D)

else
increase CWND per Equations 1 & 2 (Section III-C)

end if
end if
remove the oldest data point (t1, d1) from D

end if

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

4

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1 2 3 4 5

 cubic increase

delay based decrease
loss based decrease

cubic increase

pending

pending

initial BDP

new BDP

C
W

N
D

 (
se

g
s)

Time (sec)

CWND Evolution

Fig. 1. A Sample Evolution of FlexiS’ Congestion Window

From a high level view, a FlexiS sender iteratively goes
through three phases: pending, increase and decrease. This
can be best illustrated with a CWND evolution schematic as
is shown in Fig. 1. In the pending phase, the sender is not qual-
ified to make a trend analysis due to insufficient observation
duration (LD < τ). In this phase, it puts every newly received
RTT sample into D and keep CWND unchanged. A newly
established connection always starts from the pending phase.
As soon as LD >= τ , the pending phase terminates and the
sender goes into either the increase or decrease phase. If there
are not enough data points (ND < σ) in D, FlexiS simply
increases CWND. If sufficient data points are obtained, the
trend in RTT is derived. If the trend is non-increase, the sender
enters the increase phase, otherwise, it enters the decrease
phase (in Fig. 1, FlexiS always enters the increase phase after
pending). An increase phase is also termed an increase epoch,
which terminates when congestion is detected (at seconds 1.6,
2.7, 3.4 and 4.5 in the schematic). The sender will then go
into the decrease phase, in which, CWND is decreased and
D is emptied. Due to the need of replenishing D, a decrease
phase is always followed by a pending phase.

Each component of FlexiS is designed to support fairness.
The design ensures that all contending FlexiS flows (1) make
congestion decisions based on the same criteria; (2) increase
rates at the same speed; and (3) decrease rates by the same
percentage points. In the rest of the article, we will refer
to these as the necessary conditions to fairness. Next, we
elaborate on each component of FlexiS.

B. Congestion Detection

FlexiS detects congestion based on the following definition.
Congestion is the state of sustained overload of a bottleneck.
According to the definition, the two prerequisites for con-
gestion are ”overload” and ”sustained”. ”Overload” can be
manifested by an increasing trend in RTT, in that when a link
is overloaded, queue will increase over time, which makes
RTT have an increasing trend. θ is a threshold for ”overload”.
Any slope below θ will not trigger the congestion response of
FlexiS. ”Sustained” imposes a minimum duration for ”over-
load”. τ is a threshold for ”sustained”. That is, if the network
is overloaded for at least τ ms, FlexiS will take congestion
response. τ and θ are RTT-independent constants. This can

make flows with different RTTs detect congestion based on the
same criteria, which is the first necessary condition to fairness.

The trend in RTT can be quantified using the slope of the
regression line of the data points in D. We use a Theil-Sen
estimator [36] [37] to estimate the slope. The Theil-Sen slope
is the median of slopes of lines connecting all distinctive pairs
of points in D. Let Pi = (ti, di) and Pj = (tj , dj), ti < tj
be any two data points in D, Sij be the slope of the line
connecting points Pi and Pj . We have Sij = (dj−di)/(tj−ti),
and SD = median(Sij). In our Linux implementation, slopes
are magnified 1000 times because fractional numbers are not
supported by the kernel. When the magnified Theil-Sen slope
is greater than θ, the RTT samples are deemed to have an
increasing trend.

The space and computation complexity of our Linux kernel
implementation of the Theil-Sen estimator are both O(n2).
When sending rate is high, we get quite a number of data
points in D. Under such circumstances, the computation time
of SD is not negligible. In order to reduce overhead, we
employ a technique, which compresses all RTT samples with
the same timestamp into one data point P . The RTT of P is the
median of all RTT samples being compressed. The timestamp
of P is the common timestamp. After compression, there can
be at most τ samples in D and the space and computation
overhead caused by the Theil-Sen estimator can be neglected.

C. Rate Increase

FlexiS increases its sending rate with a cubic function
of time elapsed since the start of an increase epoch E.
Fig. 1 illustrates the operation of the increase function. And
Equations 1 and 2 give the definition of FlexiS’ increase
functions. The same functions are used for both initial ramp
up and congestion avoidance. In the following equations, RTT
is measured in unit of seconds, timestamps in milliseconds,
rate in packets per second and CWND in packets. dmin(t1, t2)
denotes the minimum RTT observed between time t1 and t2.

r = (
tcur − t0

α
)3 +

tcur − t0
β

+
w0

d0
(1)

where r is sending rate, α and β are increase factors. t0 is the
start time of E and tcur is the current time. w0 is the CWND
value at t0. d0 = dmin(tpend, t0) is the RTT estimate made at
time t0. tpend is the start time of the preceding pending phase
of E. Because RTT usually do not increase significantly in
the pending phase (otherwise rate would have been reduced),
dmin(tpend, t0) is pretty close to the actual RTT at time t0. t0,
w0 and r0 are recalculated at the beginning of every increase
epoch.

w = r × dcur (2)

where dcur = dmin(tpend, tcur) is the RTT estimate made
at tcur. The actual RTT at tcur can be higher than dcur if
the network is congested at the time. This will make the
actual sending rate lower than the theoretical value at times
of congestion. However, this side effect is desirable because
it can make FlexiS less intrusive when congestion is forming

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

5

but the sender is still not aware of it. This is especially helpful
when a connection’s RTT is high.

FlexiS’ rate increase function has a first degree term. It
is used to speed up the initial rate increase. A single cubic
term makes rate increase too slow when elapsed time is small,
which has two undesired effects. On the one hand, overly slow
rate increments can adversely affect bandwidth utilization. On
another hand, in some rare cases, the slow rate increase makes
RTT increase so slowly that it cannot be detected by FlexiS.
Adding a first degree term to the function can solve both
problems.

α and β determine the curvature of the increase function.
The smaller the values the more aggressive FlexiS is. Very
aggressive increase will inflict high intrusion and overly con-
servative increase can harm utilization. The default values
for α and β are 100 and 10 respectively. They are proven
experimentally to have better trade-off between intrusion and
utilization.

We will show next that the increase functions meet all
design objectives of FlexiS. First, it is low intrusive. During
initial ramp up, it makes rate increase in proportion to CWND,
which ensures that the QD induced by FlexiS is bounded to
a proportion of an RTT. After a congestion event, elapsed
time is reset to zero and FlexiS starts from small increments
again. This behavior gives the bottleneck sufficient time to
drain its queue. It can also delay the occurrence of the next
congestion event, therefore reduce intrusion to foreground
traffic. Second, the cubic function allows FlexiS to speed up
over time, which makes it possible to converge to very large
ABs and significantly reduces convergence time compared to
linear increase. Finally, using elapsed time as input makes
contending flows with different RTTs increase at the same
speed provided that they enter their respective increase epochs
at the same time. This is the second necessary condition to
fairness. When flows enter their increase epochs at different
times, they can increase at different speeds. However, this
asynchronous state will end after the first congestion event.

D. Rate Decrease

Upon congestion, FlexiS reduces CWND per Equation 3.
It is shown experimentally that the simple decrease function
has better worst case scenario performance than more sophis-
ticated decrease functions.

w′ = max(w × γ, 2) (3)

where w′ and w are CWND values after and before reduction,
0 < γ < 1 is the decrease factor. The max operator ensures
that CWND is never reduced below 2 MSS. This is to mitigate
the adverse effect of delayed ACKs.

The default value for γ is 0.85. γ should be set in conjunc-
tion with α and β. When α and β are decreased, so should γ so
as to counter-act the increased aggressiveness and vice versa.
In order to meet the third necessary condition to fairness, all
flows should set their decrease factors to the same value.

FlexiS only reduces CWND once per round trip time.
CWND is halved (but not below 2 MSS) on packet loss
detected by the fast retransmit and fast recovery algorithm

and is reduced to 1 MSS when retransmission timer goes off.
After any type of CWND reduction, D is emptied.

If fast recovery is entered when FlexiS is in rate reduction,
CWND will be reduced twice. Upon the exit of fast recovery,
FlexiS sets CWND back to the value after the first reduction.
This technique can improve link utilization in the presence of
AQM, shallow buffer or random loss.

E. Pacing

FlexiS uses pacing, which is a technique used to evenly
space packets at specified intervals at time of sending. Pacing
has two functions in FlexiS. On the one hand, it can greatly
reduce delay variation and packet losses inflicted by FlexiS
flows, therefore reduce intrusion to foreground flows. On
the other hand, pacing can improve bandwidth utilization of
FlexiS. It minimizes the probability that a FlexiS flow backs
off before its rate reaches AB due to self-induced queues.

In Linux, per flow pacing can be realized by TCP or by
the fair queue packet scheduler. In either way, we need to
determine a desired pacing rate. However, in recent Linux
kernels, a congestion control module that only implements
congestion avoidance cannot ultimately update pacing rate. As
a temporary work-around, we update pacing ratio Rp, which
is used to calculate pacing rate by the kernel. Rp is the ratio
between the current rate r and the rate in one RTT r′. It
is updated per equation 4 right after each CWND update. If
rate has just been increased, Rp is updated with the first sub-
equation. Otherwise, the rate in one RTT would be equal to
the current rate, so Rp should be 100%.

Rp =

{
(∆t+dcur

α)3+∆t+dcur
β +r0

r × 100, r increased
100, Otherwise

(4)

where ∆t = tcur − t0 is the time elapsed since the start
of the current increase epoch, dcur = dmin(tpend, tcur) is
an estimate of the current RTT. At times of congestion, this
estimate can be smaller than actual RTT, which results in
reduced pacing rate. However, this estimation error makes the
pacing rate more close to the actual sending rate in one RTT.

IV. EVALUATION

In this section, we compare and analyze the performance
of FlexiS, LEDBAT and LEDBAT++. The LBE CCAs were
tested in a variety of scenarios in both emulated networks
and in the Internet. In both emulation and Internet tests,
background or LBE flows were generated by bulk data transfer
applications written in C. LBE data packets were only sent in
one direction. The direction in which LBE data (ack) packets
travel is referred to as forward (reverse) direction. In emulation
tests, foreground flows were all BE TCP flows. Tcpdump was
used to capture packets, Tcptrace was used to analyze trace
files and bash scripts were used to run the experiments and
produce results.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

6

A. Performance Metrics

This subsection defines performance metrics. Except re-
transmission rate and Jain’s fairness index, all metrics are only
used in emulation tests.

Convergence time CT is defined in equation 5 as the time
taken for an LBE connection to increase its CWND to BDP
for the first time since connection establishment. BDP of an
LBE connection is defined as the product of AB and base
delay.

CT = tc − ts (5)

where ts is the establishment time of the LBE connection and
tc is the time when CWND of the LBE connection reaches its
BDP for the first time.

Bandwidth utilization U measures the throughput of one
or more LBE flows as a percentage of AB. It is defined in
equation 6.

U =
xl

Ba
× 100 (6)

where Ba = C − Bu is the average AB, C is the bottleneck
link capacity and Bu is the average bandwidth consumed by
BE flows. Bu is measured by bmon at the bottleneck Network
Interface Card (NIC). xl is the aggregate throughput of all
LBE flows that share one bottleneck. A utilization greater than
100% indicates over-use of AB, which implies that the LBE
flows are ”stealing” bandwidth from BE flows.

Throughput degradation TD measures what percentage of
throughput BE flows lose due to the contention of LBE flows.
It is defined in equation 7.

TD =
xo − xw

xo
× 100, (7)

where xo is the average throughput of BE flows when they run
alone and xw is the throughput of the BE flows when LBE
flows run in the background.

QD measures the cumulative time a packet spends waiting
in various bottleneck queues on its round trip route. Let
QDi be the QD measured by the ith packet. Then QDi =
RTTi − RTTbase. Because numerous QD samples can be
obtained during an experiment, the 90th percentile (P90(QD))
is used to indicate the overall degree of QD.

Extra QD (∆P90(QD)) is the extra amount of QD added by
LBE flows in addition to the original QD inflicted by BE flows.
It is calculated as the difference between the 90th percentile
QD measured by a BE flow when no LBE flows present
(P90(QDo)) and when LBE flows run in the background
(P90(QDw)). Equation 8 gives its definition.

∆P90(QD) = P90(QDw)− P90(QDo), (8)

Retransmission rate RR is defined in equation 9. It measures
the number of retransmitted packets as a percentage of all
packets sent. It is used as an estimation of loss rate.

RR =
nr

nt
× 100, (9)

where nr is the total number of packets retransmitted by all
LBE (or BE) connections that share one bottleneck and nt is
the total number of packets sent by the same connections.

Extra retransmission rate (∆RR) is the extra amount of RR
experienced by BE connections due to the competition of LBE
connections. It is defined in Equation 10.

∆RR = RRw −RRo, (10)

where RRo is the RR of BE connections when they run
without LBE connections and RRw is the RR of the BE
connections when LBE connections run in the background.

Jain’s Fairness Index [38] (JFI) is used to measure the
degree of equitable distribution of AB among contending
flows. It is defined in equation 11.

JFI =

(
n∑

i=1

xi)
2

n
n∑

i=1

x2
i

, (11)

where xi is the average throughput of the ith LBE flow, n is
the number of LBE flows sharing the same bottleneck. JFI is
between 0 and 1. The larger the value the higher the fairness.

B. Bulk Data Transfer Applications

Bulk data transfer applications written in C were used to
generate data for LBE connections in both emulation and
Internet tests. Multiple applications were written for different
tests. However, the core functions are the same – the sender
pre-fills its send buffer with data, once it is connected to the
receiver, it sends the data in its buffer to the receiver without
pause. This can to a large extent prevent the sender from being
limited by data when AB is high. The receiver simply discards
all the data it receives from the sender.

C. Implementation of LEDBAT and LEDBAT++

We have adapted the LEDBAT Linux kernel module imple-
mented by Silvio Valenti [39] for their study [40] to conform to
RFC6817. The adapted code is available at [41]. In our imple-
mentation, OWDs are calculated using the timestamp values
and timestamp echo replies embedded in returning ACKs at
the sender. However, a direct subtraction of these values is
not viable, because the two timestamps might be generated
by clocks with different resolutions. A special algorithm is
used to estimate the receiver’s Timestamp Clock Resolution
(TCR). The accuracy of the estimator is seriously affected by
congestion on the forward direction path. LEDBAT with this
estimator enabled has persistently low throughput in various
situations. Because the receiver’s TCR are known in all our
emulation and Internet tests, they are hardwired in LEDBAT’s
code. This ensures that the performance of LEDBAT is not
affected by the estimator in all tests. The default values for
LEDBAT parameters are set as follows. TARGET = 100 ms.
BASE HISTORY = 10. The same GAIN was used for both
CWND increase and decrease and was set to 1. Noise filter
was set to NULL. And MIN CWND = 2.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

7

We also implemented a Linux kernel module for LED-
BAT++, which was adapted from LEDBAT. The implemen-
tation conforms to LEDBAT++ draft version 1 [4] and is
available at [42]. The draft proposes a per RTT CWND
reduction equation. However, it is very difficult to implement
in that the amount to be decreased is affected by QD, which
changes with each ACK. Therefore, we implemented the
per ACK CWND reduction equation proposed in [35], base
on which the CWND update functions of LEDBAT++ were
developed. In our implementation, the modified slow start
is used after periodic slow down. The default values for
LEDBAT++ parameters are set as follows. TARGET = 60 ms.
BASE HISTORY = 10. Min filter is used as current delay
filter and its length is 4. And MIN CWND = 2.

D. Emulation Tests

In this subsection, we study the performance of FlexiS with
a network emulator.

1) Emulation Tools: Emulation tests were conducted on
virtual networks emulated by the Common Open Research
Emulator (CORE) [43] [44]. CORE builds a representation of
a real computer network that runs in real time and provides an
environment for running real applications and protocols. All
virtual nodes on a physical host run the same kernel and share
the same set of resources. The limiting factor of performance
is the number of times that the operating system needs to
handle a packet but not the number of hops and the size of
the packets.

Our main emulation platform was a desktop PC with an Intel
dual-core 2.9 GHZ processor and a 4 GB memory installed
with Ubuntu Desktop 20.04, Linux kernel v4.5, and CORE
7.0. We did not observe obvious performance degradation in
most of the tests except the scalability test (section IV-D6), in
which we noticed lowered link utilization of all LBE CCAs
when bottleneck capacity is high (due to hardware limitation)
and higher intrusion of FlexiS when bottleneck capacity is low
(because that CORE 7.0 does not emulate transmission delay).
After redoing the scalability test on a PC with a 10-core 2.5
GHZ processor and a 16 GB memory installed with Ubuntu
Desktop 22.04, Linux kernel v5.19, and CORE 9.0 (which
supports transmission delay), the LBE CCAs have normal
performance.

The Multi-Generator (MGEN) [45] is a packet-level traffic
generator capable of generating UDP flows and responsive
TCP connections. Standard TCP/IP socket is used to establish
a TCP connection between specified source and destination
hosts. The source host generates packets based on provided
Packet Size (PS) and packet Inter-Departure Time (IDT),
which can be explicitly specified by setting a statistical distri-
bution or implicitly extracted from a binary trace file (called
trace cloning).

2) Traces Used: Analytical traffic models – albeit easy to
obtain and manipulate – cannot accurately model real world
traffic [46]. Therefore, in the majority of the emulation tests,
we used traces of real traffic to load the virtual networks.
The MAWI traffic archive [47] hosts a huge number of
Internet traffic trace files captured at various sample points

TABLE I
TRACES USED BY EMULATION TESTS

Name Year R s Name Year R s

wide11 2007 11.19 1.80 wide42 2020 42.99 20.76

wide25 2020 25.55 7.58 wide47 2009 47.64 25.57

wide28 2008 28.54 11.23 wide52 2009 52.47 7.33

wide33 2008 33.64 5.59 wide74 2010 74.42 10.81

wide36 2008 36.11 9.79 wide94 2009 94.48 6.07

wide37 2009 37.66 6.80 wide108 2010 108.41 8.59

of the WIDE backbone in Japan since 1999. This makes it
possible to load our virtual networks without sophisticated
processing of the original traces. Because no single trace can
represent Internet traffic as a whole, we intentionally selected
a large number of traces with diverged bit rates, burstiness and
composition. The traces chosen were all captured at sample
point F, which is a transit link of WIDE to its upstream ISP in
the U.S. TABLE I lists all the trace files used by the emulation
tests.

Year specifies in which year a trace was captured. R is
the average rate of the trace in Mbps. And s is the standard
deviation of rate in Mbps.

3) The Dumbbell Topology: Unless otherwise specified,
all emulation tests were conducted on a dumbbell topology
(Fig. 2), which is adapted from the one originally proposed in
[48]. The OWD of each link are annotated by the link. They
are largely the same as the ones used in [48]. The intention
of choosing these OWDs is to make the RTTs of the paths
(shown as a column on the right hand side of Fig. 2) fall
within the typical Internet RTT range.

In the dumbbell and other emulated networks, links are
symmetrical. A link is denoted by the two nodes at both ends
of it connected with a line segment as N1−N2. When there is
only one path between two end hosts Hi and Hj, the path is
denoted as Hi· · ·Hj. If there are more than one paths between
two hosts, a path is denoted by all nodes on it connected
with line segments. A flow is depicted by its source S and
destination D connected with an arrow as S→D.

The central link of the dumbbell R1−R2 is the bottleneck.
Its capacity varies from one test to another. The capacity of
peripheral links are 1 Gbps and they are invariant throughout
all tests. The default queuing discipline (QDISC) is Tail-
Drop First-In First-Out queue in unit of Packets (PFIFO). The
bottleneck buffer defaults to 1.5 BDP of a 100 ms connection,
which equals a maximum of 150 ms QD (chosen to be larger
than LEDBAT’s TARGET). LBE data and ACK flows are
depicted in the graph.

Some tests require to load the dumbbell network with
MAWI traces. In this case, two traces are needed with one
(wideX) used as forward direction load and another (wideY)
as reverse direction load. Because there are 9 paths in the
network from one side to another, each of wideX and wideY is
split into 9 sub-traces. During an experiment, MGEN is used to
clone a live TCP connection from a sub-trace. In the end, there
will be two TCP connections between each pair of hosts with
their data traveling in reverse directions. Experiments showed

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

8

R1 R2H4 H7

H5

H3 H6

H8

12ms

1ms 2ms

25ms

36ms

75ms

2ms

LBE DATA

LBE ACK

RTT (ms)

H3 ... H6: 10

H4 ... H6: 32

H5 ... H6: 58

H3 ... H7: 78

H4 ... H7: 100

H5 ... H7: 126

H3 ... H8: 158

H4 ... H8: 178

H5 ... H8: 204

Fig. 2. Dumbbell topology adapted from [48]

that the synthesized traffic at the bottleneck inherits the key
characteristics of wideX (or wideY).

4) Tests Overview: All of the emulation tests were con-
ducted on virtual networks emulated by CORE. The emulated
routers used OSPF as routing protocol. Most of the BE
flows were generated by MGEN, some by our bulk data
transfer applications. TCP CUBIC was the default CCA for
BE flows. LBE flows used one of the CCAs: FlexiS, LEDBAT
without slow start (LEDBAT-BA), LEDBAT with slow start
(LEDBAT-SS) and LEDBAT++. All LBE CCAs used their
default parameter settings.

In each test, one network parameter (e.g. bottleneck capac-
ity) is varied within a range. Other parameters are fixed. For
each value in the range, an experiment is conducted. In each
experiment, all LBE CCAs under investigation are tested in
turn. In a typical experiment, the performance of the BE CCA
(when it runs alone) is measured first. Then the BE CCA runs
simultaneously with one of the LBE CCAs and the utilization
and intrusion of the LBE CCAs are measured. When BE and
LBE CCAs run simultaneously, the BE flows are started first.
A break B is inserted between the start of BE and LBE
flows. B is 60 seconds by default. The default starting interval
I for LBE flows is 10 seconds. Unless otherwise specified,
the performance measurement starts from the establishment
of the first LBE flow and lasts until 300 + I seconds after
the establishment of the last LBE flow. Each experiment was
repeated for 10 times and the average is reported.

In all experiments, TCP send and receive buffers of the
emulated nodes were adjusted so that they did not become
the limiting factors of sending rate. CPU backlog queue was
increased. tcp no metrics save was enabled in order to make
the performance of each LBE CCA independent of each other.

5) Parameter Selection: Before presenting the evaluation
results, we would first describe how protocol parameters of
FlexiS were selected.

Due to the large solution space, we used a method which
progressively discards candidate values that yield bad perfor-
mance. To be specific, we first set a range for each parameter
based on common sense. For each candidate value within the
chosen range, we evaluated them under a specific scenario.
The candidate values that resulted in bad performance were ex-
cluded from further consideration. The rest of candidate values
were further evaluated in other scenarios (different bottleneck
capacities, QDISCs and loads etc.) until one candidate value

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

th
e
ta

tau

 0

 20

 40

 60

 80

 100

 120

 140

U
ti

li
ty

Fig. 3. Utility score of each τ and θ combination obtained from the first
round selection

was left for each parameter.
Using the above method, the default values for α, β and γ

were set to 100, 10 and 0.85 respectively. Fig. 3 presents the
results of the first round selection for τ and θ, each of which
was varied within a range of [10, 100] with a step size of 10.
α, β and γ were set to their default values.

The experiments were conducted on the dumbbell topology.
The bottleneck capacity was set to 100 Mbps. QDISC of the
bottleneck was PIE with a 15 ms target. This is different
from the default QDISC. The intention is to ensure first and
foremost that FlexiS does not fail when AQM is deployed.
The forward direction load was wide42, and reverse direction
load was wide25. Wide42 has a very high variation in rate.
We chose it for the first round selection is to guarantee that
FlexiS can meet its design objectives under harsh conditions
like this. One FlexiS flow H4→H7 was investigated.

The depth of the color in the graph is determined by
a numerical value called utility score (uScore), which is
calculated as uScore = U−TD3+93. The top 15% candidate
values were chosen for further evaluation in other scenarios.
τ = 60, θ = 30 gets a utility score of 134 in the first round
selection, which ranks number 10 among all 100 combinations.
It is finally chosen as the default because other combinations
that have higher utility scores have lower scores in other
scenarios. Due to space limitation, other selection results are
not presented here.

6) Scalability Test: The goal of this test is to examine
how well FlexiS scales to various ABs. The capacity of the
bottleneck link was set to one of the values: 1, 5, 10, 50,
100, 500, and 1000 Mbps. The network was not loaded with
any BE flows. One LBE flow H3→H6 was examined. The
performance of the LBE CCAs are shown in Fig. 4. Utilization
and QD were measured after convergence for 100 seconds.

Convergence time of all LBE CCAs increase with the
increase of AB. LEDBAT-SS and LEDBAT++ take less time
to acquire large amounts of bandwidth due to the use of slow
start, while FlexiS and LEDBAT-BA are comparatively slower
in acquiring large amounts of bandwidth.

LEDBAT (henceforth, used to represent both LEDBAT-
BA and LEDBAT-SS) has high steady state utilization in all
tested scenarios. FlexiS achieves equivalent utilization when
bottleneck capacity is high (≥ 50 Mbps) but has reduced

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 5 5
0

 5
00 1 1

0
 1

00

 1
00

0

C
T
 (

S
e
c
)

Bottleneck Capacity (Mbps) (Log scale)

LEDBAT-BA
LEDBAT-SS
LEDBAT++

FlexiS

(a) Convergence time

 80

 82

 84

 86

 88

 90

 92

 94

 96

 5 5
0

 5
00 1 1

0
 1

00

 1
00

0

U
(%

)

Bottleneck Capacity (Mbps) (Log scale)

(b) Utilization

 0

 20

 40

 60

 80

 100

 120

 5 5
0

 5
00 1 1

0
 1

00

 1
00

0

P
9

0
 (

Q
D

)
(m

s
)

Bottleneck Capacity (Mbps) (Log scale)

(c) 90th percentile QD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 5 5
0

 5
00 1 1

0
 1

00

 1
00

0

R
R

 (
%

)

Bottleneck Capacity (Mbps) (Log scale)

(d) Retransmission rate

Fig. 4. Results of the scalability test

utilization otherwise. This is because when bottleneck capacity
is small, the same amount of packets in the bottleneck queue
can translate into higher QD, which will make FlexiS reduce
its rate by multiple times until its rate is well below bottleneck
capacity. And it may take a substantially long time for it to
increase its rate back to the AB.

The P90(QD) induced by LEDBAT-SS and LEDBAT++ are
around their respective targets. FlexiS induces the least amount
of P90(QD) among all LBE CCAs (max(P90(QD) = 15 ms).
LEDBAT-SS suffers from higher RR than the rest of LBE
CCAs due to the use of the unmodified slow start. In compar-
ison, FlexiS has very low RR (max(RR) = 0.00027%).

7) Responsiveness Test: The goal of this test is to examine
how well FlexiS responds to changes in AB. Bottleneck
capacity was set to 100 Mbps. The network was loaded with
an on/off BE flow H4→H7, which was generated by MGEN
as a responsive TCP connection. It transferred at a constant
packet rate of 75 Mbps during the ”on” period and 0 Mbps
during the ”off” period. The ”on” and ”off” periods had the
same duration, which was set to one of the values: 0.001,
0.01, 0.1, 1, 10 and 100 seconds. One LBE flow H5→H8 was
studied. The starting interval between BE and LBE flows was
10 seconds. The performance of the LBE CCAs are shown in
Fig. 5.

The utilization of all LBE CCAs are affected by on/off
intervals of the BE flow. FlexiS has lower utilization when
the on/off intervals are 0.1 and 1 seconds. Other LBE CCAs
have reduced utilization when the interval is equal to or greater
than 1 second. When the on/off durations are 0.1 and 1 second,
the ”on” period is long enough to make FlexiS detect the rate
increase of the BE flow and reduce its rate. In the meanwhile,
the ”off” period is too short to allow FlexiS to fully utilize
bandwidth released during this period.

Except LEDBAT-SS, all LBE CCAs cause negligible
throughput degradation of the BE flow. Generally, the ex-
tra P90(QD) induced by LEDBAT and LEDBAT++ have a
positive correlation with their utilization. FlexiS induces low
extra P90(QD) in most cases. All LBE CCAs add negligible
retransmission rate to the BE flow.

 0

 20

 40

 60

 80

 100

 0
.0

01

 0
.0

1
 0

.1 1 1
0

 1
00

U
 (

%
)

On/O Interval (Sec) (Log scale)

(a) Utilization

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0
.0

01

 0
.0

1
 0

.1 1 1
0

 1
00

T
D

 (
%

)

On/O Interval (Sec) (Log scale)

LEDBAT-BA
LEDBAT-SS
LEDBAT++

FlexiS

(b) Throughput degradation

 0

 20

 40

 60

 80

 100

 120

 0
.0

01

 0
.0

1
 0

.1 1 1
0

 1
00

P
9
0
(Q

D
)

(m
s
)

On/O Interval (Sec) (Log scale)

(c) Extra 90th percentile QD

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0
.0

01

 0
.0

1
 0

.1 1 1
0

 1
00

 R
R

 (
%

)

On/O Interval (Sec) (Log scale)

(d) Extra retransmission rate

Fig. 5. Responsive test results

LBE flows with different RTTs were also studied. FlexiS
has similar performance irrespective of its RTT. Whereas,
LEDBAT and LEDBAT++ are more affected by RTT. Their
utilization and intrusion increase with the decrease of RTT.
Due to space limitation, the results are not shown here.

8) Forward Direction Load Test: This test studies how
FlexiS performs with varying levels of traffic in its forward
direction. Two groups of experiments were conducted. In both
groups, the bottleneck link capacity was set to 100 Mbps. The
network was loaded with MAWI traces. The forward direction
load was one of wide11, wide33, wide52, wide74, wide94
and wide108. The reverse direction load was always wide11.
These traces all have low variation in rate. The intention is
to ensure load stability while we are introducing burstiness
to the network. The first group of experiments examined the
performance of one (n = 1) LBE flow H4→H7. While the
second group investigated nine (n = 9) LBE flows, which
used three different paths: H3· · ·H6, H4· · ·H7, and H5· · ·H8.
There were three flows on each path. Fig. 6 shows the results.
Utilization for the 108% loaded scenario is not shown in the
figure since there is no AB left in this case and utilization
cannot be calculated.

The utilization of a single FlexiS or LEDBAT++ flow
declines drastically from around 90% to slightly over 40%. In a
different test, we replaced MAWI traces with constant packet
rate BE flows. The results showed that FlexiS has a pretty
stable utilization (around 87%) for all loads. This indicates that
FlexiS’ low utilization in this test is caused by the burstiness
of the cross traffic. When a packet burst arrives, FlexiS
yields all demanded bandwidth to the cross traffic. When
the burst leaves, FlexiS cannot timely absorb all bandwidth
released by the burst because it does not leave large backlog
in bottleneck buffer and it increases its rate conservatively
after rate reduction. We measured the bandwidth wasted (Bw)
by FlexiS and they do not differ greatly for different loads.
However the utilization reduces significantly because when
Bw is given, utilization reduces with the decrease of AB.
Fig. 6b shows that multiplexing can improve utilization of
both FlexiS and LEDBAT++.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

10

 40

 50

 60

 70

 80

 90

 100

 110

 11 33 52 74 94

U
 (

%
)

Bottleneck Load (%)

(a) Utilization (1 LBE flow)

 100

 200

 300

 400

 500

 600

11 33 52 74 94

U
 (

%
)

Bottleneck Load (%)

LEDBAT-BA
LEDBAT-SS
LEDBAT++

FlexiS

(b) Utilization (9 LBE flows)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 11 33 52 74 94 108

T
D

 (
%

)

Bottleneck Load (%)

LEDBAT-BA
LEDBAT-SS
LEDBAT++

FlexiS

(c) TD (1 LBE flow)

 0

 5

 10

 15

 20

11 33 52 74 94 108

T
D

 (
%

)

Bottleneck Load (%)

(d) TD (9 LBE flows)

 0

 20

 40

 60

 80

 100

11 33 52 74 94 108

P
9
0
(Q

D
)

(m
s
)

Bottleneck Load (%)

(e) ∆P90(QD) (1 LBE flow)

 0

 20

 40

 60

 80

 100

 120

11 33 52 74 94 108

P
9
0
(Q

D
)

(m
s
)

Bottleneck Load (%)

(f) ∆P90(QD) (9 LBE flows)

Fig. 6. Impact of forward direction load on the performance of LBE CCAs.
NB the Y axes of figures on the left and right hand side columns have different
ranges.

A single FlexiS flow has negligible impact on BE flows.
Nine FlexiS flows inflict higher TD when the bottleneck is
saturated but do not increase ∆P90(QD) significantly. The
higher TD (6.5% at 108% load) is caused by two factors:
(1) FlexiS does not decrease CWND below 2 MSS; (2) when
FlexiS cannot obtain σ RTT samples when LD ≥ τ , it will
increase CWND.

Increasing the number of LEDBAT connections can also
increase their intrusion. When the bottleneck is 108% loaded,
nine LEDBAT-BA connections take away almost one fourth of
bandwidth (22.6%) from BE flows. LEDBAT and LEDBAT++
inflict higher extra P90(QD) than FlexiS in most cases.
Retransmission rate of the BE flows is not seriously affected
by the LBE CCAs. In particular, FlexiS inflicts nearly no extra
RR in most cases. Therefore, the graphs are omitted.

9) Reverse Direction Load Test: This test examines the per-
formance of FlexiS when traffic level in the reverse direction
varies. The bottleneck link capacity was set to 100 Mbps. The
network was loaded with MAWI traces. The forward direction
load was always wide11 and the reverse direction load was one
of the traces: wide11, wide33, wide52, wide74, wide94 and
wide108. One LBE flow H4→H7 was studied. The results are
shown in Fig. 7

All LBE CCAs have high utilization when the reverse
direction load is low (<= 52%). FlexiS and LEDBAT++
have more throughput drop when the load in the reverse
direction increases. In another test, we replaced MAWI traces
with constant packet rate BE flows, and discovered that the
utilization of all LBE CCAs do not drop until the reverse

 0

 20

 40

 60

 80

 100

11 33 52 74 94 108

U
 (

%
)

Reverse Direction Bottlenecck Load (%)

(a) Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

11 33 52 74 94 108

T
D

 (
%

)

Reverse Direction Bottleneck Load (%)

LEDBAT-BA
LEDBAT-SS
LEDBAT++

FlexiS

(b) Throughput degradation

 0

 20

 40

 60

 80

11 33 52 74 94 108

P
9

0
(Q

D
)

(m
s
)

Reverse Direction Bottleneck Load (%)

(c) Extra 90th percentile QD

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

11 33 52 74 94 108

 R
R

 (
%

)

Reverse Direction Bottleneck Load (%)

(d) Extra retransmission rate

Fig. 7. The impact of reverse direction load on the performance of LBE
CCAs

direction bottleneck gets overloaded (110% load), in which
case, FlexiS’ utilization drops mildly to 71%. This suggests
that on the one hand, FlexiS responds to reverse direction
congestion, and on the other, its utilization is affected by
the burstiness of the cross traffic. Due to the use of OWD
in congestion detection, LEDBAT is less affected by reverse
direction congestion. However, this is only achievable in
controlled environments, where the receiver’s TCR is known.
In practice, its utilization is determined by the accuracy of the
TCR estimator.

Because the forward direction BE flows are nearly not
affected by the LBE CCAs, intrusion measures how intrusive
of the LBE CCAs to the reverse direction BE flows. FlexiS
has negligible impact on the BE flows, while LEDBAT and
LEDBAT++ inflict slightly higher intrusion.

10) RTT Test: The goal of this test is to investigate the
impact of RTT on the performance of FlexiS. We have tested
the LBE CCAs with constant packet rate BE cross traffic and
real traffic traces with low variation in rate, in this test, we
will test them with traces that have higher variation in rate.
Therefore, we used wide42 (stddev = 20.76) as the forward
direction load and wide25 as the reverse direction load. In
order to facilitate cross-test comparison, this pair of traces
were also used in most of the tests presented in the rest of
this subsection. The capacity of the bottleneck link was set to
100 Mbps. One LBE flow was examined and it took one of
the nine paths in turn. Please refer to Fig. 2 for the RTT of
each path. The results are shown in Fig. 8.

FlexiS maintains a quite stable bandwidth utilization
(around 50%) irrespective of its RTT. In contrast, the utiliza-
tion of LEDBAT and LEDBAT++ decrease significantly with
the increase of RTT. The reason is that FlexiS adopts an RTT-
independent increase function while LEDBAT uses an RTT-
dependent increase function. The utilization of all LBE CCAs
decline due to the increased burstiness of the cross traffic.
This can be easily observed by comparing the utilization of
100 ms connections in Fig 8a with those when load is 33%
or 52% in Fig 6a. The reason in the case of FlexiS is that

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

11

 0

 20

 40

 60

 80

 100

10 32 58 78 100 126 156 178 204

U
 (

%
)

RTT of the LBE ow (ms)

(a) Utilization

 0

 1

 2

 3

 4

 5

 6

10 32 58 78 100 126 156 178 204

T
D

 (
%

)

RTT of the LBE ow (ms)

LEDBAT-BA
LEDBAT-SS
LEDBAT++

FlexiS

(b) Throughput degradation

 5

 10

 15

 20

 25

 30

 35

 40

 45

10 32 58 78 100 126 156 178 204

P
9

0
(Q

D
)

(m
s
)

RTT of the LBE Flow (ms)

(c) Extra 90th percentile QD

-0.2

-0.15

-0.1

-0.05

 0

10 32 58 78 100 126 156 178 204

 R
R

 (
%

)

RTT of the LBE ow (ms)

(d) Extra retransmission rate

Fig. 8. The impact of RTT on the performance of LBE CCAs

the increased amplitude of oscillation of AB causes more
bandwidth wastage. To be specific, as a response to a bigger
AB reduction FlexiS will release more bandwidth, but as a
reaction to a lager AB increase it will not absorb more because
the AB will not remain high for long enough duration to allow
FlexiS to do so.

The intrusion of FlexiS increases moderately with the in-
crease of RTT. This is caused by the difference in feedback
delay for connections with different RTTs, and by the fact that
FlexiS keeps increasing its rate before the arrival of congestion
feedback. In comparison, the intrusion inflicted by LEDBAT
increases with the decrease of RTT.

11) AQM test: This test studies how Active Queue Man-
agement (AQM) algorithms affect the performance of FlexiS.
LEDBAT has been shown to have a reprioritization problem
– it becomes as aggressive as TCP NewReno – when AQM
is deployed at the bottleneck [15]. In this test, we study if
FlexiS also suffers from similar problems. In the first group of
experiments, the capacity of the bottleneck link was set to 100
Mbps. Wide42 was used as forward direction load and wide25
as reverse direction load. The QDISC of the bottleneck router
was set to PIE [49]. Limit of PIE was set to 1250 packets,
which corresponds to a 150 ms hard limit on QD. Target of
PIE was set to 5, 10, 15, 20 or 25 ms. One LBE flow H4→H7
was studied. Fig. 9a, 9b, and 9c show the results.

The utilization of the LBE CCAs do not change notice-
ably with the adjustment of PIE’s target. If we compare the
utilization of 100 ms connections in Fig 8a with those in
Fig 9a, it is not difficult to observe that switching from
PFIFO to PIE does not considerably alter the utilization of
FlexiS and LEDBAT++, but reduce that of LEDBAT-SS and
LEDBAT-BA by 35% and 32% respectively. The major reason
for the difference is that FlexiS and LEDBAT++ respond to
congestion earlier and more aggressively, so they can avoid
many big rate reductions caused by packet loss.

FlexiS has slightly higher impact on the BE traffic compared
to other LBE CCAs. Generally speaking, the LBE CCAs inflict
lower TD but higher extra P90(QD) with the increase of PIE’s
target. Because they have little impact on the BE connections’

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

5 10 15 20 25

U
 (

%
)

Target of PIE (ms)

(a) Utilization (load = wide42)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25

T
D

 (
%

)

Target of PIE (ms)

LEDBAT-BA
LEDBAT-SS
LEDBAT++

FlexiS

(b) TD (load = wide42)

-4

-2

 0

 2

 4

 6

5 10 15 20 25

P
9

0
(Q

D
)

(m
s
)

Target of PIE (ms)

(c) ∆P90(QD) (load = wide42)

 10

 15

 20

 25

 30

 35

 40

 45

NewReno Cubic BBR

T
D

 (
%

)

BE CCAs

LEDBAT-BA
LEDBAT-SS
LEDBAT++

FlexiS

(d) TD (load = greedy flows)

Fig. 9. The impact of AQM on the performance of LBE CCAs. The default
target of PIE is 15 ms.

retransmission rate, the corresponding graph is not shown.
In the second group of experiments, the bottleneck capacity

was set to 10 Mbps. QDISC was set to PIE with its target set
to 15 ms. The network was loaded with one greedy BE flow
H5→H7. It was generated by one of the bulk data transfer
applications described in subsection IV-B. Its CCA was one
of the following: NewReno, CUBIC and BBR. One LBE flow
H5→H7 was studied. The starting interval between the BE and
LBE flows was 10 seconds. The results are shown in Fig. 9d.

When the BE flow uses either NewReno or CUBIC, LED-
BAT and LEDBAT++ transform into BE CCAs while FlexiS
preserves its LBE property. The NewReno flow loses 43.58%
and 42.84% of throughput, while the CUBIC flow loses
36.57% and 38.15% of throughput to the LEDBAT-BA and
LEDBAT++ flow respectively. In comparison, TD inflicted
by FlexiS on NewReno and CUBIC are 9.97% and 9.66%
respectively. BBR is the most aggressive BE CCA among
the three. No LBE CCA can take a noticeable fraction of
bandwidth from it.

12) Fairness Test: This test assesses FlexiS’ capability of
fairly sharing AB between its own flows. Both intra- and
inter-RTT fairness are examined. The first two groups of
experiments examine intra-RTT fairness. In the first group,
the network was unloaded. The goal is to examine fairness
in an environment without any interference from cross traffic.
In the second group, the network was loaded with wide11 in
both directions. The goal is to study fairness in a more realistic
environment and analyze how cross traffic affect fairness of the
LBE CCAs. In both groups, the capacity of the bottleneck link
was set to 20 Mbps. The bottleneck buffer was set to 4 BDP of
a 100 ms connection. Fairness between three LBE flows was
measured. All of them used the path H4· · ·H7. LBE flows
were started at 30-second intervals. Fairness was measured
for 600 seconds. The results are shown in Fig. 10.

FlexiS and LEDBAT++ achieve high intra-RTT fairness in
both unloaded and loaded scenarios with FlexiS’ JFI > 0.99
in both scenarios. While LEDBAT flows cannot fairly share
AB when the network is unloaded, which is the result of the so

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

12

 0

 0.2

 0.4

 0.6

 0.8

 1

JF
I

LEDBAT-BA
LEDBAT-SS
LEDBAT++

FlexiS

(a) 20 Mbps, unloaded network

 0

 0.2

 0.4

 0.6

 0.8

 1

JF
I

(b) 20 Mbps, loaded network

Fig. 10. Intra-RTT fairness of LBE CCAs

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 32 58 78 126 156 178 204 800

JF
I

RTT of 2nd Flow (ms)

(a) 100 Mbps, unloaded network

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 32 58 78 126 156 178 204 800

JF
I

RTT of 2nd Flow (ms)

LEDBAT-BA
LEDBAT-SS
LEDBAT++

FlexiS

(b) 100 Mbps, loaded network

Fig. 11. Inter-RTT fairness of LBE CCAs. RTT of the first LBE flow: 100
ms

called late comer advantage problem [3] [13] – the late coming
flow takes the QD maintained by early coming flows as part of
base delay, therefore become more aggressive than precedent
flows. In the loaded scenario, BE flows introduce more delay
dynamics, which gives the late coming flows opportunity to
discover true base delay. Therefore fairness of LEDBAT is
improved.

The third and fourth groups of experiments evaluate inter-
RTT fairness. In the third group, the network was unloaded.
In the fourth group, Wide42 was used as forward direction
load and wide25 as reverse direction load. In both groups
of experiments, the capacity of the bottleneck link was set
to 100 Mbps. The bottleneck buffer was set to 4 BDP of a
100 ms connection. The fairness between two LBE flows was
studied. Starting interval of LBE flows was 10 seconds in the
third group and 30 seconds in the fourth group. Fairness was
measured for 300 seconds. The first LBE flow had a fixed path
H4· · ·H7 and the second LBE flow used one of the eight paths
that is different from the one used by the first flow plus one
more path (not shown in Fig. 2), which has an RTT of 800
ms (simulating a satellite link). Fig. 11 presents the results.

FlexiS has slightly lower JFI in an unloaded network. This
is because that flows may take RTT samples at different times
and with different frequencies. When the change in RTT is
small (which is typical in an unloaded network), it may be
detected by one flow (usually the one with a shorter feedback
delay) but not another, which makes the former reduce rate
more frequently and consequently obtain less bandwidth share.
In a loaded network, packet bursts from cross traffic can make
RTT increase more aggressively, which can be detected by all
contending FlexiS flows.

Fairness of LEDBAT-BA is affected by the difference in
RTT. The larger the difference, the lower the JFI. LEDBAT-
SS has a very unstable performance in an unloaded network.
Its JFI varies greatly between runs of the same experiment
and between different experiments. Generally, cross traffic has

R1

R3

R2

R4H1 H2
10Mbps

1Gbps

1Gbps 1Gbps

1Gbps

1Gbps

2ms 2ms

2ms 2ms

10/60ms 10/60ms

eth1

LBE DATA

LBE ACK

Fig. 12. A Diamond Topology

 78
 80
 82
 84
 86
 88
 90
 92
 94
 96

10 40 160 640

U
 (

%
)

Route Change Interval (Sec) (Log scale)

(a) OWD of P2: 24 ms

 40

 50

 60

 70

 80

 90

10 40 160 640

U
 (

%
)

Route Change Interval (Sec) (Log scale)

(b) OWD of P2: 124 ms

Fig. 13. Results of route change test. NB the Y axes of figures on the left
and right hand side columns have different ranges.

no significant impact on LEDBAT-BA but can improve the
fairness of LEDBAT-SS. In an unloaded network, LEDBAT++
flows having typical RTTs can achieve higher fairness. When
a LEDBAT++ flow’s RTT falls outside [7.5, 120] ms, it will
not rate adjusted effectively, so fairness declines. Cross traffic
has adverse impact on the fairness of LEDBAT++.

13) Route Change Tests: An Internet route between two
end hosts may change during the lifetime of a TCP connection
due to the moving of an end host or failure of a link. This test
examines the robustness of FlexiS in the presence of route
change. The topology used is diamond, which is illustrated in
Figure 12.

The bottleneck link is H1−R1. It has a capacity of 10 Mbps.
The capacity of the rest of links are 1 Gbps. The OWD of links
are annotated in the graph. The bottleneck router buffer is such
set that the maximum QD is 150 ms. There are two paths be-
tween H1 and H2. The first path is P1: H1−R1−R2−R4−H2.
And the second is P2: H1−R1−R3−R4−H2. The default path
is P1. The OWD of P1 is 8 ms. P2’s OWD was set to 24 ms in
the first group of experiments and to 124 ms in the second. The
network was not loaded with any BE flows in all experiments.

A simple route change scenario was studied: a link is being
announced alternatively as up and down by a router due to
the malfunction of a NIC. In our specific case, eth1 of R1 is
the malfunctioning NIC and R1−R2 is announced as up and
down alternatively. When eth1 is down, route between H1 and
H2 is automatically switched from P1 to P2 by the routers.
When eth1 is brought up, P1 is used again. The initial state
of eth1 was set to on and it was brought down and then up
again during an experiment. Eth1 of R1 stayed in up or down
for the same amount of time. Up/down duration F was set to
10, 40, 160 or 640 seconds. A single LBE flow H1→H2 was
studied. It ran for 3 × F seconds. The results are shown in
Fig. 13.

The utilization of FlexiS is almost not affected by the

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

13

R1 R2 R3 R4H1 H2

H7

H3 H4

H8

H5 H6

H9 H10

BE wide42 / LBE H1->H2

B
E
 w

id
e
2

8

L
B

E
 H

3
->

H
8

L
B

E
 H

4
->

H
9

L
B

E
 H

5
->

H
1
0

B
E
 w

id
e
3

6

B
E
 w

id
e
4

2
B

E
 w

id
e
2

5

B
E
 w

id
e
4

7
B

E
 w

id
e
3

7

BE wide25

Fig. 14. A Parking Lot Topology

OWD of P2 (maintained between 84% and 93% for both
scenarios) and only slightly impacted by up/down duration. In
comparison, the utilization of LEDBAT and LEDBAT++ are
seriously affected by OWD of P2. When up/down duration is
10 seconds, their utilization drop by approximately 50% when
OWD of P2 is increased from 24 ms to 124 ms. This is because
when the difference between the OWDs of P1 and P2 is greater
than or equal to the targets of LEDBAT and LEDBAT++,
the two LBE CCAs will take this difference as QD and keep
decreasing rate until base delay is updated. Because base delay
of LEDBAT and LEDBAT++ can be updated to the OWD of
P2 when up/down duration is 640 seconds, their utilization is
improved greatly. The retransmission rate of the LBE CCAs
except LEDBAT-SS are negligible, so it is now shown here.

14) Multiple Bottlenecks Test: In a more realistic scenario,
a data flow can traverse multiple congested gateways and
wait in various queues for transmission. This test investigates
the performance of FlexiS in such scenarios. The topology
(Fig. 14) used is adapted from the parking lot topology
originally proposed in [50]. The bottlenecks are the central
links R1−R2, R2−R3 and R3−R4. The capacity of the central
links are 100 Mbps and those of the peripheral links are 1
Gbps. Except links H1−R1 and R4−H2, which have 0 ms
OWDs, the rest of links all have 10 ms OWDs. The buffer of
all bottleneck routers are set to 2.5 BDP of a 60 ms connection,
which corresponds to a maximum QD of 150 ms.

In the first group of experiments (flow notations are shown
in bold italic font in Fig. 14), a BE flow H1→H2 (cloned from
wide42) runs across multiple congested gateways. Another
BE flow H2→H1 (cloned from wide25) runs in the reverse
direction. Three LBE flows H3→H8, H4→H9, and H5→H10
pass through one of the gateways each. Fig. 15 presents the
results.

The utilization of the LBE CCAs is not seriously affected
by which bottleneck they traverse. LEDBAT has comparatively
higher utilization than FlexiS and LEDBAT++ mainly because
it increases faster after rate reduction in this specific scenario
(RTT = 60 ms). In the meantime, it also inflicts much heavier
intrusion on the BE flow. With similar intrusiveness, FlexiS
achieves higher utilization than LEDBAT++.

In the second group of experiments, 32 LBE flows run
through multiple bottlenecks, with each bottleneck loaded with
different BE traffic (annotated in Fig. 14 in normal font). The
traces were so chosen that the amount of AB and variation in

 0

 20

 40

 60

 80

 100

R1-R2 R2-R3 R3-R4

U
 (

%
)

Bottleneck Links

(a) Utilization at different
bottlenecks

 0

 2

 4

 6

 8

 10

 12

 14

T
D

 (
%

)

LBE CCAs

(b) Throughput degradation

 0

 20

 40

 60

 80

 100

 120

 140

 160

P
9
0
(Q

D
)

(m
s
)

LBE CCAs

LEDBAT-BA
LEDBAT-SS
LEDBAT++

FlexiS

(c) Extra P90 QD

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 R
R

 (
%

)

LBE CCAs

(d) Extra retransmission rate

Fig. 15. Performance of LBE CCAs when BE flows run through multiple
congested gateways

 0

 20

 40

 60

 80

 100

 120

 140

U
 (

%
)

LBE CCAs

(a) Utilization

-5

 0

 5

 10

 15

H3->H8 H4->H9 H5->H10

T
D

 (
%

)

BE Flows

(b) Throughput degradation

-10

 0

 10

 20

 30

 40

 50

H3->H8 H4->H9 H5->H10

P
9
0
(Q

D
)

(m
s
)

BE Flows

LEDBAT-BA
LEDBAT-SS
LEDBAT++

FlexiS

(c) Extra 90th percentile QD

-0.1

-0.05

 0

 0.05

 0.1

 0.15

H3->H8 H4->H9 H5->H10

 R
R

 (
%

)

BE Flows

(d) Extra retransmission rate

Fig. 16. Performance of LBE CCAs when 32 LBE flows run through multiple
bottlenecks

AB at each bottleneck are different. The intention is to create
a virtual network that bears a closer resemblance to the real
Internet. Fig. 16 shows the results.

Thirty-two FlexiS flows have a utilization of 92.44%, a
max(TD) of 6.89%, a max(∆P90(QD)) of 1 ms and a
max(∆RR) of 0.018%. All other LBE CCAs over-utilize AB.
As a result, they are more intrusive to the BE flows.

The LBE CCAs have lower utilization and intrusion when
only 1 flow runs across multiple bottlenecks. The results are
not presented here due to space limitation.

E. Internet Tests

The goal of the Internet test is to study the performance of
FlexiS in a realistic environment. The LBE CCAs were tested
on two Internet paths – Data center to Data center (D2D) and
Data center to Residence (D2R). On each end host, TCP send
and receive buffers were expanded and CPU backlog queue
limit was increased. Tcp no metrics save was set to 1.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

14

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

FlexiS LEDBAT-SS LEDBAT++ CUBIC

T
p
u
t

(M
b
p
s
)

Congestion Control Algorithms

(a) Throughput (1 flow)

 20

 30

 40

 50

 60

 70

 80

 90

FlexiS LEDBAT-SS LEDBAT++ CUBIC

P
9
9
(R

T
T
)

(m
s
)

Congestion Control Algorithms

(b) P99(RTT) (1 flow)

 0

 0.5

 1

 1.5

 2

 2.5

 3

FlexiS LEDBAT-SS LEDBAT++ CUBIC

R
R

 (
%

)

Congestion Control Algorithms

(c) RR (1 flow). Some (≥ 3%) of
LEDBAT-SS’ outliers are not

shown

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

FlexiS LEDBAT-SS LEDBAT++

JF
I

Congestion Control Algorithms

(d) JFI (5 flows)

Fig. 17. Data center to data center communications

For the D2D path, the sender was a Linode virtual machine
locating in Atlanta USA (referred to as atlanta.taht.net). The
receiver was another Linode virtual machine in Newark USA
(referred to as newark.taht.net). The observed minimum RTT
of this path was 17 ms. The throughput was upper bounded by
the sender’s subscription plan to 4 Gbps. The two machines
were installed with Ubuntu Desktop 22.10 and Linux kernel
v5.19.0.

Two experiments were conducted on this path. The first
experiment examines the throughput, RTT and retransmission
rate of a single LBE flow. The second studies throughput
fairness between five competing LBE flows of the same
kind. The first experiment was carried out on 2023.03.26,
2023.03.28, 2023.03.30 and 2023.04.01. The dates were so
chosen that both work days and weekend were sampled. On
an experimental day, a random time was chosen to launch the
experiment. Every hour, the sender made four 60-second bulk
data transfers to the receiver using each of the CCAs in turn:
FlexiS, LEDBAT-SS, LEDBAT++, and CUBIC. The starting
order of the CCAs was randomized. There were at least 15
seconds of break between the run of each CCA.

The average throughput, 99th percentile RTT and retrans-
mission rate of each CCA obtained from all ninety-six runs of
the experiment are summarized in a box-whisker plot shown
in Fig. 17. The three bars of a box from bottom to top mark
the 25th, 50th and 75th percentiles respectively. The whiskers
extend to 1.5 times of inter-quartile range. The two bars at the
ends of the whiskers are minimum and maximum values within
the whisker delimited boundary. Values outside the boundary
are considered as outliers, which are represented as solid dots
in the figure.

As is shown in Fig. 17a, FlexiS is able to achieve com-
paratively higher throughput in most of the runs. The median
throughput of FlexiS, LEDBAT-SS, LEDBAT++ and CUBIC
are 2835, 1028, 590, and 2171 Mbps respectively. The inter-
quartile ranges for the CCAs in the same order are 997,
2083, 889, and 2615 Mbps. After analyzing the trace files, we

discovered that in most of the runs all CCAs except FlexiS
encountered a series of packet losses after slow start, which
forced them to reduce their rates well below AB and from then
on further losses prevented them from increasing their rates to
the AB. In contrast, by omitting slow start and responding
to congestion earlier, FlexiS could avoid many long QDs
(Fig. 17b) and packet losses (Fig. 17c), therefore could keep
its throughput at a much higher value.

The second experiment was carried out on 2023.04.22,
2023.04.26, 2023.04.28, and 2023.05.01. On each experimen-
tation day, a random time was chosen to start the experiment.
Every hour, the sender woke up and established five connec-
tions with the receiver using one of the LBE CCAs in turn:
FlexiS, LEDBAT-SS, and LEDBAT++. There was a 10-second
starting interval between consecutive flows of the same CCA.
The measurement for fairness started from 10 seconds after the
establishment of the last connection and lasted for 60 seconds.
The starting order of the LBE CCAs was randomized. There
were at least 15 seconds of break between each LBE CCA.
JFI of all ninety-six runs are presented in box-whisker plots,
which is shown in Fig. 17d.

In most of the runs, FlexiS has higher JFI than other LBE
CCAs. The median JFI of FlexiS is 0.97 and that of LEDBAT-
SS and LEDBAT++ are 0.87 and 0.56 respectively. Based on
our observation, some of the low JFIs obtained by FlexiS
might be the result of flows not having the same bottleneck.
We examined the trace file of the 69th run, in which FlexiS
obtained its minimum JFI of 0.4. We discovered that for
the flow having the least bandwidth share, the minimum,
maximum, average, and standard deviation of RTT are 21.6,
353.4, 127.7, and 103.2 ms as reported by Tcptrace. And
the corresponding values for the flow with the maximum
bandwidth share are 19.5, 73.4, 20.6, and 1.8 ms. This suggests
that the flows might have used different paths or have been
treated differently by the network. For other low JFI runs, the
difference in RTT statistics are less obvious. However, due to
the lack of control over the Internet paths under investigation,
we cannot prove that the flows had the same bottleneck.

LEDBAT++ has very low JFI in most of the runs. Unlike
FlexiS, LEDBAT++ obtains its highest JFI (0.97) when flows
have remarkably distinctive RTT statistics. LEDBAT-SS has
comparatively higher JFI than LEDBAT++. Considering that
it also has higher RR, we believe that frequent packet losses
and faster rate increase after reduction improved its fairness.

In the D2R experiment, newark.taht.net was the sender and
a home PC locating in mainland China was the receiver.
The observed minimum RTT was 218 ms and the throughput
was limited by the receiver’s subscription plan to 100 Mbps.
The home PC was installed with Ubuntu Desktop 22.04 and
Linux kernel v5.19.0. The experiment was carried out on
2023.04.10, 2023.04.12, 2023.04.14, and 2023.04.16. On an
experimentation day, a random time was chosen to start the
experiment. Every hour, the sender made four 60-second bulk
data transfers to the receiver using each of the CCAs in turn:
FlexiS, LEDBAT-SS, LEDBAT++, and CUBIC. The starting
order of the CCAs was randomized. There were at least 15
seconds of break between the run of each CCA. Total 96 runs
were conducted, among which, 11 are excluded from analysis,

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

15

 0.1

 1

 10

 100

FlexiS LEDBAT-SS LEDBAT++ CUBIC

T
p
u
t

(M
b
p
s
)

(L
o
g
 S

c
a
le

)

Congestion Control Algorithms

(a) Throughput

 250

 300

 350

 400

 450

FlexiS LEDBAT-SS LEDBAT++ CUBIC

R
T
T
 (

m
s
)

Congestion Control Algorithms

(b) P90(RTT)

 0.1

 1

 10

FlexiS LEDBAT-SS LEDBAT++ CUBIC

R
R

 (
%

)
L
o
g
 S

c
a
le

Congestion Control Algorithms

(c) Retransmission Rate

 0

 50

 100

 150

 200

16:2
8

2:2
8

7:2
8

16:5
8

2:5
7

6:5
8

15:5
8

 0

 100

 200

 300

 400

T
p
u
t/

R
R

R
T
T
 (

m
s
)

Beijing Time

RR (%)
Tput (Mbps)

P90(RTT) (ms)

(d) Tput/RTT/RR of FlexiS

Fig. 18. Data center to residence communications

because in these experiments the sender could not get any
ACK from the receiver. The results are summarized in Fig. 18.

FlexiS and LEDBAT++ have overall lower throughput com-
pared to LEDBAT-SS and CUBIC. The median throughput
of FlexiS and LEDBAT++ are 1.28 Mbps and 1.12 Mbps
respectively and that of LEDBAT-SS and CUBIC are 12.1
Mbps and 17.9 Mbps respectively. The three LBE CCAs have
similar RTT distributions: the P90(RTT) is greater than 246
ms (> min(RTT)) in 75% of runs. And they have abnormally
high retransmission rates in at least 25% of the runs. To be
specific, the 75th percentiles of RR are 11.6%, 8.6%, 10.1%,
and 15.5% for FlexiS, LEDBAT-SS, LEDBAT++, and CUBIC
respectively. Because no abnormality was observed in the
traces, we believe that the high QD and RR were the result of
severe congestion.

Fig. 18d shows the evolution of throughput, P90(RTT) and
retransmission rate of FlexiS during 48 hours between April
10 and 13. Other CCAs are not shown for visual clarity. It
shows clearly that FlexiS has a diurnal behavior – it has high
throughput, low RTT, and low RR in the late nights and the
early mornings (period I) but the opposite performance in the
rest of the days (period II). It is not difficult to discover that
the RTT in period II is always higher than that in period I,
which suggests that the network was congested in period II.
Therefore, the low throughput of FlexiS in period II should
be the result of yielding bandwidth to cross traffic at times
of congestion. While the high throughput of LEDBAT-SS and
CUBIC in period II should be the result of competition.

V. CONCLUSION

We have proposed a novel LBE CCA named FlexiS. It
monitors RTT through a sliding observation window. If the
trend in RTT within the window is increasing, it assumes that
the network is congested, it will then reduce its rate by a fixed
percent. It will otherwise increase its sending rate according
to a cubic function of time.

Extensive emulation tests and preliminary Internet experi-
ments showed that FlexiS has the following properties. First,
In most cases, it inflicts very low intrusion to cross traffic.

The only exception is when AB is very small or zero. Two
solutions can be taken to mitigate this problem: (1) instead of
increasing rate when ND < σ, we can temporarily increase
LD until ND ≥ σ; and (2) decrease CWND below 2 MSS.
We will leave the investigation into this issue as a future work.

Second, it scales to ABs that differ by several orders of
magnitude. In the meantime, it also has a slower convergence
time than slow start based LBE CCAs. The utilization of
FlexiS is not affected by RTT, AQM and the amount of AB
but by bottleneck capacity and the oscillation of AB. Usually,
the smaller the bottleneck capacity, the lower the utilization.
High frequency and amplitude of oscillation of AB can also
reduce its utilization. However, the compromised utilization is
an unavoidable trade-off for low intrusion. A temporary solu-
tion to improving utilization without significantly increasing
intrusion is to establish multiple connections between a sender
and a receiver.

Third, reverse direction congestion can reduce FlexiS’ uti-
lization in the forward direction, because RTT is used in
congestion detection. One solution is to make routers to give
ACK packets higher priority. But that will require the support
of routers. Another solution is to replace RTT with OWD.
However, OWD is difficult to estimate without the support of
the receiver because the receiver’s TCR is unknown to the
sender. Further, the presence of non-zero clock skew and drift
are more difficult to tackle. A third option would be to search
for a variable to replace RTT or OWD in congestion detection.
This variable should be easy to obtain and not affected by
reverse direction congestion. We will leave it as a future work.

Fourth, FlexiS has high intra-RTT fairness in both loaded
and unloaded networks regardless of bottleneck capacity. It
also has high Inter-RTT fairness in most situations. However,
in an unloaded network with small bottleneck capacity, FlexiS
flows with large RTT difference will have reduced fairness.

Fifth, FlexiS preserves low priority when AQM is deployed
at the bottlenecks.

Sixth, FlexiS adapts to route changes quickly. Its perfor-
mance is almost not affected by RTT difference in alternative
routes but slightly impacted by route change interval.

Seventh, because FlexiS employs a Theil-Sen estimator to
estimate the trend in RTT, it has comparatively higher storage
and computation demands.

Finally, it is a sender side only CCA, which makes it easy
to deploy.

ACKNOWLEDGMENTS

The author would like to thank the anonymous reviewers
for their time and effort in providing valuable feedback to
this paper. We truly appreciate the help of Dave Täht on
making their Linode virtual machines atlanta.taht.net and
newark.taht.net available to us for the Internet tests. The author
would also like to thank Michael Welzl for the introduction of
LBE services and the CORE emulator and for the suggestions
and advice given to earlier design proposals of the LBE CCA.
This work is a continuation of a previous effort in designing
an LBE CCA, which was funded by the University of Oslo.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

16

REFERENCES

[1] A. Venkataramani, R. Kokku, and M. Dahlin, “Tcp nice: a mechanism
for background transfers,” in USENIX OSDI, 2002.

[2] A. Kuzmanovic and E. W. Knightly, “Tcp-lp: low-priority service via
endpoint congestion control,” IEEE/ACM Transactions on Networking,
2006.

[3] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind, “Low extra
delay background transport (rfc6817),” https://datatracker.ietf.org/doc/
html/rfc6817, 2012.

[4] “Ledbat++: Congestion control for background traffic,” https://
datatracker.ietf.org/doc/html/draft-irtf-iccrg-ledbat-plus-plus-01, 2020.

[5] M. Bagnulo, A. Garcia-Martinez, G. Montenegro, and P. Balasubra-
manian, “rledbat: receiver-driven low extra delay background transport
for tcp,” https://datatracker.ietf.org/doc/html/draft-irtf-iccrg-rledbat-03,
2022.

[6] D. Havey, “Ledbat background data transfer for windows,”
https://techcommunity.microsoft.com/t5/networking-blog/
ledbat-background-data-transfer-for-windows/ba-p/3639278.

[7] Q. Li, “Source code of flexis,” https://github.com/tinalee77/FlexiS.
[8] R. Jain, “A delay based approach for congestion avoidance in intercon-

nected heterogeneous computer networks,” ACM Computer Communi-
cation Review, 1989.

[9] Z. Wang and J. Crowcroft, “A new congestion control scheme: Slow
start and search (tri-s),” ACM Computer Communication Review, 1991.

[10] ——, “Eliminating periodic packet losses in 4.3–tahoe bsd tcp conges-
tion control,” ACM Computer Communication Review, 1992.

[11] L. Brakmo, S. O’Malley, and L. Peterson, “Tcp vegas: New techniques
for congestion detection and avoidance,” in ACM SIGCOMM, 1994.

[12] H. Im, C. Joo, T. Lee, and S. Bahk, “Receiver-side tcp countermeasure
to bufferbloat in wireless access networks,” IEEE TRANSACTIONS ON
MOBILE COMPUTING, 2016.

[13] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti, “The quest for
ledbat fairness,” in GLOBECOM, 2010.

[14] D. Ros and M. Welzl, “Assessing ledbat’s delay impact,” IEEE Com-
munications Letters, 2013.

[15] Y. Gong, D. Rossi, C. Testa, S. Valenti, and M. D. Täht, “Fighting
the bufferbloat: On the coexistence of aqm and low priority congestion
control,” Computer Networks, 2014.

[16] A. Flickinger, C. Klatsky, A. Ledesma, J. Livingood, and S. Ozer,
“Improving latency with active queue management (aqm) during covid-
19,” 2022.

[17] D. Chiu and R. Jain, “Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks,” Computer Networks
and ISDN Systems, 1989.

[18] S. Floyd, “Connections with multiple congested gateways in packet-
switched networks part 1: one-way traffic,” ACM SIGCOMM Computer
Communication Review, 1991.

[19] T. R. Henderson, E. Sahouria, S. McCanne, and R. H. Katz, “On im-
proving the fairness of tcp congestion avoidance,” in IEEE GLOBECOM,
1998.

[20] S. Floyd, “Highspeed tcp for large congestion windows,” https://
datatracker.ietf.org/doc/html/rfc3649, 2003.

[21] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with tcp throughput,” IEEE/ACM
TRANSACTIONS ON NETWORKING, 2003.

[22] C. L. T. Man, G. Hasegawa, and M. Murata, “Imtcp: Tcp with an
inline measurement mechanism for available bandwidth,” Computer
Communications, 2006.

[23] T. Anderson, A. Collins, A. Krishnamurthy, and J. Zahorjan, “Pcp:
Efficient endpoint congestion control,” in 3rd Symposium on Networked
Systems Design and Implementation, 2006.

[24] D. A. Hayes and G. Armitage, “Revisiting tcp congestion control using
delay gradients,” in IFIP/TC6 NETWORKING 2011, 2011.

[25] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based
congestion control for the datacenter,” in SIGCOMM, 2015.

[26] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey,
and M. Schapira, “Pcc vivace: Online-learning congestion control,”
in the 15th USENIX Symposium on Networked Systems Design and
Implementation, 2018.

[27] T. Meng, N. R. Schiff, P. B. Godfrey, and M. Schapira, “Pcc proteus:
Scavenger transport and beyond,” in SIGCOMM, 2020.

[28] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp
variant,” ACM SIGOPS Operating Systems Review, 2008.

[29] M. Hock, F. Neumeister, M. Zitterbart, and R. Bless, “Tcp lola:
Congestion control for low latencies and high throughput,” in IEEE 42nd
Conference on Local Computer Networks, 2017.

[30] H. Adhari, T. Dreibholz, S. Werner, and E. P. Rathgeb, “Eclipse: A
new dynamic delay-based congestion control algorithm for background
traffic,” in 18th International Conference on Network-Based Information
Systems, 2015.

[31] T. Tsugawa, G. Hasegawa, and M. Murata, “Background tcp data
transfer with inline network measurement,” IEICE Transactions on
Communications, 2006.

[32] H. Shimonishi, T. Hama, M. Y. Sanadidi, M. Gerla, and T. Murase, “Tcp
westwood low-priority for overlay qos mechanism,” IEICE Transactions
on Communications, 2006.

[33] S. Q. V. Trang, E. Lochin, C. Baudoin, E. Dubois, and P. Gelard, “Flower
– fuzzy lower-than-best-effort transport protocol,” in 40th Annual IEEE
Conference on Local Computer Networks, 2015.

[34] D. A. Hayes, D. Ros, A. Petlund, and I. Ahmed, “A framework for
less than best effort congestion control with soft deadlines,” in IFIP
Networking Conference and Workshops, 2017.

[35] G. Carofiglio, L. Muscariello, D. Rossi, C. Testa, and S. Valenti,
“Rethinking the low extra delay background transport (ledbat) protocol,”
Computer Networks, 2013.

[36] H. Theil, “A rank-invariant method of linear and polynomial regression
analysis. i, ii, iii,” in Koninklijke Nederlandse Akademie Wetenschappen,
1950.

[37] P. K. Sen, “Estimates of the regression coefficient based on kendall’s
tau,” Journal of the American Statistical Association, 1968.

[38] R. K. Jain, D. W. Chiu, and W. R. Hawe, “A quantitative measure of
fairness and discrimination for resource allocation in shared computer
systems,” ACM Transaction on Computer Systems, 1984.

[39] S. Valenti, “Source code of ledbat conforming to draft version 00,” https:
//github.com/silviov/TCP-LEDBAT.

[40] D. Rossi, C. Testa, S. Valenti, and L. Muscariello, “Ledbat: the new
bittorrent congestion control protocol,” in Proceedings of 19th Interna-
tional Conference on Computer Communications and Networks, 2010.

[41] S. Valenti and Q. Li, “Source code of ledbat conforming to rfc6817,”
https://github.com/tinalee77/LEDBAT.

[42] Q. Li, “Source code of ledbat++ conforming to draft version 01,” https:
//github.com/tinalee77/LEDBAT-Plus-Plus.

[43] “Common open research emulator,” https://www.nrl.navy.mil/Our-Work/
Areas-of-Research/Information-Technology/NCS/CORE/.

[44] J. Ahrenholz, “Comparison of core network emulation platforms,” in
The 2010 Millitary Communications Conference, 2010.

[45] “Multi-generator (mgen) network test tool,” https://www.nrl.navy.mil/
Our-Work/Areas-of-Research/Information-Technology/NCS/MGEN/.

[46] V. Paxson and S. Floyd, “Wide area traffic: The failure of poisson
modeling,” IEEE/ACM TRANSACTIONS ON NETWORKING, 1995.

[47] “Mawi working group traffic archive,” https://mawi.wide.ad.jp/mawi/.
[48] L. Andrew, C. Marcondes, S. Floyd, L. Dunn, R. Guillier, W. Gang,

L. Eggert, S. Ha, and I. Rhee, “Towards a common tcp evaluation
suite,” in International Workshop on Protocols for Fast Long-Distance
Networks, 2008.

[49] R. Pan, P. Natarajan, F. Baker, and G. White, “Proportional integral
controller enhanced (pie): A lightweight control scheme to address
the bufferbloat problem (rfc8033),” https://datatracker.ietf.org/doc/html/
rfc8033, 2017.

[50] D. Hayes, D. Ros, L. Andrew, and S. Floydd, “Common tcp evaluation
suite,” https://datatracker.ietf.org/doc/html/draft-irtf-iccrg-tcpeval-01,
2014.

Qian Li received the B.S. degree in Computer
Information Management from HeBei university,
HeBei, China, in 2001, and the M.S. degree in
Computer Science from Uppsala University, Upp-
sala, Sweden, in 2010. She is currently working
toward a Ph.D. degree offered by the University
of Oslo. Her research interests include congestion
control algorithms, routing protocols, and intelligent
environments.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2023.3319441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

