lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <CAEXW_YRDiTXJ_GwK5soSVno73yN9FUA5GjLYAOcCTtqQvPGcFA@mail.gmail.com>
Date: Sat, 2 Mar 2024 20:01:17 -0500
From: Joel Fernandes <joel@...lfernandes.org>
To: paulmck@...nel.org
Cc: Steven Rostedt <rostedt@...dmis.org>, Network Development <netdev@...r.kernel.org>, 
	LKML <linux-kernel@...r.kernel.org>, rcu@...r.kernel.org, 
	kernel-team <kernel-team@...udflare.com>
Subject: Re: [PATCH] net: raise RCU qs after each threaded NAPI poll

On Sat, Mar 2, 2024 at 7:25 PM Paul E. McKenney <paulmck@...nel.org> wrote:
>
> On Fri, Mar 01, 2024 at 09:24:15PM -0500, Joel Fernandes wrote:
> > (Shrinking CC a bit)
> >
> > On Thu, Feb 29, 2024 at 1:29 PM Paul E. McKenney <paulmck@...nel.org> wrote:
> > >
> > > On Thu, Feb 29, 2024 at 12:41:55PM -0500, Joel Fernandes wrote:
> > > > > On Feb 29, 2024, at 11:57 AM, Paul E. McKenney <paulmck@...nel.org> wrote:
> > > > > On Thu, Feb 29, 2024 at 09:21:48AM -0500, Joel Fernandes wrote:
> > > > >>> On 2/28/2024 5:58 PM, Paul E. McKenney wrote:
> > > > >>> On Wed, Feb 28, 2024 at 02:48:44PM -0800, Alexei Starovoitov wrote:
> > > > >>>> On Wed, Feb 28, 2024 at 2:31 PM Steven Rostedt <rostedt@...dmis.org> wrote:
> > > > >>>>>
> > > > >>>>> On Wed, 28 Feb 2024 14:19:11 -0800
> > > > >>>>> "Paul E. McKenney" <paulmck@...nel.org> wrote:
> > > > >>>>>
> > > > >>>>>>>>
> > > > >>>>>>>> Well, to your initial point, cond_resched() does eventually invoke
> > > > >>>>>>>> preempt_schedule_common(), so you are quite correct that as far as
> > > > >>>>>>>> Tasks RCU is concerned, cond_resched() is not a quiescent state.
> > > > >>>>>>>
> > > > >>>>>>> Thanks for confirming. :-)
> > > > >>>>>>
> > > > >>>>>> However, given that the current Tasks RCU use cases wait for trampolines
> > > > >>>>>> to be evacuated, Tasks RCU could make the choice that cond_resched()
> > > > >>>>>> be a quiescent state, for example, by adjusting rcu_all_qs() and
> > > > >>>>>> .rcu_urgent_qs accordingly.
> > > > >>>>>>
> > > > >>>>>> But this seems less pressing given the chance that cond_resched() might
> > > > >>>>>> go away in favor of lazy preemption.
> > > > >>>>>
> > > > >>>>> Although cond_resched() is technically a "preemption point" and not truly a
> > > > >>>>> voluntary schedule, I would be happy to state that it's not allowed to be
> > > > >>>>> called from trampolines, or their callbacks. Now the question is, does BPF
> > > > >>>>> programs ever call cond_resched()? I don't think they do.
> > > > >>>>>
> > > > >>>>> [ Added Alexei ]
> > > > >>>>
> > > > >>>> I'm a bit lost in this thread :)
> > > > >>>> Just answering the above question.
> > > > >>>> bpf progs never call cond_resched() directly.
> > > > >>>> But there are sleepable (aka faultable) bpf progs that
> > > > >>>> can call some helper or kfunc that may call cond_resched()
> > > > >>>> in some path.
> > > > >>>> sleepable bpf progs are protected by rcu_tasks_trace.
> > > > >>>> That's a very different one vs rcu_tasks.
> > > > >>>
> > > > >>> Suppose that the various cond_resched() invocations scattered throughout
> > > > >>> the kernel acted as RCU Tasks quiescent states, so that as soon as a
> > > > >>> given task executed a cond_resched(), synchronize_rcu_tasks() might
> > > > >>> return or call_rcu_tasks() might invoke its callback.
> > > > >>>
> > > > >>> Would that cause BPF any trouble?
> > > > >>>
> > > > >>> My guess is "no", because it looks like BPF is using RCU Tasks (as you
> > > > >>> say, as opposed to RCU Tasks Trace) only to wait for execution to leave a
> > > > >>> trampoline.  But I trust you much more than I trust myself on this topic!
> > > > >>
> > > > >> But it uses RCU Tasks Trace as well (for sleepable bpf programs), not just
> > > > >> Tasks? Looks like that's what Alexei said above as well, and I confirmed it in
> > > > >> bpf/trampoline.c
> > > > >>
> > > > >>        /* The trampoline without fexit and fmod_ret progs doesn't call original
> > > > >>         * function and doesn't use percpu_ref.
> > > > >>         * Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
> > > > >>         * Then use call_rcu_tasks() to wait for the rest of trampoline asm
> > > > >>         * and normal progs.
> > > > >>         */
> > > > >>        call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
> > > > >>
> > > > >> The code comment says it uses both.
> > > > >
> > > > > BPF does quite a few interesting things with these.
> > > > >
> > > > > But would you like to look at the update-side uses of RCU Tasks Rude
> > > > > to see if lazy preemption affects them?  I don't believe that there
> > > > > are any problems here, but we do need to check.
> > > >
> > > > Sure I will be happy to. I am planning look at it in detail over the 3 day weekend. Too much fun! ;-)
> > >
> > > Thank you, and looking forward to seeing what you come up with!
> > >
> > > The canonical concern would be that someone somewhere is using either
> > > call_rcu_tasks_rude() or synchronize_rcu_tasks_rude() to wait for
> > > non-preemptible regions of code that does not account for the possibility
> > > of preemption in CONFIG_PREEMPT_NONE or PREEMPT_PREEMPT_VOLUNTARY kernels.
> > >
> > > I *think* that these are used only to handle the possibility
> > > of tracepoints on functions on the entry/exit path and on the
> > > RCU-not-watching portions of the idle loop.  If so, then there is no
> > > difference in behavior for lazy preemption.  But who knows?
> >
> > Hi Paul, regarding CONFIG_PREEMPT_AUTO, for Tasks RCU rude, I think
> > the following patch will address your concern about quiescent states
> > on CPUs spinning away in kernel mode:
> >
> > "sched/fair: handle tick expiry under lazy preemption"
> > Link: https://lore.kernel.org/all/20240213055554.1802415-24-ankur.a.arora@oracle.com/
> >
> > In this patch Ankur makes sure that the scheduling-clock interrupt
> > will reschedule the CPU after a tick and not let queued tasks starve
> > due to lazy re-scheduling. So my impression is the
> > "schedule_on_each_cpu()" should schedule a worker thread in time to
> > apply the implied Tasks RCU quiescent state even if the rescheduling
> > was a LAZY-reschedule.
> >
> > Also, not sure if the "voluntary mode" of CONFIG_PREEMPT_AUTO behaves
> > differently. My feeling is regardless of preemption mode,
> > CONFIG_PREEMPT_AUTO should always preempt after a tick if something
> > else needs to run. It just will not preempt immediately like before
> > (although CFS did already have some wakeup preemption logic to slow it
> > down a bit). I am reviewing Ankur's patches more to confirm that and
> > also reviewing his patches more to see how it could affect.
>
> Thank you for the info!
>
> As you noted, one thing that Ankur's series changes is that preemption
> can occur anywhere that it is not specifically disabled in kernels
> built with CONFIG_PREEMPT_NONE=y or CONFIG_PREEMPT_VOLUNTARY=y.  This in
> turn changes Tasks Rude RCU's definition of a quiescent state for these
> kernels, adding all code regions where preemption is not specifically
> disabled to the list of such quiescent states.
>
> Although from what I know, this is OK, it would be good to check the
> calls to call_rcu_tasks_rude() or synchronize_rcu_tasks_rude() are set
> up so as to expect these new quiescent states.  One example where it
> would definitely be OK is if there was a call to synchronize_rcu_tasks()
> right before or after that call to synchronize_rcu_tasks_rude().
>
> Would you be willing to check the call sites to verify that they
> are OK with this change in semantics?

Yes, I will analyze and make sure those users did not unexpectedly
assume something about AUTO (i.e. preempt enabled sections using
readers).

Btw, as I think you mentioned, with Ankur's patch even with
CONFIG_PREEMPT_NONE=y, a preemption on the tick boundary can occur (in
preempt=none mode)!

Btw, For RUDE - If we wish to preempt sooner on "preempt=voluntary" of
future CONFIG_PREEMPT_AUTO=y kernels, then we can potentially replace
the schedule_on_each_cpu() with a higher priority (higher class)
per-CPU threads like RT. Then wake them all up and waiting till the
next tick is not needed for a CPU to be marked quiescent. Would
something like that be of interest?

Thanks.

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ