
Note:

These slides reflect the viewpoint of some crypto engineers at
Microsoft at a specific point in time for the purpose of open discussion
of the PHC work-in-progress. It should not be interpreted as
commitment by Microsoft to implement any particular functionality,
indicate future product direction, etc. If you have any questions, please
don’t hesitate to contact the authors at the email addresses listed at
the end.

Thanks! 

What Microsoft Would like from
the Password Hashing

Competition
Marsh Ray, Microsoft Azure

Greg Zaverucha, Microsoft Research

It’s complicated…
We found the same questions that are raised in the industry at large

You guys are not being clear about the threat model or scenario […] changing
your position …
I’m not really sure that’s worth the time
If it’s easy to implement and cheap from a CPU perspective, then I don’t think
there will be controversy.
This is why we need to get everyone to multi-factor authentication. Iterative
hashing is a legacy defense-in-depth measure with marginal value.
If someone built specialized hardware, and you got say 3 orders of
magnitude speed up …

• A common response was also
• Chirping crickets

Why does the PHC exist?

• Isn’t salted hashing enough?

• Isn’t PBKDF2-SHA-1 good enough?

• How will this affect application response times?

• Why don’t you just use two-factor auth?

• Why don’t you just encrypt the hashes?

• Why don’t you just put the hashes in an HSM?

• If the password file is compromised, so is user data, why does hashing
help?

Why does the PHC exist?

• Isn’t salted hashing enough?

• Isn’t PBKDF2-SHA-1 good enough?

• How will this affect application response times?

• Why don’t you just use two-factor auth?

• Why don’t you just encrypt the hashes?

• Why don’t you just put the hashes in an HSM?

• If the password file is compromised, so is user data, why does hashing
help?

From
"An Administrator's Guide to Internet Password Research," Florencio, Herley and van Oorschot, Usenix LISA 2014 (to appear).

When does password hashing help ?

From
"An Administrator's Guide to Internet Password Research," Florencio, Herley and van Oorschot, Usenix LISA 2014 (to appear).

Why are more iterations better ?

Password hashing can shift this line
to the left; requiring passwords to
withstand fewer guesses

From
"An Administrator's Guide to Internet Password Research," Florencio, Herley and van Oorschot, Usenix LISA 2014 (to appear).

Why are more iterations better ?

Outline

• What Microsoft thinks it wants

• What Microsoft needs from the PHC
• Background, perspective
• Use cases of interest
• Requirements
• Comparison of candidates based on requirements

• Where more work is needed
• Security analysis
• Parameter selection
• Value proposition

• For cryptographers
• For app developers and server admins

Background

• Passwords are used in many Microsoft products
• Online services (Hotmail/Outlook.com, Xbox Live, Skype)

• Device login (Windows, Windows Phone, Xbox)

• File encryption (Office)

• Many other products, and parts of our infrastructure

• Presenters participate in design and security review of cryptographic
features (across the whole company)

• We don’t have a design in the competition

Trivia

• Which was the first version of Windows to use passwords for user
accounts?

Use Case 1 – Online Services

• Passwords used for remote authentication

• Multiple authentication servers, each handles
100s of requests/second

• Includes browser-based logins, as well as
network services like file and print

• Page load times drive performance requirements

• More logins from apps (e.g., an app using
OneDrive for storage)

Use Case 2 – Log on to a Device

• The original use case for password hashing

• Windows systems (PC/laptop/servers)

• More cycles available for hashing (than online services), but still finite,
responsiveness is important

• Wide variety of hardware

Use Case 3 – Password-Based Encryption

• Derive keys from the password to
encrypt and authenticate data

• Used when key management is
infeasible; lack of hardware or
platform support. E.g., sending an
encrypted Word document as an
email attachment.

• Possibly the worse case scenario
• The attacker is assumed to get the

salt, ciphertext (and auth tag)
• An attack in the other use cases is

normal operation here

• Probably the most resources
available for hashing

Requirements

Requirements

• In addition to the PHC Call for Submissions

• Not “deep” technical requirements (save these for round 2!)

• As users of the PHC winner, what features would we want it to have?

• Our requirements are derived from:
• Well-understood design trade-offs

• Use cases & our product mix

One “Function”

• Rather than one-per-use-case

• Easier to give guidance to product teams

• Easier to use and deploy

• Hard enough to get one function adopted in any large organization

Feature parity with PBDKF2

• To facilitate replacing existing uses of PBKDF2
• It’s the current standard (PKCS#5, RFC 2898)
• Similar to AES v. DES, SHA3 v. SHA2

• “Agility” between PBKDF2 and PHC winner

• In particular
• Have at least the same security guarantees
• Secure as a key derivation function (KDF)
• Same parameters, including variable-length inputs and outputs
• Ability to use very little memory

• Bug parity is not desired

Migration guidance

• Clear path for engineers

• Mapping of parameter values from PBKDF2
• Work factor

• Algorithm choices

Perform well on common architectures

• Our use cases span x86, x64 and ARM(32/64)

• Design should not be “overfit” to processor features not shared by all
• E.g. (simple) SIMD operations are available everywhere, but AES-NI is not

• Simplifies parameter selection across different hardware

• Defender might have special hardware
• Attacker will, at his option

Perform well on common architectures

• Good approach is to make black-box use of other primitives, already
optimized for the underlying hardware
• No new ASM required

• Using existing primitives can also allow fast implementation in high-
level languages
• E.g., Javascript + web crypto API

• E.g., C# + PInvoke platform implementations

Defined API for developers

• Compatible with C and high-level languages

• As fool-resistant as practical

• Could be two functions
• phc_derive(pw, [optional parameters]) - > string

• phc_verify(string, string) -> bool

• Result string encodes metadata, salt, etc.

• Provide good, conservative defaults to parameters
• But defaults not set in stone, they must evolve over time

Resist Side Channel Attacks

• Resisting side channel attacks is important

• Broad range of use-cases and systems
• From phones to VMs on shared hardware

• Crypto functions are often long-lived
• PBKDF2 is old enough to drink (PKCS #5 published 1993)

• Two large classes of side channel leaks
1. Timing attacks – time required varies with inputs. Most candidates can be

implemented in constant time
2. Cache timing attacks – victim and attacker share a cache, leaks information about

victim memory accesses. More problematic for PHC candidates

• Typical countermeasures incur work for the defender, but not the attacker.
• E.g., protected table look-ups

Resist Side Channel Attacks
Cache timing attacks

• In PHC candidates, the memory access pattern either
1. Is independent of the password

2. Depends on the password

3. Depends on the password, but only after some amount of work

• Approach 1 has a fixed access pattern which allows attacker
optimizations.

• Approach 2 uses the entropy of the password to make the access
pattern unpredictable but opens a timing channel.

• Approach 3 attempts to make the trade-off.

Agile in the choice of primitives

• Support agility in any use of standard primitive types
• Flexibility is a useful feature of HMAC and PBKDF2

• E.g., moving from HMAC-MD5 to HMAC-SHA256

• E.g., moving from PBKDF2-HMAC-MD5 to PBDKF2-HMAC-SHA512

• Use of well-studied primitives can simplify formal security analysis
• Reasonable assumptions can be made

• e.g., SHA-2-512/256 can be modeled as a random oracle

• Use of reduced-round variants should be optional
• I.e., don’t require the use of weakened primitives

• Many candidates use reduced-round primitives in order to fill memory fast

+ time
- mem
(pbkdf2)

+ time
+ mem

- time
+ mem

- time
- mem

Not require the use of weak algorithms

• Allows conservative choice: Applications that require (time-, mem+)
can use the weak algorithm if necessary (they may use the strongest
algorithm that allows their parameter choice)

• Aside: the security properties required by the reduced round
primitive are often vague

But is this perhaps false agility?
• Has there ever been a case where primitive agility in a password hash

function was really useful?
• Unlike guts-for-speed AES or SHA, the work factor requirement gives absurdly

generous safety margin

• Example: transition PBKDF2<SHA-1> to PBKDF2<SHA-512>
• Really it just needed a proper memory-hardness parameter

• Makes analysis difficult, compared to defined tuning parameters
• Is PHC<SHA-2-256> different from PHC<SHA-3-256> ?

• Let’s not push today’s uncertainties onto developers
• We want the PHC to provide an expert-opinionated solution

Do we even want standard primitives?

• Most, or possibly all, modern standard primitives are intentionally
designed to be optimal on custom hardware
• The opposite of what a password hashing function wants!

• PHC is developing a different, newly-identified, type of primitive
• Let’s not excessively constrain it!

• So if PHC doesn’t require standard primitives, do we need underlying
primitive agility?

Nice to haves

• Standard digest format

• Reversibly encode inputs, to avoid things like
HMAC(pw, salt) == HMAC(pw||0…0, salt)

• Clear statement of security level as a KDF

• Can be used to add work factor to PAKEs

• Parameter selection guidance*

• Formal security analysis*

PHC Candidates
Versus these requirements

Not a message from the PHC Panel!

Comparison

Summary

• Clearly meeting all requirements: Catena, Gambit, Makwa, RIG.

• Potentially meeting all requirements (one or more Maybe): Lyra2 and
Pufferfish.

• Missing only the side-channel requirement: Lanarea, yescrypt

• Meeting the use case requirement (but not all/potentially all
requirements): battcrypt, Centrifuge

• Tweaks could change this list

Areas that need more work
More difficult nice-to-haves

For the PHC community at large, not just designers

Parameter Selection Guidance

• Ideally we’d have something like SP 800-57 part 1

E.g., RSA 2048 OK for
use until 2030, if you
need security beyond
2030, use RSA 4096 or
above

Existing Data Points

Existing Data Points

• Limited to PCs and PC-like hardware

• Are these benchmarks on the attacker’s hardware?

• Should there be an organized set of benchmarks/hardware?
• Maybe something like “eBACS: ECRYPT Benchmarking of Cryptographic Systems”

• What functions should be benchmarked?

• With what parameters?

• On which hardware?

• How to incentivize contributions?

Explicitly formulated hypotheses

• For public key crypto, things like
• Moore’s law
• Improvements in networking and memory (esp. for factoring)
• Algorithmic advances

• For password hashing
• What type(s) of hardware will the attacker use?
• How will compute/memory resources change over time?
• Algorithmic improvements in crackers

• Implementation techniques
• Techniques to generate candidate passwords

Formal Security Analysis

• Most PHC submissions do very little security analysis 

• Ideally, each would have a theorem something like
If assumption X holds, then candidate Y is a foo.
where X is well-defined assumption and foo is useful property for a PH function to have
(secure KDF, memory hard)

• This type of analysis may be easier when Y is constructed using existing,
well-studied primitives

• A security proof is not a hard requirement, but it can provide some
assurance, and help understanding of the design

• How much cryptanalysis is being attempted on PHC candidates?
• Hopefully this increases as the number of candidates decreases

Thank you!

• Summary

• Requirements

• Parameter selection

• Usability

• Q&A

• Engineering practicalities

• Security

Marsh Ray @marshray

maray@microsoft.com

Greg Zaverucha

gregz@microsoft.com

mailto:maray@microsoft.com
mailto:gregz@microsoft.com

