Note;:

These slides reflect the viewpoint of some crypto engineers at
Microsoft at a specific point in time for the purpose of open discussion
of the PHC work-in-progress. It should not be interpreted as
commitment by Microsoft to implement any particular functionality,
indicate future product direction, etc. If you have any questions, please
don’t hesitate to contact the authors at the email addresses listed at

the end.
Thanks! ©

& Microsoft

What Microsoft Would like from
the Password Hashing
Competition

Marsh Ray, Microsoft Azure

Greg Zaverucha, Microsoft Research

=’ Microsoft

't’s complicated...

We found the same questions that are raised in the industry at large

You guys are not being clear about the threat model or scenario [...] changing
your position ...

I’'m not really sure that’s worth the time

If it’s easy to implement and cheap from a CPU perspective, then | don’t think
there will be controversy.

This is why we need to get everyone to multi-factor authentication. Iterative
hashing is a legacy defense-in-depth measure with marginal value.

If someone built specialized hardware, and you got say 3 orders of
magnitude speed up ...

A common response was also
* Chirping crickets

& Microsoft

Why does the PHC exist?

* Isn’t salted hashing enough?

* Isn’t PBKDF2-SHA-1 good enough?

* How will this affect application response times?
 Why don’t you just use two-factor auth?

 Why don’t you just encrypt the hashes?

* Why don’t you just put the hashes in an HSM?

* If the password file is compromised, so is user data, why does hashing

help?

B Microsoft

Why does the PHC exist?

* Isn’t salted hashing enough?

* Isn’t PBKDF2-SHA-1 good enough?

* How will this affect application response times?
 Why don’t you just use two-factor auth?

* Why don’t you just encrypt the hashes? Threa’(mod

 Why don’t you just put the hashes in an HSM?

* If the password file is compromised, so is user data, why does hashing
help?

—
.| _

Microsoft

When does password hashing help ?

Password file

Does not leak I Leaks
Leak not detected Leak detected
No offline attack
Salted, Reversibly
Plaintext Hashed hashed encrypted

Password reset:
No offline attack

Offline attack Rainbow table Offline attack
unnecessary attack

Decryption key | Decryption
doesn’t leak key leaks

No offline attack Offline attack
unnecessary

Fig. 1. Decision tree indicating the applicable threats depending on how the password file is handled. Observe that offline guessing is only a
threat when the password file leaks, that fact goes undetected, and the passwords have been properly salted and hashed. In all other cases an
offline guessing attack is either not necessary or not possible.

From
"An Administrator's Guide to Internet Password Research," Florencio, Herley and van Oorschot, Usenix LISA 2014 (to appear).

Why are more iterations better ?

s=nline ==0ffline

High Extreme

Risk of being guessed
Medium

Low

o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 19 20

Log,,(#guesses)

Fig. 2. Conceptualization of risk from online and offline guessing as a
function of log, of the number of guesses a password will withstand.
Observe that, in the region between 106 and 1012, improvement in
the resistance to guessing has negligible effect on either online or
offline guessing.
From
"An Administrator's Guide to Internet Password Research," Florencio, Herley and van Oorschot, Usenix LISA 2014 (to appear).

Why are more iterations better ?

s=nline ==0ffline

-U o]
0 §
8 3
&0 3 Password hashing can shift this line
DI «<—\ to the left; requiring passwords to
D E withstand fewer guesses
=
5 g
o 2
L,
e o3
2

o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 19 20

Log,,(#guesses)

Fig. 2. Conceptualization of risk from online and offline guessing as a
function of log, of the number of guesses a password will withstand.
Observe that, in the region between 10% and 10'2, improvement in
the resistance to guessing has negligible effect on either online or
offline guessing.
From
"An Administrator's Guide to Internet Password Research," Florencio, Herley and van Oorschot, Usenix LISA 2014 (to appear).

Outline

* What Microsoft needs from the PHC
* Background, perspective
* Use cases of interest
* Requirements
 Comparison of candidates based on requirements

* Where more work is needed
e Security analysis
 Parameter selection
* Value proposition
* For cryptographers
* For app developers and server admins

% Microsoft

Background

* Passwords are used in many Microsoft products
* Online services (Hotmail/Outlook.com, Xbox Live, Skype)
* Device login (Windows, Windows Phone, Xbox)
* File encryption (Office)

* Many other products, and parts of our infrastructure

* Presenters participate in desigh and security review of cryptographic
features (across the whole company)

* We don’t have a design in the competition

& Microsoft

Trivia

* Which was the first version of Windows to use passwords for user
accounts?

2" Microsoft

“i

MICROSOF T
WINDOWSNT.

Verzion 3.1

Zopyright @ Microgoft Corporaton 1985-1993.
A1l Rixhts Reserved .

Use Case 1 — Online Services

* Passwords used for remote authentication ot et ematand
* Multiple authentication servers, each handles et accont
1005 Of requeStS/Second someone@example.com

* Includes browser-based logins, as well as
network services like file and print

* Page load times drive performance requirements

* More logins from apps (e.g., an app using
OneDrive for storage)

Don't have a Mi ft account?

& Microsoft

Use Case 2 — Log on to a Device

* The original use case for password hashing
* Windows systems (PC/laptop/servers)

* More cycles available for hashing (than online services), but still finite,
responsiveness is important

e Wide variety of hardware

Press Ctrl+Alt+Delete to sign in.

|
Press CTRL + ALT + DELETE to log on

2" Microsoft

Use Case 3 — Password-Based Encryption

* Derive keys from the password to
encrypt and authenticate data

* Used when key management is
infeasible; lack of hardware or
platform support. E.g., sending an
encrypted Word document as an
email attachment.

* Possibly the worse case scenario

* The attacker is assumed to get the
salt, ciphertext (and auth tag)

 An attack in the other use cases is
normal operation here

* Probably the most resources
available for hashing

Account

Options

Test test test
Desktop
Protect Document
_ﬁ & A password is required to open this docurment.
Protect
Document -

Encrypt Document ?

Encrypt the contents of this file .
L t contains:

Password:
ame

Caution: If you lose or forget the password, it
cannot be recovered, It is advisable to keep a list of
passwords and their corresponding document
names in a safe place.

[Remember that passwords are case-sensitive.)

5 file,

Requirements

MNATURALLY, I
LJOM'T BE
SHARTNG ANY
OF THESE
THOUGHTS
WITH
ENGINEERING

i
4

T DUDGETED
FOR SOME
GOONS TO
BEAT 1T
QUT OF YOU

Requirements

* |n addition to the PHC Call for Submissions
* Not “deep” technical requirements (save these for round 2!)
e As users of the PHC winner, what features would we want it to have?

e OQur requirements are derived from:
* Well-understood design trade-offs
e Use cases & our product mix

=’ Microsoft

One “Function”

* Rather than one-per-use-case

e Easier to give guidance to product teams

e Easier to use and deploy

* Hard enough to get one function adopted in any large organization

% Microsoft

Feature parity with PBDKF2

* To facilitate replacing existing uses of PBKDF2
* |t's the current standard (PKCS#5, RFC 2898)
e Similar to AES v. DES, SHA3 v. SHA2

* “Agility” between PBKDF2 and PHC winner

* In particular
* Have at least the same security guarantees
» Secure as a key derivation function (KDF)
* Same parameters, including variable-length inputs and outputs
* Ability to use very little memory

* Bug parity is not desired

& Microsoft

Migration guidance

 Clear path for engineers

* Mapping of parameter values from PBKDF2
* Work factor
* Algorithm choices

B Microsoft

Perform well on common architectures

* Our use cases span x86, x64 and ARM(32/64)

* Design should not be “overfit” to processor features not shared by all
e E.g. (simple) SIMD operations are available everywhere, but AES-NI is not

» Simplifies parameter selection across different hardware

e Defender might have special hardware
» Attacker will, at his option

& Microsoft

Perform well on common architectures

* Good approach is to make black-box use of other primitives, already
optimized for the underlying hardware

* No new ASM required

* Using existing primitives can also allow fast implementation in high-
level languages
e E.g., Javascript + web crypto API
* E.g., C# + PInvoke platform implementations

& Microsoft

Defined AP| for developers

* Compatible with C and high-level languages
* As fool-resistant as practical

* Could be two functions
* phc_derive(pw, [optional parameters]) - > string
e phc_verify(string, string) -> bool

e Result string encodes metadata, salt, etc.

* Provide good, conservative defaults to parameters
* But defaults not set in stone, they must evolve over time

& Microsoft

Resist Side Channel Attacks

* Resisting side channel attacks is important

* Broad range of use-cases and systems
* From phones to VMs on shared hardware

* Crypto functions are often long-lived
 PBKDF2 is old enough to drink (PKCS #5 published 1993)

* Two large classes of side channel leaks

1. Timing attacks — time required varies with inputs. Most candidates can be
implemented in constant time

2. Cache timing attacks — victim and attacker share a cache, leaks information about
victim memory accesses. More problematic for PHC candidates

* Typical countermeasures incur work for the defender, but not the attacker.
* E.g., protected table look-ups

& Microsoft

Resist Side Channel Attacks

Cache timing attacks

* In PHC candidates, the memory access pattern either
1. Isindependent of the password
2. Depends on the password
3. Depends on the password, but only after some amount of work

* Approach 1 has a fixed access pattern which allows attacker
optimizations.

e Approach 2 uses the entropy of the password to make the access
pattern unpredictable but opens a timing channel.

e Approach 3 attempts to make the trade-off.

& Microsoft

Agile in the choice of primitives

e Support agility in any use of standard primitive types
 Flexibility is a useful feature of HMAC and PBKDF2
* E.g., moving from HMAC-MD5 to HMAC-SHA256
* E.g., moving from PBKDF2-HMAC-MD5 to PBDKF2-HMAC-SHA512

* Use of well-studied primitives can simplify formal security analysis
* Reasonable assumptions can be made
* e.g., SHA-2-512/256 can be modeled as a random oracle

e Use of reduced-round variants should be optional
* |.e., don’t require the use of weakened primitives
* Many candidates use reduced-round primitives in order to fill memory fast

& Microsoft

Time

Standard primitive

~c* »\rirm
Aac "I

-= Reduced round primitive
Memset

Memory
m_cost

+ time
-mem
(pbkdf2)

+ time

|
|
|
|
|
|
| + mem
|
|
|
|
|

- time
-mem

J
- —:-_h 4
J1
v

M

+ -~
\

-

Not require the use of weak algorithms

* Allows conservative choice: Applications that require (time-, mem+)
can use the weak algorithm if necessary (they may use the strongest
algorithm that allows their parameter choice)

* Aside: the security properties required by the reduced round
primitive are often vague

& Microsoft

But is this perhaps false agility?

* Has there ever been a case where primitive agility in a password hash
function was really useful?

* Unlike guts-for-speed AES or SHA, the work factor requirement gives absurdly
generous safety margin

* Example: transition PBKDF2<SHA-1> to PBKDF2<SHA-512>

* Really it just needed a proper memory-hardness parameter

* Makes analysis difficult, compared to defined tuning parameters
* |s PHC<SHA-2-256> different from PHC<SHA-3-256> ?

* Let’s not push today’s uncertainties onto developers
* We want the PHC to provide an expert-opinionated solution

& Microsoft

Do we even want standard primitives?

* Most, or possibly all, modern standard primitives are intentionally
designed to be optimal on custom hardware

* The opposite of what a password hashing function wants!

 PHC is developing a different, newly-identified, type of primitive
* Let’s not excessively constrain it!

* So if PHC doesn’t require standard primitives, do we need underlying
primitive agility?

& Microsoft

Nice to haves

e Standard digest format

e Reversibly encode inputs, to avoid things like
HMAC(pw, salt) == HMAC(pw| |0...0, salt) & - - BAD

 Clear statement of security level as a KDF
e Can be used to add work factor to PAKEs
* Parameter selection guidance*

* Formal security analysis™

& Microsoft

PHC Candidates

Versus these requirements

Not a message from the PHC Panel!

Comparison

KDF KDF CPU Arch. Agility Side ch. Support all
function flexibility =~ Neutral Resist. Use Cases
AntCrypt v0 Yes No Maybe Yes No No
Argon vl Yes No No Maybe No No
battcrypt v0 Yes Yes Yes No No Yes
Catena vl Yes Yes Yes Yes Yes Yes
Centrifuge v0 Yes Yes Yes Yes No Yes
EARWORM v0 No No No No No No
(zambit v1 Yes Yes Yes Yes Yes Yes
Lanarea. v(Yes Yes Yes Yes No Yes
Lyra2 vl Yes Yes Yes Yes Maybe Yes
Makwa v() Yes Yes Yes Yes Yes Yes
MCS_PHS v1 Yes No Yes Yes Yes No
Omega Crypt v0 Yes No Yes Maybe No No
Parallel v0 Yes Yes Maybe Yes Yes No
PolyPassHash v0 No No Yes Yes Yes No
POMELO vl Mayvbe No Yes No No No
Pufferfish v0 Yes Yes Yes Maybe Yes Yes
RIG vl Yes Yes Yes Yes Yes Yes
Schvrch v0 Maybe Maybe Yes No No Maybe
Tortuga v0 Maybe Yes Yes No Maybe Maybe
TwoCats v0 Yes No Yes Yes Maybe No
Yarn v2 Yes No Maybe Maybe No No
yescrypt v Yes Yes Yes Yes No Yes

Ssummary

* Clearly meeting all requirements: Catena, Gambit, Makwa, RIG.

* Potentially meeting all requirements (one or more Maybe): Lyra2 and
Pufferfish.

* Missing only the side-channel requirement: Lanarea, yescrypt

* Meeting the use case requirement (but not all/potentially all
requirements): battcrypt, Centrifuge

* Tweaks could change this list

& Microsoft

Areas that need more work

More difficult nice-to-haves

For the PHC community at large, not just designers

Parameter Selection Guidance

* |deally we’'d have something like SP 800-57 part 1

Table 4: Security-strength time frames

secuitySuengtn | 201LI00Eh | gy, | 2031 and
2030
Applying Deprecated Disallowed
°0 Processing Legacy use
112 ;::::fg Acceptable Acceptable E:;t;t:
128 Acceptable Acceptable Acceptable
192 Applving/Processing | Acceptable Acceptable Acceptable
256 Acceptable Acceptable Acceptable

E.g., RSA 2048 OK for
use until 2030, if you
need security beyond
2030, use RSA 4096 or
above

Key Lengths

Contribution to The Handbook of Information Security

Arjen K. Lenstra

Citibank, N.A., and Technische Universiteit Eindhoven
1 North Gate Road, Mendham, N.J 07945-3104, TJ.5 A
arjen.lenstra@citigroup.com

Abstract. The key length used for a eryptographic protocol determines
the highest security it can offer. If the key is found or ‘broken’, the se-
curity is undermined. Thus, key lengths must be chosen in accordance
with the desired security. In practice, key lengths are mostly determined
by standards, legacy system compatibility issues, and vendors. From a
theoretical point of view selecting key lengths is more involved. Under-
standing the relation between security and key lengths and the impact
of anticipated and unexpected cryptanalytic progress, requires insight
into the design of the cryptographic methods and the mathematics in-
volved in the attempts at breaking them. In this chapter practical and
theoretical aspects ol key size selection are discussed.

1 Introduction

Selecting Cryptographic Key Sizes

Arjen K. Lenstra
Lrijen.lenstrallciticorp.com

Eric R. Verheul

Eric.Verheulf@nl.pwcglobal.com
November 15, 1999

Abstract. In this article we offer guidelines for the determination of key sizes for
symmetric cryptosystems, RSA, and discrete logarithm based cryptosystems both
over finite fields and over groups of elliptic curves over prime fields. Our
recommendations are based on a set of explicitly formulated hypotheses, combined
with existing data points about the eryptosystems.

In cryptographic context, 40, 56, 64, 80, 90, 112, 128, 155, 160, 192, 256,
384, 512, 768, 1024, 1536, 2048, and 4096 are examples of key lengths.
What they mean and how they are and should be selected is the subject

of this chapter.

Key Lengths

Contribution to The Handbook of Information Security

Arjen K. Lenstra

Citibank, N.A., and Technische Universiteit Eindhoven
1 North Gate Road, Mendham, N.J 07945-3104, TJ.5 A
arjen.lenstra@citigroup.com

Abstract. The key length used for a eryptographic protocol determines
the highest security it can offer. If the key is found or ‘broken’, the se-
curity is undermined. Thus, key lengths must be chosen in accordance
with the desired security. In practice, key lengths are mostly determined
by standards, legacy system compatibility issues, and vendors. From a
theoretical point of view selecting kev lengths is more involv
tanding the relation between security and key lengths and the impact
of anticipated and unexpected cryptanalytic progress, requires insight
into the design of the cryptographic methods and the mathematics in-

volved in the attempts at breaking them. JIn this chapler practical and
theoretical aspects ol key size selection are discussed.

1 Introduction

Selecting Cryptographic Key Sizes

Arjen K. Lenstra
Lrijen.lenstrallciticorp.com

Eric R. Verheul

Eric.Verheulf@nl.pwcglobal.com
November 15, 1999

Abstract. In this article we offer guidelines for the determination of key sizes for
symmetric cryptosystems, RSA, and discrete logarithm based cryptosystems both
over finite fields and over groups of elliptic curves over prime fields. Our

recommendations are based on a set ofexplicitly formulated h}rpnthesesa combined
witlyexisting data points aljout the eryptosysteins.

In cryptographic context, 40, 56, 64, 80, 90, 112, 128, 155, 160, 192, 256,
384, 512, 768, 1024, 1536, 2048, and 4096 are examples of key lengths.
What they mean and how they are and should be selected is the subject

of this chapter.

Existing Data Points

hashcat

advanced
password
recovery

D" SE Q[EF 30 520

hashcat

oclHashcat

oclGaussCrack

Forum

Wiki

Trac

Tools

Events

Converter

Contact

Tested GPU

All CUDA and Stream enabled cards should work

Performance

B - PC1:Windows 7, 64 bit Catalyst 144 1xAMD hd7970 stock core clock

=i PCZ: Windows 7, 32 bit- ForceWare 331.67 1xNVidia gx580° stock core clock

B PC3:Ubuntu 14.04, 64 bit Catalyst 14.4-rev2 1x AMD hdG990 stock core clock

B PC4:Ubuntu 14.04, 64 bit ForceWare 331.67 1x NVidia gk750Ti stock core clock

B8 PCH:Ubuntu 14.04, 64 bit Catalyst 14.4-rev2 8x AMD R9 290X stock core clock

John the Ripper benchmarks

QOld revisions

Trace: & John the Ripper user community resources s John the Ripper benchmarks

John the Ripper benchmarks

Initially, this page will be the place to collect and share trivial john -test benchmarks on different systems. At a later tin
sense to turn it into a namespace with sub-pages for john -test benchmarks (only cfs rate matters) and actual cracki
things matter). Also, the underlying data may be uploaded/collected (e.g., exact john -test outputs, /proc/cpuinfo off of

john.log files).

Please add your benchmark results to the tables below as appropriate. Please make sure to run the benchmarks on an
system. For OpenMP- and MPI-enabled benchmarks, pick the “real” c/s rate. For single CPU core benchmarks, the “real” ai
results should be almost the same (as long as the system is indeed otherwise idle), so it should not matter which one of

pick.

Please keep these tables sorted by performance at DES-based crypt() for "many salts”, better results listed first, best
results for CPUs operating at their rated frequencies (non-overclocked) and running non-modified JtR code shown in B

absolute best results).

Faor example, PC5 can do 174152M cfs against NTLM, that is 174152000000 tries per second.

Hash Type P P2 o Collected "john --test" benchmarks for OpenMP-enabled builds
MD4 15445M c/a 4245M /s 19868M c/a
R R DES logical
MD5 T893M /s 2802M /s 10436M c/fs crypt() MDS ©berypt| Windows |CPUs & 1 oaqs CPUS/ os compiler
SHA1 2495M c/s 879M c/s 3833M c/s many /| crypt() |x32 LanMan |clock rate physical
one salt cores
SHA256 1036M /s 337M cfs 1413M c/s
117315K |1953K 21
SHAS12 179M /s 103M /s 383M /s / 23130K |128/128 33410K © | 16x X7550 1.7.9-
128/128 | SSE2 56320 128/128 2.0 GHz 128 128 /14 mbo-6'ish Linux | gcc 4.7.0
SHA-3 (Keccak) 157TH c/s3 91M c/s 27TM c/3 8s intrinsics 32/64 X2 |Bs ?T disabled 128 blecding-jumbo
RipeMD160 1690M c/3 615M c/3 2255M /3 SSE2-16 |12% U S5E2-16 ’
Whirlpool 41281k c/fs 94752k c/fs 91128k c/fs g?iggi / 42630K
LM 1271M c/fs 412M cfs 967TM /s 850944 23808 128/128 |4x X7560 - _ .
128/128 SSE2i 12x | 32/64 X2 |BS > 37 GHz &4 64 /32 | 1.7.9-jumbo-5 |Linux gcc 4.4.6
NTLM 14789M c/fs 10594 /3 19011M c/s BS SSE-16
S5E2-16
NetNTLMv1 7912M /s 1844M /s 2605M c/s
NetNTLMv2 545M /s 205M cfs 491M c/s 135M c/s3 £456M c/s3
WEA/WEAZ 130k c/s 47k c/s 181k c/s 54k c/s 1454k c/s

2" Microsoft

Existing Data Points

e Limited to PCs and PC-like hardware
e Are these benchmarks on the attacker’s hardware?

* Should there be an organized set of benchmarks/hardware?
* Maybe something like “eBACS: ECRYPT Benchmarking of Cryptographic Systems”
What functions should be benchmarked?
With what parameters?
On which hardware?
How to incentivize contributions?

& Microsoft

Explicitly formulated hypotheses

* For public key crypto, things like
* Moore’s law
* Improvements in networking and memory (esp. for factoring)
e Algorithmic advances

* For password hashing
* What type(s) of hardware will the attacker use?
* How will compute/memory resources change over time?

e Algorithmic improvements in crackers
* Implementation techniques
* Techniques to generate candidate passwords

& Microsoft

Formal Security Analysis

* Most PHC submissions do very little security analysis ®

* |deally, each would have a theorem something like
If assumption X holds, then candidate Y is a foo.
where X is well-defined assumption and foo is useful property for a PH function to have
(secure KDF, memory hard)

* This type of analysis may be easier when Y is constructed using existing,
well-studied primitives

* A security proof is not a hard requirement, but it can provide some
assurance, and help understanding of the design

 How much cryptanalysis is being attempted on PHC candidates?
* Hopefully this increases as the number of candidates decreases

m Microsoft

Thank youl!

* Summary

* Requirements

* Parameter selection

e Usability

* Q&A

* Engineering practicalities
* Security

Marsh Ray @marshray
maray@microsoft.com

Greg Zaverucha
gregz@microsoft.com

=" Microsoft

mailto:maray@microsoft.com
mailto:gregz@microsoft.com

