
The Catena Password-Scrambling
Framework

Submission to the Password Hashing Competition (PHC)

Christian Forler∗ Stefan Lucks† Jakob Wenzel

<first name>.<last name>@uni-weimar.de

Version 2.0

October 10, 2014

∗The research leading to these results received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant
Agreement no. 307952.

†A part of this research was done while Stefan Lucks was visiting the National Institute of
Standards and Technologies (NIST), during his sabbatical.



“Make everything as simple as
possible, but not simpler.”

– Albert Einstein
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Changelog

From Version 1.1 to Version 2.0

• removed the flawed proof for λ-memory-hardness of the (G, λ)-bit-reversal hashing
operation (based on the cryptanalysis by Biryukov and Khovratovich [8])

• Catena is now designated as a password-scrambling framework (PSF) instead of
a pure password scrambler

• introducing the name Catena-BRG: Catena instantiated with the memory-hard
(G, λ)-bit-reversal hashing operation (BRHG

λ )

• introducing a new instanceCatena-DBG:Catena instantiated with the λ-memory-
hard (G, λ)-double butterfly hashing operation (DBHG

λ )

• new recommendations for the usage of either Catena-BRG or Catena-DBG

depending on the required memory-hardness

• set version ID to 0xFF for Catena-BRG

• set version ID to 0xFE for Catena-DBG

From Version 1.0 to Version 1.1

• Prepend the version ID byte, currently 0xFF, to the tweak. (cf. Chapter 3 and
Section 8.3)

• Swapped the two input parameters of the hash function H in

– Line 6 of Algorithm 2 in Chapter 3 and

– Line 6 of Algorithm 4 (right) in Section 7.1.
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Executive Summary

Catena is a novel and provably secure password-scrambling framework (PSF) that
provides cutting-edge properties to allow a flexible usage in multiple environments. Fur-
thermore, Catena can be used as a key derivation function and for the scenario of proof
of work/space.

Catena simple and easy to analyze. An instantiation of Catena is defined by two
inputs: (1) a single standard cryptographic primitive, i.e., a hash function H, e.g.,
BLAKE2b [5] or SHA-512 [32] and (2) a (λ-)memory-hard hashing operation Fλ, e.g.,
(G, λ)-Double-Butterfly Hashing [27] or (G, λ)-Bit-Reversal Hashing [27]. Further, for
both instantiations, it holds that Catena has a sound and elegant design given by a
simple and well-understood graph-based structure, where the user-chosen parameter λ
determines the depth of the graph. The time-memory tradeoff (TMTO) analysis of
the underlying graph-based structures of both instances (Catena-BRG and Catena-

DBG) is given in [27], and is based on the pebble game, which was – mostly in the 1970s
and 1980s – extensively used to study time-memory tradeoffs. In addition, we show
that Catena is provably secure under standard security assumption on the underlying
cryptographic hash function H.

Catena is flexible. Any instance of Catena – determined by a cryptographic hash
function H and a (λ-)memory-hard function Fλ – can be used with different parameters
for garlic (tweaking time and memory used for scrambling a password), pepper (tweak-
ing the time, only), and salt (defending against precomputation attacks). Furthermore,
Catena supports a server relief protocol to allow shifting (most of) the effort for com-
puting the password hash from the server to the client. This becomes handy whenever
a single server is supposed to handle many user requests in parallel.
Moreover, Catena provides the client-independent update feature allowing the de-

fender to increase the main security parameters (garlic and pepper) at any time, even
for inactive accounts.

Catena is secure. We claim the following security properties of Catena:

• Preimage security (this important for most applications of password hashes).

• Indistinguishability from random (this is important for key derivation).

• Lower bounds on the time-memory tradeoff for Catena-BRG and Catena-DBG.

The latter point implies that Catena provides high resilience against massively paral-
lel attacks, e.g., GPU-based attacks. More detailed, Catena-BRG satisfies memory-
hardness, i.e., halving the available memory double the required computational time.
On the other hand, Catena-DBG satisfies λ-memory-hardness, i.e., if the available
memory is halved, the required computational time is increase by a factor of about 2λ.
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Furthermore, Catena provides resistance against cache-timing attacks since both its
control flow and its data flow are independent from any secret input, e.g., a password.
Finally, Catena supports keyed password hashing, i.e., the output of the unkeyed ver-
sion of Catena is encrypted by XORing it with a hash value generated from the userID,
the memory cost parameter, and the secret key.
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Chapter 1
Introduction

This document introduces Catena, our submission to the Password Hashing Competi-
tion (PHC). We elaborate on the requirements for password hashing in general, and on
some of the specific design choices for Catena.
Passwords1 are user-memorizable secrets, commonly used for user authentication and

cryptographic key derivation. Typical (user-chosen) passwords often suffer from low
entropy and can be attacked by trying out all possible password candidates in likelihood-
order, until the right one has been found. In some scenarios, when a password is used
to open an interactive session, the security of password-based authentication and key
derivation can be enhanced by dedicated cryptographic protocols defeating “off-line”
password guessing, see, e.g., [6] for an early example. Otherwise, the best protection is
given by performing “key stretching”.

Key Stretching. Let X be a password with µ bits of entropy, and let H be a cryp-
tographic hash function. An adversary, knowing the password hash Y1 = H(X), can
expect to find X by trying out about 2µ password candidates, calling H about 2µ times.
To slow down the adversary by a factor of 2σ, one iterates the hash function 2σ times
by computing Yi = H(Yi−1) for i ∈ {2, . . . , 2σ} and then uses Y2σ as the final password
hash. There are variations of this approach, but iterating H is the core idea behind the
majority of current password scramblers, such as md5crypt [25] and sha512crypt [14].
This forces the adversary to call the hash function 2σ+µ times, rather than 2µ. But the

defender is also slowed down by 2σ. Note that the computational time for scrambling a
password is bounded by the tolerance of the user, and so is the choice of the parameter
σ. Thus, there is no protection against password-cracking adversaries for users with
weak passwords2. Furthermore, in the rather rare case that a user has a high-entropy
password (say, µ > 100), key stretching is unnecessary. But, for users with mid-entropy

1 In our context, “passphrases” and “personal identification numbers” (PINs) are also “passwords”.
2A study from 2012 reports a min-entropy µ < 7 bit for typical user groups [9]. For any such group, an
adversary trying the group’s single most frequent password succeeds for ≈ 1% of the users.
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1. Introduction

passwords, key stretching can hold the balance in terms of security. Thus, we define the
basic conditions for any password scrambling function PS are as follows:

(1) Given a password pwd , computing PS(pwd) should be “fast enough” for the user.

(2) Computing PS(pwd) should be “as slow as possible”, without contradicting (1).

(3) Given y = PS(pwd), there must be no significantly faster way to test q password
candidates x1, . . . , xq for PS(xi) = y than by actually computing PS(xi) for each
single xi.

Memory-Demanding Key Stretching. The established approach of performing key
stretching by iterating a conventional primitive many times, has become less useful, over
the years. The reason is an increasing asymmetry between the computational devices
the typical “defender” is using, and the devices available for potential adversaries. Even
without special-purpose hardware, graphical processing units (GPU) with hundreds of
cores [31] have nowadays become a commodity. By making plenty of computational
resources available, GPUs are excellent tools for password cracking, since each core can
try another password candidate, and all cores are running at full speed.
However, the memory – and, especially, the fast (“cache”) memory – on a typical GPU

are about as large (at least by the order of magnitude) as the memory and cache on a
typical CPU, as used by typical defenders. Thus, the idea behind a memory-demanding
password scrambler is to perform key stretching with the following requirements:

(4) Scrambling a password in time T needs S units of memory (and causes a strong
slow-down when given less than S units of memory).

(5) Scrambling p passwords in parallel needs p ·S units of memory (or causes a strong
slow-down accordingly with less memory).

(6) Scrambling a password on p parallel cores is not (much) faster than on a single
core, even if S units of memory are available.

Note that a defender can determine S and T by selecting appropriate parameters.

Simplicity and Resilience. The first published memory-demanding password scrambler
(implicitly based on the above six conditions) is scrypt [34].
Nevertheless, two aspects of scrypt did trouble us. First, scrypt is quite complex,

since it combines two independent cryptographic primitives (the SHA-256 hash function
and the Salsa20/8 core operation) and four generic operations (HMAC, PBKDF2, Block-
Mix, and ROMix). Second, the data flow of the ROMix operation is data-dependent, i.e.,
ROMix reads data from addresses which are password-dependent. This renders ROMix,
and thus scrypt, vulnerable to cache-timing attacks [22]. Moreover, we have shown
in [22] that scrypt is vulnerable against the garbage-collector attacks, i.e., a malicious
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1. Introduction

garbage collector can obtain internal states of the algorithm from memory fragments,
which allows to test password candidates in a highly efficient manner (see Section 7.2).
Even though we currently are not aware of any practical exploits for either cache-

timing or garbage-collector attacks, both are frightening properties that we prefer to
avoid. Thus, our challenge was to design a new memory-demanding password scrambler
PS with the following additional properties:

(7) Simple and easy to analyze.

(8) Resilient to cache-timing attacks.

(9) Resilient to garbage-collector attacks.

Based on Property (7), we focused on a single generic operation, using a single cryp-
tographic primitive. The analysis should prove the expected security properties under
well-established assumptions and models for the underlying primitive. To satisfy Prop-
erty (8), one has to ensure that neither the control flow nor the data flow depend on
any secret input, e.g., the password. One way to satisfy Property (9) is to read and
(over)write the memory a couple of times, during the scrambling operation. A malicious
garbage collector will then only learn the information written at the end of the scrambler
operation.

Desired Flexibility Properties. The current generation of password scramblers is quite
inflexible and we would like future password scramblers to support the following options:

• server relief : the option to shift the main memory and time effort to the client,
without burdening the server,

• pepper and garlic: security parameters to tune time and memory requirements,

• client-independent update: adjust (increase) the security parameters, even without
knowing the password.

To the best of our knowledge, the idea for “client-independent updates” has first been
developed by ourselves, as part of the current research, see [22].

Design Choices for Catena. Informally, Properties (1)-(6) can be translated into “fast
enough on the defender’s machine”and“as slow as possible on the adversaries’ machines”.
This is what any password scrambler is trying to achieve – and the design of a password
scrambler depends on the designers’ understanding of these machines.
Our understanding of the defender’s machine is straightforward: a typical CPU, as

it would be running on a server, a PC, or a smartphone. While this still leaves a wide
range of different choices open, we anticipate a limited number of cores and a certain
amount of fast memory, i.e., cache.
On the other hand, making assumptions on the computational power of an adver-

sary may seem like a futile exercise, since it will actually use all computational power
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1. Introduction

which is within its budget. Though, since todays COTS GPUs and CPUs are rather
affordable and can be easily rent from cloud-computing or a botnet provider, we think
it is more important to focus on such hardware instead of potentially expensive repro-
grammable hardware, e.g., FPGAs. On the other hand, it is more important to slow
down password cracking on reprogrammable hardware than on even more expensive non-
reprogrammable hardware, e.g., ASICs. For Catena, we anticipate typical defenders to
tune the parameters such that Catena runs in the rather slow Random-Access Memory
(RAM) in reasonable time. Since then Catena will produce a large amount of cache
misses, this is a good defense against adversaries using a GPU, or similar hardware, with
plenty of cores but small cache memory for every core. It also thwarts adversaries using
cheap (memory-constrained) reprogrammable hardware.
While our concrete proposal suggests to use BLAKE2b, Catena enables the defender

to actually choose any strong hash function H that runs well on its machine. The
freedom to change H has the additional side effect of frustrating well-funded adversaries
using expensive non-reprogrammable hardware: For every defender using a different H,
they would have to buy new hardware.
Note that Catena is a composed cryptographic operation, based on a cryptographic

hash function. An alternative would have been some new primitive with the structure
of Catena. Section 7.3 elaborates on the reasons why we avoided that alternative.

Specific Choices for Catena Related to PHC. Beyond meeting Properties (1)-(9),
and support for our desired flexibility properties, the design of Catena also meets the
requirements of the PHC [4]:

• Support passwords of any length between 0 and 128 bytes.

• Support salts of 16 bytes.

• Provide at least one cost parameters, to tune time and/or space usage.

• Produce (but not limited to) 32-bytes outputs.

• Possibility of optional inputs such as personalization string, a secret key, or any
application-specific parameter.

Actually, using Catena allows to choose arbitrary values for the lengths of the password
and the salt. Furthermore, the maximum length of the password hash value depends on
the underlying hash function. The adjustment of the time and/or memory usage can be
realized by using one or more of the following ways:

• Keep bits of the salt secret (pepper).

• Increase the memory cost parameter (garlic).

• Increase number of stacks of the inner structure (λ).
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1. Introduction

Furthermore, Catena is designed to fulfill the following security properties:

• Standard cryptographic security: preimage resistance, collision resistance, immu-
nity to length extension, infeasibility to distinguish output from random.

• High computational costs for massively parallel cracking devices, e.g., GPUs, low-
cost ASICs, and FPGAs.

• Resilience against side-channel attacks, such as cache timing.

We present a comprehensive security analysis to show that Catena provides the desired
cryptographic security.

Outline. Chapter 2 introduces the necessary preliminaries, definitions, and fundamen-
tal password-scrambling properties we use in the entire paper. Chapter 3 introduces the
specification of Catena, our new password-scrambling Framework, as well as our pa-
rameter recommendations for the PHC. Furthermore, we discuss functional and security
properties of Catena. In Chapter 4 we analyze the Catena framework in terms of
preimage security and pseudorandomness. In Chapter 5 we introduce two instantiations
of Catena– Catena-BRG and Catena-DBG and in Chapter 6 we discuss whose secu-
rity properties in terms of memory-hardness, pseudorandomness, and resistance against
side-channel attacks. Chapter 7 contains background information and the origins of the
Catena design. The usage of Catena for the scenario of proof of work, a discussion
about Catena in different environments, and the application of Catena as a key deriva-
tion function are given in Chapter 8. The paper concludes with acknowledgements, a
legal disclaimer, the bibliography and some appendices.
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Chapter 2
Preliminaries

In this section we discuss a technique called Pebble Game, which will help to understand
the proofs of our underlying graph-based structures presented in [27]. Furthermore, we
introduce necessary definitions and notations used throughout this paper. Note that we
often refer Catena to as a password scrambler. In this situations it is meant that the
considered property holds for both presented instantiations.

2.1. The Pebble Game

The pebble game is an old method from theoretical computer science, to analyze time-
memory tradeoffs for a restricted set of programs. The restrictions are as follows:

1. The programs must be “straight-line programs”, i.e., without any data-dependent
branches. Thus, neither conditional statements (if-then-else) nor loops are allowed,
except when the number of loop-iterations is a fixed number, since one can remove
such loops by “loop unrolling”.

2. Reading to or writing from a certain element vi of an array v0, . . . , vn−1 in memory
is only allowed if the index i is statically determined – and thus, independent from
the input.

Programs following these two restrictions can be represented as a directed acyclic graph
(DAG, see Definition 2.4) of vertices and directed edges, where vertices without ingoing
edges represent an input, and all remaining vertices represent the result of an operation.

Definition 2.1 (Directed Acyclic Graph (DAG)). Let Π(V , E) be a directed
graph consisting of a set of vertices V = (v0, v1, . . . , vn−1) and a set of edges
E = (e0, e1, . . . , eℓ−1). Π(V , E) is a directed acyclic graph, iff it does not contain
any directed cycle, i.e., a path from a node v ∈ V to itself.
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2. Preliminaries

On the other hand, edges represent the data flow of an operation, i.e., the operation
x← y ◦ z would be represented by two edges y → x and z → x. Even though the pebble
game is defined for vertices with fan-in ≤ d, for some constant d, we focus, based on the
structure of Catena, only on binary operations “y ◦ z”, implying that all vertices within
the DAG have a fan-in of at most 2. Then, “◦” can be any computation which takes two
inputs y and z and generates one output x, such as y ◦ z = H(y || z). Also, for any two
vertices x 6= x′, with x ← y ◦ z and x′ ← y′ ◦ z′, the symbol “◦” can represent different
operations, depending on the target x resp. x′.

Playing the Pebble Game. The background for the pebble game is to determine a
time-memory tradeoff for a given algorithm by pebbling a predetermined vertex within
the corresponding DAG, considering a certain amount of available memory, i.e., number
of available pebbles. Initially, there is a heap of free pebbles, and no pebbles on the
DAG. The player performs certain actions, until a predefined output vertex has been
pebbled. The following two actions are possible:

Move: If a vertex v is unpebbled, and all vertices wi with edges wi → v are pebbled,
perform either one of the following two operations:

1. Put a pebble from the heap onto v (all wi remain pebbled).

2. Move a pebble from one of the wi to v (all wj with j 6= i remain pebbled).

Collect: Remove one pebble from any vertex. The pebble goes back into the heap.

Note that a“move” is either a“read input”operation (if it applies to an input vertex, i.e.,
one without any edges wi → v) or the actual computation of a value. The computational
time for a straight-line program is then given by counting the number of moves, whereas
the required memory is given by the maximum number of pebbles simultaneously placed
on the DAG.

Time-Memory Tradeoffs. Hellman presented in [24] the approach to trade memory/s-
pace S against time T in attacking cryptographic algorithms, i.e., he has introduced
the idea of a time-memory tradeoff (TMTO) in terms of generic attacks. Hence, we can
assume that an adversary with access to this algorithm and restricted resources is always
looking for a sweet spot to optimize S ·T . To analyze the effort for a given adversary, one
needs to choose a certain model for studying the TMTO. In 1970, Hewitt and Paterson
[33] introduced the pebble game as a method for analyzing TMTOs on directed acyclic
graphs, which became an important tool for that purpose, see [37–41]. The pebble game
has been occasionally used in cryptographic context (see [20] for a recent example).
Figure 2.1 presents a simple example. In spite of its simplicity, it reveals an interesting

tradeoff between space S and time T , where S denotes the number of pebbles, and T
the number of moves: Note that the value “const” denotes a fixed value which is always
in the memory, i.e., one gets this vertex for free.
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2. Preliminaries

ab

const

f(a, b)

Figure 2.1.: Directed acyclic graph for f(a, b) = (a ◦ const) ◦ const) ◦ b) ◦ (a ◦ const).

Now, with S ≥ 3, time T = 6 is sufficient for pebbling the output vertex. With less
than three pebbles, this needs more time. The reason is that common subexpressions
cannot be stored, any more, but must be recomputed. The graph can still be pebbled
with S = 2 and T = 8. The graph cannot be pebbled with S = 1.

Pebble-Game and Password Scramblers. Note that the upper and lower bounds proved
in [27] highly depend on the operation “◦”. Recall that the computation of x = y ◦ z
can represent different operations, depending on the target x, and “time” is just the
total number of such operations. If all “◦”-operations take approximately the same time,
upper bounds (“given space S, one can pebble the graph in time T”, for some specific T
and S) allow to meaningfully estimate the computational effort of the defender.
However, the security of the defender depends on the non-existence of efficient algo-

rithms for the adversary. Such non-existence results are lower bounds (“given space S,
it is impossible to pebble the graph in less than time T”). But the lower bounds are
only applicable if the computations of an adversary follow the DAG. Depending on the
operation “◦”, this may be the case, or not.
With algebraic operations, the lower bound usually collapse. For example, let “◦”

denote the integer addition “+”, or the XOR-operation “⊕”. The function f(a, b) from
Figure 2.1 degenerates to f(a, b) = 2a + 3const + b in the case of the addition, and
b⊕ const for the XOR. With the addition, the function f can be computed with S = 2
pebbles in less then eight operations, with the XOR, f(a, b) can even be computed with
S = 1.
On the other hand, if one models the operation y ◦ z as a call to a random oracle

H(x || y), there is no alternative way to compute f . Since it is well-established practice
in cryptography to instantiate random oracles by hash functions, Catena follows this
approach and instantiates its internal operation by a strong cryptographic hash function,
where we suggest BLAKE2b as default primitive.
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2. Preliminaries

Of course, there is a middle-ground between using a simple algebraic operation on
one side, and an entire cryptographic primitive on the other side. BLAKE2b consists of
several rounds, where each single round is a cunning composition of xor-operations, ad-
ditions, and bit-wise rotations over an input word. If we use such an operation for “◦” (or
in general, if we use the internal round- or step-operations of a cryptographic primitive),
the relevance of the lower bounds is completely unclear, and finding “shortcut attacks”
with improved time-memory tradeoffs becomes a new challenge for cryptanalysts. We
elaborate on this approach, which would turn a password-scrambler into a cryptographic
primitive of its own right, in Section 7.3.

2.2. Properties and Definitions

Below, we describe and define the desired properties of a modern password scrambler.

Memory-Hardness. To describe memory requirements, we adopt and slightly change
the notion from [34]. The intuition is that for any parallelized attack, using b cores, the
required memory per core is decreased by a factor of 1/b, and vice versa.

Definition 2.2 (Memory-Hard Function). Let g denote the memory cost fac-
tor. For all α > 0, a memory-hard function f can be computed on a Random Access
Machine using S(g) space and T (g) operations, where S(g) ∈ Ω(T (g)1−α).

Thus, for S · T = G2 with G = 2g, using b cores, we have

(

1

b
· S

)

· (b · T ) = G2.

A formal generalization of this notion is given in the following.

Definition 2.3 (λ−Memory-Hard Function). Let g denote the memory cost
factor. For a λ−memory-hard function f , which is computed on a Random Ac-
cess Machine using S(g) space and T (g) operations with G = 2g, it holds that

T (g) = Ω

(

Gλ+1

S(g)λ

)

.

Thus, we have
(

1

b
· Sλ

)

· (b · T ) = Gλ+1.

Remark. Note that for a λ-memory-hard function f , the relation S(g) · T (g) is always
in Ω(Gλ+1), i.e., it holds that if S decreases, T has to increase, and vice versa.
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λ-Memory-Hard vs. Sequential Memory-Hard. In [34], Percival introduced the notion
of sequential memory-hardness (SMH), which is satisfied by his introduced password
scrambler scrypt. Bases on this notion, an algorithm is sequential memory-hard, if an
adversary has no computational advantage in using multiple CPUs, i.e., using b cores
requires b times the effort used for one core. It is easy to see that, in the parallel
computation setting, SMH is a stronger notion than that of λ-memory-hardness (λMH).
Thus, SMH is a desirable goal when designing a memory-consuming password scrambler.
In this section we discuss why our presented password scrambler Catena satisfies at
most λMH instead of SMH, without referring to details of Catena, which are presented
in Chapter 3 and 5.
Note that a further goal of our design was to provide resistance against cache-timing

attacks, i.e., both instantiations of Catena should satisfy a password-independent
memory-access pattern. This goal can be achieved by providing a control flow which
is independent of its input. It follows that Catena can be seen as a straight-line pro-
gram, which on the other hand can be represented by a directed acyclic graph (DAG,
see Definition 2.4).

Definition 2.4 (Directed Acyclic Graph). Let Π(V , E) be a graph consisting of
a set of vertices V = (v0, v1, . . . , vn−1) and a set of edges E = (e0, e1, . . . , eℓ−1),
where E = ∅ is a valid variant. Π(V , E) is a directed acyclic graph, if every edge
in E consists of a starting vertex vi and an ending vertex vj, with i 6= j. A path
through Π(V , E) beginning at vertex vi must never reach vi again (else, there would
be a cycle). If there exists a path from a vertex vi to a vertex vj in the graph with
i 6= j, we will write vi ≤ vj.

Usually, a DAG can be at least partially computed in parallel. Assuming that one
has b processors to compute a graph Π(V , E), one can partition Π(V , E) into b disjunct
subgraphs π0, . . . , πb−1. Let Ri,j denote the set of crossing edges between two subgraphs
πi and πj . If the available shared memory units are at least equal to the order of Ri,j ,
one can compute πi and πj in parallel. More detailed, in the first step one computes each
vertex corresponding to a crossing edge and stores them in the global shared memory.
Next, both subgraphs can be processed in parallel by accessing this memory. It follows
that if the available memory is

b−1
∑

i=0

b−1
∑

j=0

|Ri,j |,

then, one can compute all subgraphs π0, . . . , πb−1 in parallel. Due to the structure of
Catena, or more specifically, the structure of the two proposed instantiations, one can
always partition its corresponding DAGs into such subgraphs and hence, Catena can
be at least partially computed in parallel, which is a contradiction to the definition of se-
quential memory-hardness. Thus, we introduced the notion of λMH as described above,
which is a weaker notion in the parallel computing setting but a stronger notion in the
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single-core setting. To the best of our knowledge, Catena is the first password scram-
bler which satisfies both to be memory-consuming (by satisfying λMH) and providing
resistance against cache-timing attacks.

Password Recovery (Preimage Security). For a modern password scrambler it should
hold that the advantage of an adversary (modeled as a computationally unbounded but
always-halting algorithm) for guessing a valid password should be reasonable small, i.e.,
not higher than for trying out all possible candidates. Therefore, given a password
scrambler PS, we define the Password-Recovery Advantage of an adversary A as follows:

Definition 2.5 (Password-Recovery Advantage). Let s denote a randomly
chosen salt value, and let Q be a entropy source with e bits of min-entropy. Then,
we define the password-recovery advantage of an adversary A against an password
scrambler PS as

AdvREC

PS (A) = Pr
[

pwd← Q, h← PS(s, pwd) : x
$← APS,s,h : PS(s, x)

?
= h

]

.

Furthermore, by AdvREC

PS (q) we denote the maximum advantage taken over all ad-
versaries asking at most q queries to PS.

In Section 4.1 we provide an analysis of Catena which shows that for guessing a valid
password, an adversary either has to try all possible candidates or it has to find a
preimage for the underlying hash function.

Client-Independent Update. According to Moore’s Law [28], the available resources of
an adversary increase continually over time – and so do the legitimate user’s resources.
Thus, a security parameter chosen once may be too weak after some time and needs to
be updated. This can easily be done immediately after the user has entered its password
the next time. However, in many cases, a significant number of user accounts are inactive
or rarely used, e.g., 70.1% of all Facebook accounts experience zero updates per month
[29] and 73% of all Twitter accounts do not have at least one tweet per month [36].
It is desirable to be able to compute a new password hash (with some higher security
parameter) from the old one (with the old and weaker security parameter), without
having to involve user interaction, i.e., without having to know the password. We call
this feature a client-independent update of the password hash. When key stretching is
done by iterating an operation, client-independent updates may or may not be possible,
depending on the details of the operation, e.g., when the original password is one of the
inputs for every operation, client-independent updates are impossible.

Server Relief. A slow and – even worse – memory-demanding password-based log-in
process may be too much of a burden for many service providers. A way to overcome this
problem, i.e., to shift the effort from the side of the server to the side of the client, can
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be found in [30] and more recent in [13]. We realized this idea by splitting the password-
scrambling process into two parts: (1) a slow (and possibly memory-demanding) one-way
function F and (2) an efficient one-way function H. By default, the server computes the
password hash h = H(F (pwd , s)) from a password pwd and a salt s. Alternatively, the
server sends s to the client who responds y = F (pwd , s). Finally, the server just computes
h = H(y). While it is probably easy to write a generic server relief protocol using any
password scrambler, none of the existing password scramblers has been designed to
naturally support this property. Note that this property is optional, e.g., for the proof
of work scenario the server relief idea makes no sense, since the whole effort should be
already on the side of the client.

Resistance against Cache-Timing Attacks. Consider the implementation of a pass-
word scrambler, where data is read from or written to a password-dependent address
a = f(pwd). If, for another password pwd ′, we would get f(pwd ′) 6= a and the adver-
sary could observe whether we access the data at address a or not, then it could use
this information to filter out certain passwords. Under certain circumstances, timing
information related to a given machine’s cache behavior may enable the adversary to
observe which addresses have been accessed. Thus, we formally introduce resistance
against cache-timing attacks.

Definition 2.6 (Resistance against Cache-Timing Attacks). Suppose the
function F : {0, 1}∗ × {0, 1}k → {0, 1}n processes arbitrary large data together with
a secret value K with |K| = k, and outputs a fixed length value of size n. We call
F resistant against cache-timing attacks iff its control flow does not depend on the
secret input K.

Key-Derivation Function (KDF). Beyond authentication, passwords are also used to
derive symmetric keys. Obviously, one can just use the output of the password scrambler
as a symmetric key – perhaps after truncating it to the required key size. This is a
disadvantage if one either needs a key longer than the password hash or has to derive
more than one key. Thus, it is prudent to consider a KDF as a tool of its own right
– with the option to derive more than one key and with the security requirement that
compromising some of the keys does not endanger the other ones. Note that it is required
for a KDF that the input and output behaviour cannot be distinguished from a set of
random functions. Thus, we define the Random-Oracle Security of a password scrambler
as follows:
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Definition 2.7 (Random-Oracle Security). Let PS : {0, 1}∗ → {0, 1}n be a
password scrambler, which gets an input of arbitrary length and produces a fixed-
length output. Let A be a fixed adversary which is allowed to ask at most q queries
to an oracle. Further, let $ : {0, 1}∗ → {0, 1}n be a random function which, given
an input of arbitrary length, always returns randomly chosen values from {0, 1}n.
Then, the Random-Oracle Security of a password scrambler PS is defined by

Adv$
PS(A) =

∣

∣

∣
Pr

[

APS ⇒ 1
]

− Pr
[

A$ ⇒ 1
]∣

∣

∣
.

Furthermore, by Adv$
PS(q) we denote the maximum advantage taken over all ad-

versaries asking at most q queries to an oracle.

Note that the input (of arbitrary length) of PS contains the password, the salt, and
some other (optional) parameters, e.g., parameters to adjust the memory consumption
or the computational time.

Resistance against Garbage-Collector (GC) Attacks. The basic idea of this attack is
to exploit the management of the memory and the internal state a password-hashing
algorithm. More detailed, the goal of an adversary is to find out a valid preimage
(password) for a given hash value without taking the whole effort of computing the
corresponding password-hashing algorithm for each candidate (shortcut attack). Next,
we formally define the term Garbage-Collector Attack.

Definition 2.8 (Garbage-Collector Attack). Let PS be a memory-demanding
password scrambler depending on a memory-cost parameter g with G = 2g. Further-
more, let v0, . . . , vG−1 denote the internal state of PS after its termination. Let A
be a computationally unbounded but always halting adversary conducting a garbage-
collector attack. We say that A is successful if the knowledge about v0, . . . , vG−1

reduces the runtime of A for testing a password candidate x from O(PS(x)) to
O(f(x)) with O(f(x)) < O(PS(x)).
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2.3. Notational Conventions

Identifier Description

pwd password

λ security parameter of Fλ (depth)

s salt (public random value)

p pepper (secret bits of the salt)

t tweak

d domain (application specifier) of Catena

V version identifier

g0, g minimum garlic; current garlic with G = 2g

PS/PSF Password Scrambler/Password-Scrambling Framework

m output length of Catena

Fλ function replaced in a particular instance of Catena

$ function returning a fixed-size random value

h, y password hash (or intermediate hash)

S(g) memory (space) consumption; depends on the garlic

T (g) time consumption; depends on the garlic

Π(V , E) graph based on V vertices and E edges

ri i-th row of a Πλ
g (V , E)

vki,j j-th vertex of the i-th row of the k-th DBG

b number of cores

AO1,...,Oℓ adversary A with access to the oracles O1, . . . , Oℓ

q number of total queries A is allowed to ask

τ Bit-Reversal Permutation

σ function determining the index of the diagonal edges (DBG)

AD associated data

K secret key

|X| size of X in bits or size of a set X

Table 2.1.: Notations used throughout this document.
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Chapter 3
Catena– A Memory-Hard

Password-Scrambling Framework

In this chapter we introduce our password-scrambling framework (PSF) called Catena.
Besides providing novel and sustainable properties, it provides high resilience against
cache-timing attacks. A formal definition is shown in Algorithm 1, whereas the general
idea is given in Figure 3.1. The function truncate(x,m) (see Lines 2 and 6 of Algorithm 1)
outputs the m least significant bits of x, where m is the user-chosen output length of
Catena. After the first truncation step, the function Fλ is called, where the password-
dependent input x is padded with as many 0’s as necessary so that x || 0∗ fits the output
size of the underlying hash function. By default, Catena uses BLAKE2b for H. Note
that the function Fλ is replaced by either BRHG

λ (Catena-BRG, see Section 5.1) or
DBHG

λ (Catena-DBG, see Section 5.2).

3.1. Specification

...
g0 g0 + 1 g

input output

Fλ
FλFλ

Figure 3.1.: The general idea of applying the function Fλ (g − g0) times whereas the
value for g is increased by 1 in each iteration.

Tweak. The parameter t is an additional multi-byte value which is given by:
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3. Catena– A Memory-Hard Password-Scrambling Framework

Algorithm 1 Catena

Input: λ {Depth}, pwd {Password}, t {Tweak} s {Salt}, g0 {Min. Garlic}, g {Garlic},
Fλ {Instance}, m {Output Length}

Output: x {Hash of the Password}
1: x← H(t || pwd || s)
2: x← truncate(x)
3: for c = g0, . . . , g do
4: x← Fλ(c, x || 0∗)
5: x← H(c || x)
6: x← truncate(x,m)
7: end for
8: return x

t← V || d || λ || m || |s| || H(AD),

where the first byte V denotes the version ID (0xFF for Catena-BRG and 0xFE for
Catena-DBG), and the second byte d denotes the domain (i.e., the mode) for which
Catena is used. We set d = 0 for the usage of Catena as a password scrambler, d = 1
when used as a key-derivation function (see Section 8.3), and d = 2 for the proof of work
scenario (see Section 8.1). The remaining possible values for d are reserved for future
applications. The third byte λ defines together with the value g (see above) the security
parameters for Catena. The 16-bit value m denotes the output length of Catena in
bits, and the 32-bit value |s| denotes the total length of the salt in bits. The n-bit value
H(AD) is the hash of the associated data AD, which can contain additional information
like hostname, user-ID, name of the company, or the IP of the host, with the goal to
customize the password hashes. Note that the order of the values does not matter as
long as they are fixed for a certain application.
The tweak is processed together with the salt and the secret password (see Line 1 of

Algorithm 1). Thus, t can be seen as a weaker version of a salt increasing the additional
computational effort for an adversary when using different values. Furthermore, it allows
to differentiate between diverse applications of Catena, and can depend on all possible
input data. Note that one can easily provide unique tweak values (per user), when
including the user-ID in the associated data.

3.2. Functional Properties

Garlic. Catena employs a graph-based structure, where the memory requirement
highly depends on the number of input vertices of the permutation graph. As the goal is
to hinder an adversary to make a reasonable number of parallel password checks using
the same memory, we have to consider a minimal number of input vertices. In general,
we use G = 2g input vertices, where g denotes the garlic parameter.
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3. Catena– A Memory-Hard Password-Scrambling Framework

Client-Independent Update (CI-update). Its sequential structure does enableCatena

to provide client-independent updates. Let h ← Catenaλ(pwd, t, s, g0, g, Fλ,m) be the
hash of a specific password pwd , where t, s, g0, g,Fλ, and m denote tweak, the salt, the
minimum garlic, the garlic, the instance, and the output length, respectively. After in-
creasing the security parameter from g to g′ = g + 1, we can update the hash value h
without user interaction by computing:

h′ = truncate(H(g′ || Fλ(g
′, h || 0∗)),m).

It is easy to see that the equation h′ = Catenaλ(pwd , t, s, g0, g
′, Fλ,m) holds.

Server Relief. In the last iteration of the for-loop in Algorithm 1, the client has to omit
the last invocation of the hash function H (see Line 5). The current output of Catenaλ

is then transmitted to the server. Next, the server computes the password hash by
applying the hash function H and the function truncate. Thus, the vast majority of
the effort (memory usage and computational time) for computing the password hash is
handed over to the client, freeing the server. This enables someone to deploy Catena

even under restricted environments or when using constrained devices – or when a single
server has to handle a huge amount of authentication requests, e.g., in social networks.

Keyed Password Hashing. To further thwart off-line attacks, we introduce a technique
to use Catena for keyed password hashing, where the password hash depends on both
the password and a secret key K. Note that K is the same for all users, and thus, it
has to be stored on server-side. To preserve the server-relief property (see above), we
encrypt the output of Catenaλ using the XOR operation with H(K || userID || g || K),
which, under the reasonable assumption that the value (userID || g) is a nonce, was
proven to be CPA-secure in [35]. Let X := {pwd, t, s, g0, g, Fλ,m}. Then, the output of
Catena

K
λ is computed as follows:

y = Catena
K
λ (userID,X) := Catenaλ(X)⊕H(K || userID || g || K),

where Catenaλ is defined as in Algorithm 1 and the userID is a unique and user-
specific identification number which is assigned by the server. Now, we show what
happens during the client-independent update, i.e., when g = g + r for arbitrary r ∈ N.
The process takes the following four steps:

1. Given K and userID, compute z = H(K || userID || g || K).

2. Compute x = y ⊕ z, where y denotes the current keyed hash value.

3. Update x, i.e., x = H(c || Fλ(c, x || 0∗)) for c ∈ {g + 1, . . . , g + r}.

4. Compute the new hash value y = y ⊕H(K || userID || g + r || K).
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Remark. Obviously, it is a bad idea to store the secret key K on the same place as the
password hashes, since it can be leaked in the same way as the password-hash database.
One possibility to separate the key from the hashes is to securely store the secret key by
making use of hardware security modules (HSM), which provide a tamper-proof memory
environment with verifiable security. Then, the protection of the secret key depends on
the level provided by the HSM (see FIPS140-2 [11] for details). Another possibility is to
derive K from a password during the bootstrapping phase. Afterwards, K will be kept
in the RAM and will never be on the hard drive. Thus, the key and the password-hash
database should never be part of the same backup file.

3.3. Security Properties

Memory-Hardness. In Chapter 6 we present and discuss the results of Lengauer and
Tarjan [27]. They analyzed the underlying structures which we use in our instantiations
regarding to its memory-hardness. In short, Catena-BRG (see Section 5.1) provides
a time-memory tradeoff of the form S · T = G2 (see Definition 2.2), where S denotes
the memory, T the time, and G = 2g the garlic. On the other hand, Catena-DBG

(see Section 5.2) provides the property of a λ-memory-hard function, i.e., Sλ ·T = Gλ+1

(see Definition 2.3), where λ denotes the depth of the DBGG
λ . The security analysis is

based on a proof technique called pebble game (see Section 2.1). This property enables
Catena to thwart massively parallel adversaries.

Preimage Security. One major requirement for password scramblers is described by
the preimage security, i.e., given a fresh password hash h = PS(pwd), one cannot gain
any information about pwd in practical time. This requirement becomes mostly crucial
in a situation of a leaked password-hash database. In Section 4.1 we show that the
preimage security of Catena depends on 1) the assumption that the underlying hash
function H is a one-way function and 2) the entropy of the password (pwd).

Random-Oracle Security. For the application of Catena as a password scrambler, this
property is noncritical. But, if Catena is used as a key-derivation function (KDF), one
wants the resulting secret key to be indistinguishable from a random string of the same
length. In Section 4.2 we show that for a secret input (pwd), the output of Catenaλ

looks random. The presented proof is based on the assumption that the underlying hash
function behaves like a random oracle.

Cache-Time Resistance. From Definition 2.6, it follows that an algorithm is cache-
time resistance if its control flow does not depend on the input. One can easily see that
Catena provides this property, since it is based on the function Fλ, whose control flow
only depend on the security parameters g (garlic) and λ (depth), i.e., given these two
parameters, it provides a predetermined memory-access pattern, which is independent
from the secret input (pwd).
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3.4. Parameter Recommendation

Hash Function. For the practical application of Catena, we where looking for a hash
function with a 512-bit (64 byte) output, since it often complies with the size of a cache
line on common CPUs. In any case, we assume that both the output size of H and the
cache-line size are powers of two, so if they are not equal, the bigger number is a multiple
of the smaller one. Moreover, the output of H should be byte-aligned. For Catena, we
decided to use 1) BLAKE2b [5] since it high performance in software, which allows to use
a large value for the garlic parameter, resulting in a higher memory effort than for, e.g.,
SHA3-512 [7], and 2) SHA2-512 [32] since it is well-analyzed [2, 23, 26], standardized,
and widely used, e.g., in sha512crypt, the common password scrambler in several Linux
distributions [14].
Note that the security of Catena does not only rely on the performance of a specific

hash function, but also on the size of the underlying graph (BRGG
λ or DBGG

λ ), i.e., the
depth λ and the width g. Thus, even in the case of a secure but very fast cryptographic
hash function, which may be counter-intuitive in the password-scrambling scenario, one
can adapt the security parameter to reach the same computational effort.

Remark: Our primary recommendation for the Password Hashing Competition (PHC)
is BLAKE2b, and our secondary recommendation is SHA-512. Nevertheless, we highly
encourage users to plug in their favourite cryptographic hash function such as SKEIN-512
[21] or SHA3-512.

Cost Parameter. Table 3.1 presents the recommended parameter sets for Catena

(depending on the particular instance) when considering COTS systems. The parameter
set for keyed password hashing is similar to the parameter set for key-less password
hashing, plus an additional 128-bit key. For non-COTS system, the parameter sets must
be individually adjusted corresponding to the underlying hardware, e.g., for embedded
systems one would chose smaller garlic values.

Encoding. The parameter encoding table can be found in Table 3.2.

Implementation. A current reference implementation can be found on

https://github.com/cforler/catena.

This implementation was used to create the test vectors given in Appendix B.
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Algorithm H Fλ g0/g λ |s| Time

Catena BRGG
λ BLAKE2b 14/14 3 128 bits 0.36 sec

SHA-512 13/13 2 128 bits 0.43 sec

Catena DBGG
λ BLAKE2b 18/18 2 128 bits 0.23 sec

SHA-512 17/17 2 128 bits 0.34 sec

Catena-KG BRGG
λ BLAKE2b 21/21 4 128 bits 3.16 sec

SHA-512 20/20 3 128 bits 3.77 sec

Catena-KG DBGG
λ BLAKE2b 17/17 4 128 bits 4.65 sec

SHA-512 15/15 4 128 bits 3.75 sec

Table 3.1.: Recommended parameter sets for COTS systems. All timings are measured
on a Intel Core i5-2520M CPU (2.50GHz) system.

Parameter Description Encoding

gp garlic (password hashing) 1 byte
gk garlic (key derivation) 1 byte
λ depth 1 byte
d domain 1 byte
m output length 4 bytes
s salt byte string
|s| salt length UInt32

Table 3.2.: Parameter choices for the practical usage of Catena. By UInt32 we denote
a 32-bit unsigned integer which is always encoded in little-endian way.
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Chapter 4
Security Analysis of the Catena

Framework

We denote a password scrambler to be secure if it provides at least 1-memory-hardness
and preimage security. Furthermore, it should be resistant against cache-timing attacks.
Catena-DBG (see Section 5.2) inherits its λ-memory-hardness (see Definition 2.3) from
Fλ, whereas Catena-BRG (see Section 5.2) provides only 1-memory-hardness, i.e.,
memory-hardness (see Definition 2.2).
Since the memory-access pattern of Catena is static and therefore, independent from

the password, it provides resistance against cache-timing attacks. Finally, we show that
Catena is a secure password scrambler that behaves like a good random function, which
is useful for using Catena as a secure KDF.

4.1. Password-Recovery Resistance.

In this section we show that Catena is a good password scrambler, i.e., given the hash
value h it is infeasible for an adversary to do better than trying out password candidates
in likelihood order to obtain the correct password.

Theorem 4.1 (Catenaλ is Password-Recovery Resistant). Let m denote the
min-entropy of a password source Q. Then, it holds that

AdvREC
Catenaλ,Q

(q) ≤ q

2m
+Advpre

H (q, t).

Proof. Note that an adversary A can always guess a (weak) password by trying out
about 2m password candidates. For a maximum of q queries, it holds that the success
probability is given by q/2m. Instead of guessing 2m password candidates, an adversary
can also try to find a preimage for a given hash value h. It is easy to see from Algorithm 1
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that an adversary thus has to find a preimage for H in Line 4. More detailed, for a given
value h with h ← H(g, x), A has to find a valid value for x. The success probability
for this can be upper bounded by Advpre

H (q, t). Our claim follows by adding up the
individual terms. �

4.2. Pseudorandomness.

In the following we analyze the advantage of an adversary A in distinguishing the output
of Catenaλ from a random bitstring of the same length as the output of Catenaλ.
Therefore, we model the internally used hash function H : {0, 1}∗ → {0, 1}n as a random
oracle. Note that the output length m, the depth λ, and the value g0 (minimum garlic)
are constant values which are set once when initializing a system the first time.

Theorem 4.2 (PRF Security of Catenaλ). Let q denote the number of queries
made by an adversary and s a randomly chosen salt value. Furthermore, let H be
modelled as a random oracle and g ≥ g0 ≥ 1. Then, it holds that

AdvPRF
Catenaλ

(q, t) ≤ (q · g + q)2

2n
+Advcoll

Fλ
(g · q).

Proof. Let ai = (pwd i || ui || si || g) represent the i-th query, where pwd i denotes the
password, ui denotes the tweak, si the salt, and g the garlic. For this proof, we impose
the reasonable condition that all queries of an adversary are distinct, i.e., ai 6= aj for
i 6= j.
Suppose that yj denotes the output of Fλ(g, a

j) of the j-th query (cf. Algorithm 1,
Line 3). Then, H(g || yj) is the output of Catenaλ(a

j). In the case that y1, . . . , yq are
pairwise distinct, an adversary A cannot distinguish H(g || ·) from a random function
$(·) since in the random-oracle model, both functions return a value chosen uniformly
at random from {0, 1}n.
Therefore, we have to upper bound the probability of the event yi = yj with i 6= j.

Due to the assumption that A′s queries are pairwise distinct, there must be at least one
collision for H or Fλ. For q queries, we have at most q(g + 1) invocations of H. Thus,
we can upper bound the collision probability by

(q · g + q)2

2n
.

Furthermore, we have q · g invocations of the memory-consuming function Fλ. We can
upper bound the probability of a collision by Advcoll

Fλ
(g · q). Our claim follows from the

union bound. �
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Chapter 5
Instantiations

In this section we introduce two concrete instantiations of Catena: Catena-BRG and
Catena-DBG.

5.1. Catena-BRG

For Catena-BRG, Fλ is implemented by the (G, λ)-Bit-Reversal Hashing (BRHG
λ )

algorithm, which is based on the bit-reversal permutation.

Definition 5.1 (Bit-Reversal Permutation τ). Fix a number k ∈ G and repre-
sent i ∈ Z2k as a binary k-bit number, (i0, i1, . . . , ik−1). The bit-reversal permutation
τ : Z2k → Z2k is defined by

τ(i0, i1, . . . , ik−1) = (ik−1, . . . , i1, i0).

The bit-reversal permutation τ defines the (G, λ)-Bit-Reversal Graph (BRGG
λ ).
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5. Instantiations

Output

Input

v00 v01 v02 v03 v04 v05 v06 v07

v10 v11 v12 v13 v14 v15 v16 v17

Figure 5.1.: An (8, 1)-bit-reversal graph (BRG8
1).

Definition 5.2 ((G, λ)-Bit-Reversal Graph). Fix a natural number g, let V de-
note the set of vertices, and E the set of edges within this graph. Then, a (G, λ)-bit-
reversal graph BRGG

λ (V , E) consists of (λ+ 1) · 2g vertices

{v00, . . . , v02g−1} ∪ {v10, . . . , v12g−1} ∪ · · · ∪ {vλ−1
0 , . . . , vλ−1

2g−1} ∪ {vλ0 , . . . , vλ2g−1},

and (2λ+ 1) · 2g − 1 edges as follows:

• (λ+ 1) · (2g − 1) edges vji−1 → vji for i ∈ {1, . . . , 2g − 1} and j ∈ {0, 1, . . . , λ}.

• λ · 2g edges vji → vj+1
τ(i) for i ∈ {0, . . . , 2g − 1} and j ∈ {0, 1, . . . , λ− 1}.

• λ additional edges vj2g−1 → vj+1
0 where j ∈ {0, . . . , λ− 1}.

For example, Figure 5.1 illustrates an BRG8
1. A BRG8

4 can be seen in Appendix C. Note
that this graph is almost identical – except for one additional edge e = (v07, v

1
0) – to the

bit-reversal graph presented by Lengauer and Tarjan in [27].

Bit-Reversal Hashing. The (G, λ)-Bit-Reversal Hashing function is defined in Algo-
rithm 2. It requires O(2g) invocations of a given hash function H for a fixed value of
x. The three inputs g, x, and λ of BRHG

λ represent the garlic g = log2(G), the value
to process, and the depth, respectively. Thus, g specifies the required units of memory.
Moreover, incrementing g by one doubles the time and memory effort for computing the
password hash.

Observation on Cache-Time Misses. The following observation holds for a (G, 1)-
bit-reversal graph, but can also be easily generalized for (G, λ)-bit-reversal graph with
arbitrary values of λ ∈ N. When the output size of H is equal to the size of a cache line
(or a multiple), each time a value is read from or written to a location vi, the time to
access vi is the same, to first order. Now, assume the output size of H (i.e., the number
of bits for each of the vi) is k times the cache line size. In this case the adversary may
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5. Instantiations

Algorithm 2 (G, λ)-Bit-Reversal Hashing (BRHG
λ )

Input: g {Garlic}, x {Value to Hash}, λ {Depth}, H {Hash Function}
Output: x {Password Hash}
1: v0 ← H(x)
2: for i = 1, . . . , 2g − 1 do
3: vi ← H(vi−1)
4: end for
5: for k = 1, . . . , λ do
6: r0 ← H(v0 || v2g−1)
7: for i = 1, . . . , 2g − 1 do
8: ri ← H(ri−1 || vτ(i))
9: end for

10: v ← r
11: end for
12: return r2g−1

try to optimize the memory layout (the order in which the vi are stored in memory)
to minimize the number of cache misses. However, a nice property of the bit-reversal
permutation τ is that one cannot gain much from such an optimization. If the values
are stored in their natural order: v0, v1, . . . , v2g−1, then, the number of cache misses in
the first phase (Lines 2 and 4 of Algorithm 2) are drastically reduced to 2g/k. But, in
the second phase (Lines 5 and 12 of Algorithm 2), the number of cache misses is 2g. If
an adversary stores the vi in their bit-reversal order, the number of cache misses in the
second phase is 2g/k, but, in the first it is now 2g. A more complex mixture between
natural and bit-reversal order would allow 2g/

√
k cache misses in each of the first and

the second phase. If k is not really huge, the benefit from such an optimization would
remain small.

5.2. Catena-DBG

Note that a (G, λ)-Double-Butterfly Graph (DBGG
λ ) is based on a stack of λ G-super-

concentrators. The following definition of a G-superconcentrator is a slightly adapted
version of that introduced in [27].

Definition 5.3 (G-Superconcentrator). A directed acyclic graph Π(V , E) with a
set of vertices V and a set of edges E, a bounded indegree, G inputs, and G outputs
is called a G-superconcentrator if for every k such that 1 ≤ k ≤ G and for every pair
of subsets V1 ⊂ V of k inputs and V2 ⊂ V of k outputs, there are k vertex-disjoint
paths connecting the vertices in V1 to the vertices in V2.

A double-butterfly graph (DBG) is a special form of a G-superconcentrator which is
defined by the graph representation of two back-to-back placed Fast Fourier Trans-
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5. Instantiations

Figure 5.2.: A Cooley-Tukey FFT graph with eight input and output vertices.

vertical sequential + connecting layerdiagonal

Figure 5.3.: Types of edges as we use them in our definitions.

formations [10]. More detailed, it is a representation of twice the Cooley-Tukey FFT
algorithm [12] omitting one row in the middle (see Figure 5.2 for an example where
G = 8). Therefore, a DBG consists of 2 · g rows.
Based on the DBG, we define the sequential and stacked (G, λ)-double-butterfly graph.
In the following, we denote vki,j as the j-th vertex in the i-th row of the k-th double-
butterfly graph.
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5. Instantiations

Definition 5.4 ((G, λ)-Double-Butterfly Graph). Fix a natural number g ≥ 1
and let G = 2g. Then, a (G, λ)-double-butterfly graph DBGG

λ (V , E) consists of 2g ·
(λ · (2g − 1) + 1) vertices

• {vk0,0, . . . , vk0,2g−1} ∪ . . . ∪ {vk2g−2,0, . . . , v
k
2g−2,2g−1} for 1 ≤ k ≤ λ and

• {vλ2g−1,0, . . . , v
λ
2g−1,2g−1},

and λ · (2g − 1) · (3 · 2g) + 2g − 1 edges

• vertical: 2g · (λ · (2g − 1)) edges

(vki,j , v
k
i+1,j) for 0 ≤ i ≤ 2g − 2, 0 ≤ j ≤ 2g − 1, and 1 ≤ k ≤ λ,

• diagonal: 2g · λ · g + 2g · λ · (g − 1) edges

(vki,j , v
k
i+1,j⊕2g−1−i) for 0 ≤ i ≤ g − 1, 0 ≤ j ≤ 2g − 1, and 1 ≤ k ≤ λ.

(vki,j , v
k
i+1,j⊕2i−(g−1)) for g ≤ i ≤ 2g − 2, 0 ≤ j ≤ 2g − 1, and 1 ≤ k ≤ λ.

• sequential: (2g − 1) · (λ · (2g − 1) + 1) edges

(vki,j , v
k
i,j+1) for 1 ≤ i ≤ 2g − 1, 0 ≤ j ≤ 2g − 2, 1 ≤ k ≤ λ, and

(vλ2g−1,j , v
λ
2g−1,j+1) for 0 ≤ j ≤ 2g − 2

• connecting layer: λ · (2g − 1) edges

(vki,2g−1, v
k
i+1,0) for 1 ≤ k ≤ λ, 0 ≤ i ≤ 2g − 2.

In Appendix D you can see a DBG8
2. Figure 5.3 illustrates the individual types of edges

we used in our definition above. Moreover, an example for G = 8 and λ = 1 can be seen
in Figure 5.4.

Double-Butterfly Hashing. The (G, λ)-double-butterfly hashing operation is defined
in Algorithm 3. The structure is based on a (G, λ)-double-butterfly graph. Note that
the function σ (see Lines 7 and 9) is given by

σ(g, i, j) =

{

j ⊕ 2g−1−i if 0 ≤ i ≤ g − 1,

j ⊕ 2i−(g−1) otherwise.

Thus, σ determines the indices of the vertices of the diagonal edges (see Figure 5.3).
Since the security of Catena in terms of password hashing is based on a time-memory

tradeoff, it is desired to implement it in an efficient way, making it possible to increase
the required memory. We recommend to use BLAKE2b [5] as the underlying hash
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5. Instantiations

H

H
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Figure 5.4.: An (8, 1)-double-butterfly graph (DBG8
1).

function, implying a block size of 1024 bits with 512 bits of output. Thus, it can process
two input blocks within one compression function call. This is suitable for Catena-

BRG since a bit-reversal graph satisfies a fixed indegree of at most 2. When considering
Catena-DBG, we cannot simply concatenate the inputs to H while keeping the same
performance per hash function call, i.e., three inputs to H require two compression
function calls, which is a strong slow-down in comparison to BRGG

λ . Therefore, we
compute H(X,Y, Z) = H(X⊕Y || Z) instead of H(X,Y, Z) = H(X || Y || Z) obtaining
the same performance as Catena-BRG per hash function call. Obviously, this doubles
the probability of an input collision. Nevertheless, for a 512-bit hash function, the success
probability for a collision of an adversary is still negligible.
Based on the approach above, the number of hash function calls to compute Row ri

from Row ri−1 is the same for Catena-BRG and Catena-DBG. Moreover, for both
instantiations it holds that the number of hash function calls is equal to the number
of compression function calls (when used with BLAKE2b). More detailed, the BRGG

λ

requires 2g − 1 + λ · 2g calls to H and the (G, λ)-DBG requires 2g − 1 + λ · (2g − 1) · 2g
calls to H. It is easy to see, that the performance of Catena-DBG in comparison to
Catena-BRG is decreased by a logarithmic factor.

Remark. Note that the performance optimization discussed above has no influence on the
λ-memory hardness of the DBHG

λ operation since the first inputX⊕Y is given by XORing
vertices from the sequential or connecting layer and the vertical layer. In Chapter 6 we
discuss the results of [27] who have shown that even without the sequential input, the
DBHG

λ operation provides λ-memory-hardness. Thus, adding additional inputs operation
does not invalidate their results. The objective of the sequential layer is to thwart the
possibility of computing DBHG

λ in parallel.
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Algorithm 3 (G, λ)-Double-Butterfly Hashing (DBHG
λ )

Input: g {Garlic}, x {Value to Hash}, λ {Depth}, H {Hash Function}
Output: x {Password Hash}
1: v0 ← H(x)
2: for i = 1, . . . , 2g − 1 do
3: vi ← H(vi−1)
4: end for
5: for k = 1, . . . , λ do
6: for i = 1, . . . , 2g − 1 do
7: r0 ← H(v2g−1 ⊕ v0 || vσ(g,i−1,0))
8: for j = 1, . . . , 2g − 1 do
9: ri ← H(ri−1 ⊕ vi || vσ(g,i−1,j))

10: end for
11: v ← r
12: end for
13: end for
14: return v2g−1
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Chapter 6
Security Analysis of Catena-BRG and

Catena-DBG

In this section we discuss the security of Catena-BRG and Catena-DBG against side-
channel attacks. Furthermore, we discuss the memory-hardness and pseudorandomness
of both instantiations.

6.1. Resistance Against Side-Channel Attacks

Straightforward implementations of either Catena-BRG or Catena-DBG provide nei-
ther a password-dependent memory-access pattern nor password-dependent branches.
Therefore, both instantiations are resistant against cache-timing attacks (see Defini-
tion 2.6).
Considering a malicious garbage collector (see Definition 2.8), each of Algorithms 2

and 3 exposes the arrays v and r. Both arrays are overwritten multiple times (depending
on the choice of λ). Lets consider both instantiations with G = 8 and λ = 1. Then, for
BRH8

2, the array v is overwritten twice and the array r once, whereas for DBH8
2, v is

overwritten 10 times and r 9 times. Even for λ = 1, Catena-DBG is resistant against
garbage-collector attacks and furthermore, it follows that any variant of Catena with
some fixed λ ≥ 2 is at least as resistant to garbage-collector attacks as the same variant
with λ− 1 in the absence of a malicious garbage collector.

Remark. Note that cache-timing and garbage-collector attacks have even more severe
consequences. They do not only speed-up regular password-guessing attacks where the
password hash is already in possession of the adversary. They also enable an adversary
A to recover a password without knowing the password hash at all by just verifying the
memory-access pattern.
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6. Security Analysis of Catena-BRG and Catena-DBG

6.2. Memory-Hardness

The memory-hardness of an algorithm which can be represented as a DAG with bounded
indegree, can be shown by “playing” the pebble game (see Section 2.1). Here, we restate
and discuss the results presented by Lengauer and Tarjan in [27].

Catena-BRG. In [27], Lengauer and Tarjan have proven the lower bound of pebble
movements for a (G, 1)-bit-reversal graph.

Theorem 6.1 (Lower Bound for a BRGG
1 [27]). If S ≥ 2, then, pebbling the

bit-reversal graph BRGG
1 (V , E) consisting of G = 2g input nodes with S pebbles

takes time

T >
G2

16S
.

Biryukov and Khovratovich have shown in [8] that stacking more than one bit-reversal
graph only adds some linear factor to the quadratic time-memory tradeoff. Hence, a
BRGG

λ with λ > 1 does not achieve the properties of a λ-memory-hard function.

Catena-DBG. Likewise, the authors of [27] analyzed the time-memory tradeoff for a
stack of λ G-superconcentrators. Since the double-butterfly is a special form of a G-
superconcentrators, their bound also holds for DBGG

λ .

Theorem 6.2 (Lower Bound for a (G, λ)-Superconcentrator [27]).
Pebbling a (G, λ)-superconcentrator using S ≤ G/20 black and white pebbles
requires T placements such that

T ≥ G

(

λG

64S

)λ

.

Discussion. For scenarios where a quadratic time-memory tradeoff is sufficient, we
recommend the efficientCatena-BRG with either λ = 1 or – if garbage-collector attacks
pose a relevant threat – with λ = 2. Note that the benefit of greater values for λ is very
limited since the costs for pebbling the bit-reversal graph remain quadratic. For scenarios
that require a higher time-memory tradeoff, we highly recommend the λ-memory-hard
Catena-DBG with λ = 2 or λ = 3, which is sufficient for most practical applications.
A detailed parameter recommendation can be found in Section 3.4.
We have to point out that the computational effort for DBHG

λ with reasonable values
for G, e.g., G ∈ [217, 221], may stress the patience of many users since the number of
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6. Security Analysis of Catena-BRG and Catena-DBG

vertices and edges grows logarithmic with G. Thus, it remains an open research problem
to find a (G, λ)-superconcentrator – or any other λ-memory-hard function – that can be
computed more efficiently than a DBHG

λ .

6.3. Pseudorandomness.

For proving the pseudorandomness of Catena-BRG and Catena-DBG, we refer to
the definition Random-Oracle Security which was introduced in Section 2.2 (see Defini-
tion 2.7). Therefore, we model the internally used hash function H : {0, 1}∗ → {0, 1}n
as a random oracle.

Theorem 6.3 (Collision Security of BRHG
λ ). Let q denote the number of

queries made by an adversary and s a randomly chosen salt value. Furthermore,
let H be modelled as a random oracle. Then, we have

Advcoll
BRHG

λ

(q, t) ≤ (q · (λ+ 1))2

2n−2g
.

Proof. From Algorithm 2 it is easy to see that a collision BRHG
λ (x) = BRHG

λ (x
′) for

x 6= x′ implies a collision for H. We upper bound the collision probability for H by
deducing the total amount of invocations of H per query. There are 2g invocations of
H in Lines 1–4 of Algorithm 2. In addition, there are λ · 2g invocations in Lines 5–11
leading to a total of (λ + 1) · 2g invocations of H. Since H is modelled as a random
oracle, we can upper bound the collision probability for q queries by

(q · (λ+ 1) · 2g)2
2n

≤ (q · (λ+ 1))2

2n−2g
.

Thus, our claim follows. �

Finally, we analyze the collision resistance of DBHG
λ . Again, we model the internally

used hash function H : {0, 1}∗ → {0, 1}n as a random oracle.

Theorem 6.4 (Collision Security of DBHG
λ ). Let q denote the number of

queries. Furthermore, let H be modelled as a random oracle for some fixed inte-
gers g, g0, λ ≥ 1 with g ≥ g0 and G = 2g. Then, it holds that

Advcoll
DBHG

λ

(q, t) ≤ (q · λ · g)2
2n−2g−3

.

Proof. From Algorithm 3 it is easy to see that a collision DBHG
λ (x) = DBHG

λ (x
′) for

x 6= x′ implies either an input or output collision for H.
For our analysis, we replace the random oracle H by H ′(x) := H(truncaten(x)) that

truncates any input to n bits before hashing. Thus, any collision in the first n bits of
the input of H in Lines 7 and 9 of Algorithm 3 leads to a collision of the output of H,
regardless of the remaining inputs.
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6. Security Analysis of Catena-BRG and Catena-DBG

Output Collision. In this case we upper bound the collision probability for H by de-
ducing the total amount of invocations of H ′ per query. There are 2g invocations of H ′

in Lines 1–4 of Algorithm 3. In addition, there are λ · (2g − 1) · 2g invocations in Lines
5–13 leading to a total of λ ·2g ·2g invocations of H ′. Since H (and thus H ′) is modelled
as a random oracle, we can upper bound the collision probability for q queries by

(q · λ · 2g · 2g)2
2n

≤ (q · λ · g)2
2n−2g−2

.

Input Collision. In this case we have to take into account that an input collision for
distinct queries a and b in Line 7 and 9 can occur:

va2g−1 ⊕ va0 = vb2g−1 ⊕ vb0 (Algorithm 3, Line 7)

or
rai−1 ⊕ vai = rbi−1 ⊕ vbi (Algorithm 3, Line 9).

For each query, this can happen λ · (2g− 1) · 2g times. Note that all values vi and ri are
outputs from the random oracle H ′, except the initial value v0. Hence, we can upper
bound the collision probability for this event by

(q · λ · (2g − 1) · 2g)2
2n

≤ (q · λ · g)2
2n−2g−2

.

Our claim follows from the union bound. �
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Chapter 7
Design Discussion

In this section, we give an informal overview over the main observations and ideas that
lead to the development of Catena.

7.1. From ROMix to BRHG
λ and DBHG

λ

The core idea for the scrypt password scrambler is given by the definition of ROMix
(see Algorithm 4 (left)). ROMix is a memory-demanding function based on a crypto-
graphic hash functionH, namely the“BlockMix”operation. At first, ROMix generates G
password-dependent hash values v0, . . . , vG−1, and then runs through a main loop read-
ing each vi once, on the average. It has a time-memory tradeoff satisfying S ·T = O(G2).
Thus, for S = O(G) units of space, the time required to evaluate ROMix is T = O(G).
Each iteration of the main loop, an index j is computed (see Line 7), which depends
on H and the current x, and is used to update x, and thus, there is no gain by parallel
computations. In [34], Percival introduced this notion as sequentially memory-hard.

ROMix Issues. Unfortunately, the ROMix operation contains two security issues:

1. In its main loop, ROMix reads the memory at some index j (see Line 7); and
j depends on the current x. As it turns out, each secret password x defines it
own access pattern to the memory. This makes ROMix by design vulnerable to
cache-timing attacks.

2. If, after evaluating ROMix, the memory v0, . . . , vG−1 is not carefully wiped out,
password search for an adversary with access to that memory may be much simpler
than for an adversary who only has access to the final password hash. If, e.g., the
value v0 = H(x) has been compromised, the adversary only needs a single call
to the function H for each password candidate, and negligible memory. In other
words, ROMix is thus vulnerable to garbage-collector attacks (see Section 7.2).
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Algorithm 4 ROMix and (G, λ)-Bit-Reversal Hashing

ROMix(g, x)
1: v0 ← H(x)
2: for i = 1, . . . , G− 1 do
3: x← H(x)
4: vi ← x
5: end for
6: for i = 0, . . . , G− 1 do
7: j ← (x mod G)
8: x← H(x⊕ vj)
9: end for

10: return x

BRHG
λ (g, x)

1: v0 ← H(x)
2: for i = 1, . . . , 2g − 1 do
3: vi ← H(vi−1)
4: end for
5: for k = 1, . . . , λ do
6: r0 ← H(v0 || v2g−1)
7: for i = 1, . . . , 2g − 1 do
8: j ← τ(i) {bit-reversal perm.}
9: ri ← H(ri−1 || vj)

10: end for
11: v ← r
12: end for
13: return r2g−1

Since both of our instantiations (Catena-BRG and Catena-DBG) follow the same
basic idea, we discuss only the differences between ROMix and the BRHG

λ operation.
Our approach applied the following two major modifications to fix the mentioned ROMix
security issues.

1. The index j depends on i, not on the current x.

2. In the main loop, the vi are overwritten.

Further, we do concatenate the two inputs of H instead of XOR-ing them (see Lines 6
and 9 of Algorithm 4 (right)). This minor modification does not have a strong advantage
over H(vi−1 ⊕ vj). However, the sizes of vi−1 and vj are 512 bits and our default choice
for H is BLAKE2b, where the evaluation of an 512-bit input is as fast as the evaluation
of a 1024-bit input. Note that for DBHG

λ , we concatenated the first two inputs to H since
otherwise the slow-down of Catena-DBG would be even stronger. If one would choose
another instance forH (with a smaller block size of the underlying compression function),
one may further tweak Catena by using XOR of all inputs instead of concatenation.

First Modification. A proper way to apply the first modification is hard to find. The
security of ROMix greatly depends on the adversary not being able to predict the values
of j without actually running ROMix. But if the indices j do not depend on the initial
secret, the adversary can predict them. A naive choice of j would clearly help the
adversary to make some beneficial time-memory-tradeoffs. We need a way to choose j,
depending on the loop index i, which prevents such time-memory tradeoffs.
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Algorithm 5 Main Loop of (G, λ)-Bit-Reversal Hashing

1: for k = 0, . . . , λ− 1 do
2: r0 ← H(v0||v2g−1)
3: for i = 1, . . . , 2g − 1 do
4: j ← τ(i) {bit-reversal perm.}
5: ri ← H(vi−1 || vj)
6: end for
7: v ← r
8: end for

Second Modification. Graphs derived from the bit-reversal permutation τ (see Defini-
tion 5.1) have interesting properties, provable by the pebble game technique (see Sec-
tion 2.1). Given an n-bit number i = (i0, i1, . . . , in) with the numeric value i =

∑

k ik ·2k,
τ(i) is the n-bit number τ(i) = (in−1, in−2, . . . , i0 with the numeric value i =

∑

k ik ·2n−k.
This approach leads to the realization of the BRHG

λ operation (see Algorithm 4 (right)).
It is the core of Catena-BRG and it trivially solves the first ROMix issue. Further,
its contribution in solving the second ROMix issue is discussed in Section 7.2. While
the time-memory tradeoff on a sequential machine is ST = O(22g), as for ROMix, a
memory-constrained adversary can benefit a lot from parallel processing:

c parallel cores, time T = O(2g), and space S = 2g/c.

Formally, this means that bit-reversal hashing is memory-hard, but not sequentially
memory-hard, and this makes trading cores for memory a potentially interesting deal
for the adversary.
Ideally, we would have liked to propose an approach unifying sequential memory-

hardness with a memory-access pattern that is independent from a secret. We pose this
as an open problem. Instead, we propose a structure based on λ stacks of a bit-reversal
graph (see Algorithm 5). For Catena-BRG, this increases the time-memory tradeoff
only by a linear factor (as shown in [8]), whereas for Catena-DBG (see Algorithm 3),
this technique leads to a λ-memory-hard function (see Definition 2.3).

7.2. The Garbage-Collector Attack

As we argued above (and throughout this entire paper), memory-demanding password
scrambling is an excellent defense against common attack patterns. Typical attackers
try plenty of password candidates in parallel, and this gets a lot more costly if they need
a huge amount of memory for each candidate. The defender, on the other hand, will not
try more than one password candidate in parallel, and the parameters (especially the
“garlic”) should be chosen such that that amount of memory is easily available to the
defender.
But, memory-demanding password scrambling may also provide completely new attack

opportunities for the adversary. If we allocate a huge block of memory for password

43



7. Design Discussion

scrambling, holding v0, v1, . . . , vG−1 (with G = 2g for BRHG
λ and DBHG

λ ), this memory
becomes“garbage”after the password scrambler has terminated, and will be collected for
reuse, eventually. One usually assumes that the adversary learns the hash of the secret.
The garbage-collector attack assumes that the adversary additionally learns the memory
content, i.e., the values vi, after the termination of the password scrambler. Next, we
discuss how an adversary can benefit from such attacks. Based on a similar argument
as in Section 7.1, we only consider the BRHG

λ operation.

• For ROMix, the value
v0 = H(x) (7.1)

is a plain hash of the original secret x. That means, the malicious garbage collector
can bypass ROMix completely and directly search for x with H(x) = v0. Each
password candidate can thus be checked in time and memory O(1).

• At a first look, (G, 1)-bit reversal hashing seems to provide some defense. We have

r0 = H(v0, v2g−1) = H(H(x), v2g−1), (7.2)

and later v0 is overwritten by the assignment v ← r. Thus, the adversary needs
to compute the value v2g−1, which can be done with O(1) space in time O(2g),
i.e., the adversary cannot bypass bit-reversal hashing, but can bypass the storage-
demanding part of it.

• Even that may be too optimistic. Overwriting v is algorithmically ineffective and
might be removed by an optimizing compiler. In that case, v0 would not be over-
written at all and thus, Equation 7.1 would apply, and the same attack as for
ROMix would become possible.

• Fortunately, (G, λ)-bit-reversal hashing provides a decent defense against garbage-
collector attacks. Overwriting v is algorithmically effective in all but the last round
of Algorithm 5. For (G, λ)-bit-reversal hashing, the x in Equation 7.2 is not the
secret, but rather the output of (G, λ− 1)-bit-reversal hashing.

Thus, neither ROMix nor (G, 1)-bit-reversal hashing provide much defense against garbage-
collector attacks. On the other hand, (G, λ)-bit-reversal hashing does provide a decent
defense against such attacks: it is at least as secure as (G, λ − 1)-bit-reversal hashing
against conventional attacks. Thus, whoever worries about these kind of attacks, just
needs to increment λ.

7.3. Justification of the Generic Design

Catena can be seen as a mode of operation for cryptographic hash function H and
a (λ)-memory-hard function Fλ, and therefore, it fulfills the properties of a generic
design. Alternatively, one can design a primitive password scrambler of its own right,
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with the structure of Catena but internally using something similar to the round- or
step-function of a cryptographic primitive. This approach would lead to a faster but less
flexible password scrambler which enables us to choose a larger garlic factor, i.e., to use
more memory for Catena, and thus, eventually, to hinder the adversary more.

Advantages of our Generic Design. Catena inherits the security assurance and the
cryptanalytic attempts from the underlying hash function and the function Fλ, whereas
a primitive password scrambler could not inherit security assurance from an underlying
primitive. Furthermore, Catena is easy to analyze since the underlying structure is
defined by a cryptographic primitive and a well-analyzed graph-based structure. There-
fore, cryptanalysts can benefit from decades of experience. Finally, it is quite easy to
replace the cryptographic hash function, e.g., for performance or security issues, which
leads to incompatible variants of Catena. This diversity can frustrate well-funded ad-
versaries using fast but expensive non-programmable hardware for password-cracking:
For each variant of Catena, they must build new hardware – or have to adapt existing
hardware.

Disadvantages of a Primitive Password Scrambler. Note that a primitive password
scrambler would actually be a new type of primitive. Thus, cryptographers would have to
develop new methods for cryptanalysis, and understand new attack surfaces, such as 1)
the garbage-collector attack and 2) disproving lower bounds from the pebble game. This
would be a scientifically interesting development, and we hope some people will actually
design primitive password scramblers for PHC. But this would add more years to the
time to wait before deploying the new password scrambler since many cryptographic
primitives have been broken within a few years after their publications. Primitives, that
have been deeply analyzed without researchers finding an attack gain confidence in their
security, over the years. Note that it is not sufficient to just wait a couple of years before
the adoption of a new primitive. One needs to catch the cryptanalysts’ attention and
make them try to find attacks against the primitive.
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Chapter 8
Usage

The discussion in this section is done under the reasonable assumption that the param-
eter λ, g0, Fλ, and m are fixed values.

8.1. Catena for Proof of Work

The concept of proofs of work was introduced by Dwork and Naor [16] in 1992. The prin-
ciple design goal was to combat junk mail under the usage of CPU-bounded functions,
i.e., the goal was to gain control over the access to shared resources. The main idea is
“to require a user to compute a moderately hard, but not intractable, function in order
to gain access to the resource ” [16]. Therefore, they introduced so called CPU-bound
pricing functions based on certain mathematical problems which may be hard to solve
(depending on the parameters), e.g., extracting square roots modulo a prime. Tromp
recently proposed the “first trivially verifiable, scalable, memory-hard and tmto-hard
proof-of-work system” in [42].
As an advancement to CPU-bound function,Abadi et al. [1], and Dwork et al. [15]

considered moderately hard, memory-bound functions, since memory access speeds do
not vary so much on different machines like CPU accesses. Therefore, they may behave
more equitably than CPU-bound functions. These memory-bound function base on
a large table which is randomly accesses during the execution, causing a lot of cache
misses. Dwork et al. presented in [17] a compact representation for this table by using a
time-memory trade-off for its generation. Dziembowski et al. [19] as well as Ateniese et
al. [3] put forward the concept of proofs of space, i.e., they do not consider the number
of accesses to the memory (as memory-bound function do) but the amount of disk space
the prover has to use. In [19], the authors proposed a new scheme using “graphs with
high pebbling complexity and Merkle hash-trees”.
For Catena, there exist at least two possible attempts to be used for proofs of work.

We denote by C the client which has to fulfill the challenge to gain access to a server
S. Furthermore, the methods explained below work for both introduced instantiations
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of Catena and let λ and Fλ be fix.

Guessing Secret Bits (Pepper). At the beginning, S chooses fixed values for pwd , t, s
and g, where s denotes a randomly chosen k-bit salt value, where p bits of s are secret,
i.e., p-bit pepper with p ≤ k. Then, S computes h = Catenaλ(pwd , t, s, g) and sends
the tuple (pwd , t, s[0,k−p−1], g, h, p) to C, where s[0,k−p−1] denote the k−p least significant
bits of s (the public part). Now, C has to guess the secret bits of the salt by computing
h′ = Catenaλ(pwd , t, s

′, g) about 2p times and comparing if h = h′. If so, C gains
access to S. The effort of C is given by about 2p computations of Catenaλ (and about
2p comparisons for h = h′). Hence, the effort of C is scalable by adapting p.

Guessing the Correct Password. In this scenario S chooses anm-bit password pwd , t, s,
and g. Then, S computes h = Catenaλ(pwd , t, s, g) and sends the tuple (t, s, g,m, h)
to C. The client C then has to guess the password by computing about 2m times
h′ = Catenaλ(pwd

′, t, s, g) for different values of pwd ′, and comparing if h′ = h. If so,
C gains access to S. The effort of C is given by about 2m computations of Catena

(and about 2m comparisons for h = h′). Hence, in this case the effort of C is scalable
by adapting the length m of the password. Furthermore, S can adjust the effort of C
by excluding m from the tuple sent to C. Then, since C does not know the length of
the original password, the time for finding pwd ’ with pwd ′ = pwd highly depends on
the way C performs password cracking. Note that the latter may not really be suitable
for the proof-of-work scenario since a prover with experience in password cracking can
access the server significantly faster than a non-expert.

8.2. Catena in Different Environments

Backup of User-Database. When maintaining a database of user data, e.g., password
hashes, a storage provider (server) sometimes store a backup of their data on a third-
party storage, e.g., a cloud. This implies that the owner looses control over its data, which
can lead to unwanted publication. Therefore, we highly recommend to use Catena in
the keyed password hashing mode (see Section 3.2). Thus, the security of each password
is given by the underlying secret key and does not longer solely depend on the strength
of password itself. Note that the key must be kept secret, i.e., it must not be stored
together with the backup.

Using Catena with Multiple Number of Cores. Catena is initially designed to run on
a modern single-core machine. To make use of multiple cores during the legitimate login
process, one can apply the pepper approach. Therefore, p bits of the salt are kept secret,
i.e., when one is capable of using b cores, it would choose p = log2(b). During the login
process, the i-th core will then compute the value hi = Catenaλ(pwd , t, s0,...,|s|−2 || i, g)
for i = 0, . . . , b − 1. The login is successful, if and only if one of the values hi is valid.
This approach is fully transparent for the user, since due to the parallelism, the login
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Algorithm 6 Catena-KG

Input: λ {Depth}, pwd {Password}, t′ {Tweak}, s {Salt}, g0 {Min Garlic}, g {Garlic},
Fλ {Instance}, m {Output Length}, ℓ {Key Size}, I {Key Identifier}

Output: k {ℓ-Bit Key Derived from the Password}
1: x← Catenaλ(pwd, t

′, s, g0, g, Fλ,m) {with m = |H(·)|}
2: k ← ∅
3: for i = 1, . . . , ⌈ℓ/|n|⌉ do
4: k ← k || H(i || I || ℓ || x)
5: end for
6: return Truncate(k, ℓ) {truncate k to the first ℓ bits}

time is not effected. Nevertheless, the total memory usage and the computational effort
are increased by a factor b. This also holds for an adversary, since it has to try all
possible values for the pepper p to rule out a password candidate.

Low-Memory Environments. The application of the server relief technique leads to
significantly reduced effort on the side of the server for computing the output ofCatenaλ

by splitting it into two functions F (typically Fλ) and H, where F is time- and memory-
demanding and H is efficient. Obviously, the application of this technique makes most
sense when the server has to administrate a large amount of requests in little time, e.g.,
social networks. Then, each client has to compute an intermediate hash y = F (·) and
the server only has to compute h = H(y) for each y, i.e., for each user.
On the other hand, e.g., if Catena is used in the proof-of-work scenario, i.e., a client

has to proof that it took a certain amount of time and memory to compute the output
of Catenaλ, the application of server relief does not make sense.

8.3. The Key-Derivation Function Catena-KG

In this section we introduce Catena-KG – a mode of operation based on Catena,
which can be used to generate different keys of different sizes (even larger than the
natural output size of Catena, see Algorithm 6). To provide uniqueness of the inputs,
the domain value d of the tweak is set to 1, i.e., the tweak t′ is given by

t′ ← V || 0x01 || λ || m || |s| || H(AD).

Note that for key derivation is makes no sense to give the user control over the output
length m of Catenaλ. It has only control over the output of Catena-KG by adapting
ℓ. Thus, within Catena-KG, the value for m is set to default, i.e., the output size of
the underlying hash function. The call to Catenaλ is followed by an output transform
that takes the output x of Catenaλ, a one-byte key identifier I, and a parameter ℓ
for the key length as the input, and generates key material of the desired output size.
Catena-KG is even able to handle the generation of extra-long keys (longer than the
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output size of H), by applying H in Counter Mode [18]. Note that longer keys do not
imply improved security, in that context.
The key identifier I is supposed to be used when different keys are generated from

the same password. For example, when Alice and Bob set up a secure connection, they
may need four keys: an encryption and a message authentication key for messages from
Alice to Bob, and another two keys for the opposite direction. One could argue that
I should also become a part of the associated data. But actually, this would be a bad
move, since setting up the connection would require legitimate users to run Catenaλ

several times. However, the adversary can search for the password for one key, and just
derive the other keys, once that password has been found. For a given budget for key
derivation, one should rather employ one single call to Catenaλ with larger security
parameters and then run the output transform for each key.
In contrast to the password hashing scenario where a user want to log-in without

noticeable delay, users may tolerate a delay of several seconds to derive an encryption
key from a password process [43], e.g., when setting up a secure connection, or when
mounting a cryptographic file system. Thus, for Catena-KG, we recommend to use
g = 21 (when instantiated with a BRGG

λ ) and g = 17 (when instantiated with a DBGG
λ ).

Security Analysis. It is easy to see that Catena-KG inherits its memory-hardness
from Catena (see Chapter 6, Theorems 6.1 and 6.2) since it invokes Catenaλ (Line 1
of Algorithm 6). Next, we show that Catena-KG a good pseudorandom function (PRF)
in the random oracle model.

Theorem 8.1 (PRF Security of Catena-KG). In the random oracle model we
have

AdvPRF
Catena-KG(q, t) =

∣

∣

∣
Pr[ACatena-KG ⇒ 1]− Pr[A$ ⇒ 1]

∣

∣

∣

≤ (q · g + q)2

2n
+Advcoll

Fλ
(q · g).

Proof. Suppose that H is modeled as random oracle. For the sake of simplification, we
omit the truncation step and let the adversary always get access to the untruncated key
k. Suppose xi denotes the output of Catenaλ of the i-th query. In the case xi 6= xj

for all values with 1 ≤ i < j ≤ q, the output k is always a random value, since H is
always invoked with a fresh input (see Line 4, Algorithm 6). The only chance for an
adversary to distinguish Catena-KG(·) from the random function $(·) is a collision in
Catenaλ. The probability for this event can be upper bounded by similar arguments
as in the proof of Theorem 4.2. �
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Legal Disclaimer

To the best of our knowledge, neither Catena, the BLAKE2b Function Family, nor
the structure of the bit-reversal graph or the double-butterfly graph are encumbered by
any patents. We have not, and will not apply for patents on any part of our design
or anything in this document. Furthermore, we assure that there are no deliberately
hidden weaknesses within the structure or the source code of Catena.
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Appendix A
The Name

The name Catena comes from the Latin word for “chain”. It was chosen based on
the fact that the underlying structure of Catena is given by the BRHG

λ or the DBHG
λ ,

where each vertex within this graph depends at least on its predecessor, thus, providing
a sequential structure. More detailed, if one thinks of representing all vertices within
a BRHG

λ or a DBHG
λ to be sorted in their topological order, each vertex vi depends

at least on the vertex vi−1 for 1 ≤ i ≤ (λ + 1) · 2g − 1 (Catena-BRG) or 1 ≤ i ≤
(λ · (2g − 1) + 1) · (2g − 1) (Catena-DBG).
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Appendix B
Test Vectors

B.1. Test Vectors for Catena-BRG-BLAKE2b

Lambda: 3
Garlic: 1
Associated data: (0 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: bb a6 51 dc 8b fb 89 73 d2 6c ef 99 16

e0 fe 7d 8b 66 7b f6 fb 78 c4 fa 16 9c

f1 de 97 0b 99 d8 28 70 57 be c1 c8 14

30 c3 0c 5c 27 b6 ba a0 6a b3 0c da f3

10 45 cb e6 5e f5 59 88 b0 1d 71 fc

(64 octets)

Lambda: 3
Garlic: 10
Associated data: 64 61 74 61 (4 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: a1 fa 2e d2 cc 66 8f 5e d3 0b 96 b3 ad

a3 db a0 14 85 93 ff 2b b8 04 fd d1 d1

7b 3f 3a ba 36 3b b6 be 68 fb 33 0f b4

51 48 7c 18 b8 e1 8f 1a c5 44 4b 5a e2

f1 19 8c 14 57 23 1a 1b 2c ea ec e6

(64 octets)
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B.2. Test Vectors for Catena-BRG-SHA-512

Lambda: 3
Garlic: 1
Associated data: (0 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: a8 71 61 a2 ba 93 05 d6 50 c4 a6 e5 ee

9e f9 fb 05 54 f7 7c 5c b2 5e e1 08 c5

7b 09 76 f9 b3 17 97 40 03 ab 7e 3d 59

ba 82 4d 6a f6 c2 0e c4 29 f2 a6 1f 92

85 16 69 f5 79 1e cb 98 16 ec b4 14

(64 octets)

Lambda: 3
Garlic: 10
Associated data: 64 61 74 61 (4 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: 70 b8 92 ee 68 98 f1 7a 16 cb 2c c4 35

37 6c ca 1b e0 b8 d3 98 cd 07 b0 68 24

ad 3e 3f 91 f4 1f 59 ab b5 ef 18 42 3d

52 73 ee 3d 0b f0 ac 6d 90 23 09 59 2e

f8 5c 88 11 cb 01 44 1c 0e 9d 29 85

(64 octets)

B.3. Test Vectors for Catena-DBG-BLAKE2b

Lambda: 2
Garlic: 1
Associated data: (0 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: f2 0e 68 8e e8 09 38 f4 3b 23 7a fe 3c

d0 7c 56 19 64 c4 68 ef 20 a1 c2 cf 67

8d 99 04 53 87 80 7e dc 4e 30 65 54 bd

ec 9c cc 66 aa a3 e0 a1 b3 85 3b 04 01

e7 ba cc b8 16 cf dc aa 02 42 4e 6e

(64 octets)
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Lambda: 2
Garlic: 10
Associated data: (4 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: 94 f9 01 e9 59 ea 36 aa 33 55 ad 3d 0a

e4 0a 26 9e 43 71 2d ab ea 54 dc 6c 6b

ca 75 d3 c4 8e bd 62 bd bf af de bb 2a

dc 91 36 db 93 45 63 d3 ab 1f 80 fb 48

67 2b 85 55 e4 7c 74 ca 37 00 72 a5

(64 octets)

B.4. Test Vectors for Catena-DBG-SHA-512

Lambda: 2
Garlic: 1
Associated data: (0 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: a7 32 51 3d 96 bf 80 cf 26 d2 fd dd 7c

fd 8f 4a 80 d0 d3 35 17 a3 61 b2 4a c4

48 76 1f e8 ac 25 38 63 9b 4a 3b 39 18

40 f8 85 d7 b2 2d 57 4b 4a 18 5e 73 65

82 bc a1 27 dc 2f b4 5d 66 e4 55 46

(64 octets)

Lambda: 2
Garlic: 10
Associated data: 64 61 74 61 (4 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: 0c 1e 7a 67 c0 d9 96 54 a9 c0 88 a1 21

8c ba ce 7f 5c 2d 33 3a 8e 30 93 5a 96

74 d5 cf 80 59 9f f1 95 69 d9 ee 9f be

fd 6a d7 4a f7 29 bd 3d 7e 21 97 76 3a

20 4a a0 e4 64 59 37 e6 a2 7b da 7a

(64 octets)
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Appendix C

Illustration of a BRG8
4

Output

Input
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Figure C.1.: An (8, 4)-bit-reversal graph.
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Illustration of a DBG8
2
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Figure D.1.: An (8, 2)-double-butterfly graph.
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