lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  PHC 
Open Source and information security mailing list archives
Hash Suite for Android: free password hash cracker in your pocket
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date: Mon, 19 Oct 2015 21:05:37 +0100
From: Samuel Neves <>
Subject: Re: [PHC] Re: BlaMka loses entropy

The invertibility of x + y + 2*f(x, y)---where f(x, y) is a T-function in both variables---is provable by a
straightforward generalization of [1, Theorem 2] (everything mod 2^n):

 - If x + 2*f(x) is invertible, then so is C + x + 2*f(x), for any constant C;
 - Replace x and y by C to show that x + y + 2*f(x, y) is invertible in both variables.

For BlaMka, since (x & (2^k-1)) * (y & (2^k-1)) is a T-function (i.e., most significant result bits only depend on least
significant bits), the entire permutation is indeed invertible.


Powered by blists - more mailing lists