[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <1428584082.30295.7.camel@dhcp-27-107.brq.redhat.com>
Date: Thu, 09 Apr 2015 14:54:42 +0200
From: Maurizio Lombardi <mlombard@...hat.com>
To: "Theodore Ts'o" <tytso@....edu>
Cc: Ext4 Developers List <linux-ext4@...r.kernel.org>,
jaegeuk@...nel.org, mhalcrow@...gle.com,
Ildar Muslukhov <ildarm@...gle.com>
Subject: Re: [PATCH 08/22] ext4 crypto: add ext4 encryption facilities
On Thu, 2015-04-02 at 18:10 -0400, Theodore Ts'o wrote:
> From: Michael Halcrow <mhalcrow@...gle.com>
>
> On encrypt, we will re-assign the buffer_heads to point to a bounce
> page rather than the control_page (which is the original page to write
> that contains the plaintext). The block I/O occurs against the bounce
> page. On write completion, we re-assign the buffer_heads to the
> original plaintext page.
>
> On decrypt, we will attach a read completion callback to the bio
> struct. This read completion will decrypt the read contents in-place
> prior to setting the page up-to-date.
>
> The current encryption mode, AES-256-XTS, lacks cryptographic
> integrity. AES-256-GCM is in-plan, but we will need to devise a
> mechanism for handling the integrity data.
>
> Change-Id: I5ed4c913d49971d7f7e9b10bb4e694df86f960d7
> Signed-off-by: Michael Halcrow <mhalcrow@...gle.com>
> Signed-off-by: Ildar Muslukhov <ildarm@...gle.com>
> Signed-off-by: Theodore Ts'o <tytso@....edu>
> ---
> fs/ext4/Makefile | 2 +-
> fs/ext4/crypto.c | 601 ++++++++++++++++++++++++++++++++++++++++++++++++
> fs/ext4/crypto_policy.c | 21 +-
> fs/ext4/ext4.h | 39 ++++
> fs/ext4/ext4_crypto.h | 43 ++++
> fs/ext4/super.c | 11 +
> 6 files changed, 714 insertions(+), 3 deletions(-)
> create mode 100644 fs/ext4/crypto.c
>
> diff --git a/fs/ext4/Makefile b/fs/ext4/Makefile
> index 3886ee4..1b1c561 100644
> --- a/fs/ext4/Makefile
> +++ b/fs/ext4/Makefile
> @@ -12,4 +12,4 @@ ext4-y := balloc.o bitmap.o dir.o file.o fsync.o ialloc.o inode.o page-io.o \
>
> ext4-$(CONFIG_EXT4_FS_POSIX_ACL) += acl.o
> ext4-$(CONFIG_EXT4_FS_SECURITY) += xattr_security.o
> -ext4-$(CONFIG_EXT4_FS_ENCRYPTION) += crypto_policy.o
> +ext4-$(CONFIG_EXT4_FS_ENCRYPTION) += crypto_policy.o crypto.o
> diff --git a/fs/ext4/crypto.c b/fs/ext4/crypto.c
> new file mode 100644
> index 0000000..5b62bb1
> --- /dev/null
> +++ b/fs/ext4/crypto.c
> @@ -0,0 +1,601 @@
> +/*
> + * linux/fs/ext4/crypto.c
> + *
> + * This contains encryption functions for ext4
> + *
> + * Written by Michael Halcrow, 2014.
> + *
> + * Filename encryption additions
> + * Uday Savagaonkar, 2014
> + * Encryption policy handling additions
> + * Ildar Muslukhov, 2014
> + *
> + * This has not yet undergone a rigorous security audit.
> + *
> + * The usage of AES-XTS should conform to recommendations in NIST
> + * Special Publication 800-38E. The usage of AES-GCM should conform to
> + * the recommendations in NIST Special Publication 800-38D. Further
> + * guidance for block-oriented storage is in IEEE P1619/D16. The key
> + * derivation code implements an HKDF (see RFC 5869).
> + */
> +
> +#include <crypto/hash.h>
> +#include <crypto/sha.h>
> +#include <keys/user-type.h>
> +#include <keys/encrypted-type.h>
> +#include <linux/crypto.h>
> +#include <linux/ecryptfs.h>
> +#include <linux/gfp.h>
> +#include <linux/kernel.h>
> +#include <linux/key.h>
> +#include <linux/list.h>
> +#include <linux/mempool.h>
> +#include <linux/module.h>
> +#include <linux/mutex.h>
> +#include <linux/random.h>
> +#include <linux/scatterlist.h>
> +#include <linux/spinlock_types.h>
> +
> +#include "ext4.h"
> +#include "xattr.h"
> +
> +/* Encryption added and removed here! (L: */
> +
> +static unsigned int num_prealloc_crypto_pages = 32;
> +static unsigned int num_prealloc_crypto_ctxs = 128;
> +
> +module_param(num_prealloc_crypto_pages, uint, 0444);
> +MODULE_PARM_DESC(num_prealloc_crypto_pages,
> + "Number of crypto pages to preallocate");
> +module_param(num_prealloc_crypto_ctxs, uint, 0444);
> +MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
> + "Number of crypto contexts to preallocate");
> +
> +static mempool_t *ext4_bounce_page_pool;
> +
> +static LIST_HEAD(ext4_free_crypto_ctxs);
> +static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
> +
> +/**
> + * ext4_release_crypto_ctx() - Releases an encryption context
> + * @ctx: The encryption context to release.
> + *
> + * If the encryption context was allocated from the pre-allocated pool, returns
> + * it to that pool. Else, frees it.
> + *
> + * If there's a bounce page in the context, this frees that.
> + */
> +void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
> +{
> + unsigned long flags;
> +
> + if (ctx->bounce_page) {
> + if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
> + __free_page(ctx->bounce_page);
> + else
> + mempool_free(ctx->bounce_page, ext4_bounce_page_pool);
> + ctx->bounce_page = NULL;
> + }
> + ctx->control_page = NULL;
> + if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
> + if (ctx->tfm)
> + crypto_free_tfm(ctx->tfm);
> + kfree(ctx);
> + } else {
> + spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
> + list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
> + spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
> + }
> +}
> +
> +/**
> + * ext4_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context
> + * @mask: The allocation mask.
> + *
> + * Return: An allocated and initialized encryption context on success. An error
> + * value or NULL otherwise.
> + */
> +static struct ext4_crypto_ctx *ext4_alloc_and_init_crypto_ctx(gfp_t mask)
> +{
> + struct ext4_crypto_ctx *ctx = kzalloc(sizeof(struct ext4_crypto_ctx),
> + mask);
> +
> + if (!ctx)
> + return ERR_PTR(-ENOMEM);
> + return ctx;
> +}
> +
> +/**
> + * ext4_get_crypto_ctx() - Gets an encryption context
> + * @inode: The inode for which we are doing the crypto
> + *
> + * Allocates and initializes an encryption context.
> + *
> + * Return: An allocated and initialized encryption context on success; error
> + * value or NULL otherwise.
> + */
> +struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
> +{
> + struct ext4_crypto_ctx *ctx = NULL;
> + int res = 0;
> + unsigned long flags;
> + struct ext4_encryption_key *key = &EXT4_I(inode)->i_encryption_key;
> +
> + /* We first try getting the ctx from a free list because in the common
> + * case the ctx will have an allocated and initialized crypto tfm, so
> + * it's probably a worthwhile optimization. For the bounce page, we
> + * first try getting it from the kernel allocator because that's just
> + * about as fast as getting it from a list and because a cache of free
> + * pages should generally be a "last resort" option for a filesystem to
> + * be able to do its job. */
> + spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
> + ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
> + struct ext4_crypto_ctx, free_list);
> + if (ctx)
> + list_del(&ctx->free_list);
> + spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
> + if (!ctx) {
> + ctx = ext4_alloc_and_init_crypto_ctx(GFP_NOFS);
> + if (IS_ERR(ctx)) {
> + res = PTR_ERR(ctx);
> + goto out;
> + }
> + ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
> + } else {
> + ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
> + }
> +
> + /* Allocate a new Crypto API context if we don't already have one or if
> + * it isn't the right mode. */
> + BUG_ON(key->mode == EXT4_ENCRYPTION_MODE_INVALID);
> + if (ctx->tfm && (ctx->mode != key->mode)) {
> + crypto_free_tfm(ctx->tfm);
> + ctx->tfm = NULL;
> + ctx->mode = EXT4_ENCRYPTION_MODE_INVALID;
> + }
> + if (!ctx->tfm) {
> + switch (key->mode) {
> + case EXT4_ENCRYPTION_MODE_AES_256_XTS:
> + ctx->tfm = crypto_ablkcipher_tfm(
> + crypto_alloc_ablkcipher("xts(aes)", 0, 0));
> + break;
> + case EXT4_ENCRYPTION_MODE_AES_256_GCM:
> + /* TODO(mhalcrow): AEAD w/ gcm(aes);
> + * crypto_aead_setauthsize() */
> + ctx->tfm = ERR_PTR(-ENOTSUPP);
> + break;
> + default:
> + BUG();
> + }
> + if (IS_ERR_OR_NULL(ctx->tfm)) {
> + res = PTR_ERR(ctx->tfm);
> + ctx->tfm = NULL;
> + goto out;
> + }
> + ctx->mode = key->mode;
> + }
> + BUG_ON(key->size != ext4_encryption_key_size(key->mode));
> +
> + /* There shouldn't be a bounce page attached to the crypto
> + * context at this point. */
> + BUG_ON(ctx->bounce_page);
> +
> +out:
> + if (res) {
> + if (!IS_ERR_OR_NULL(ctx))
> + ext4_release_crypto_ctx(ctx);
> + ctx = ERR_PTR(res);
> + }
> + return ctx;
> +}
> +
> +struct workqueue_struct *ext4_read_workqueue;
> +static DEFINE_MUTEX(crypto_init);
> +
> +/**
> + * ext4_exit_crypto() - Shutdown the ext4 encryption system
> + */
> +void ext4_exit_crypto(void)
> +{
> + struct ext4_crypto_ctx *pos, *n;
> +
> + list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) {
> + if (pos->bounce_page) {
> + if (pos->flags &
> + EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) {
> + __free_page(pos->bounce_page);
> + } else {
> + mempool_free(pos->bounce_page,
> + ext4_bounce_page_pool);
> + }
> + }
> + if (pos->tfm)
> + crypto_free_tfm(pos->tfm);
> + kfree(pos);
> + }
> + INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
> + if (ext4_bounce_page_pool)
> + mempool_destroy(ext4_bounce_page_pool);
> + ext4_bounce_page_pool = NULL;
> + if (ext4_read_workqueue)
> + destroy_workqueue(ext4_read_workqueue);
> + ext4_read_workqueue = NULL;
> +}
> +
> +/**
> + * ext4_init_crypto() - Set up for ext4 encryption.
> + *
> + * We call this when we mount a file system which has the encryption
> + * feature enabled, since it results in memory getting allocated that
> + * won't be used unless we are using encryption.
> + *
> + * Return: Zero on success, non-zero otherwise.
> + */
> +int ext4_init_crypto(void)
> +{
> + int i, res = 0;
> +
> + mutex_lock(&crypto_init);
> + if (ext4_read_workqueue)
> + goto already_initialized;
> + ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
> + if (!ext4_read_workqueue) {
> + res = -ENOMEM;
> + goto fail;
> + }
> +
> + for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
> + struct ext4_crypto_ctx *ctx;
> +
> + ctx = ext4_alloc_and_init_crypto_ctx(GFP_KERNEL);
> + if (IS_ERR(ctx)) {
> + res = PTR_ERR(ctx);
> + goto fail;
> + }
> + list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
> + }
> +
> + ext4_bounce_page_pool =
> + mempool_create_page_pool(num_prealloc_crypto_pages, 0);
> + if (!ext4_bounce_page_pool)
> + goto fail;
> +already_initialized:
> + mutex_unlock(&crypto_init);
> + return 0;
> +fail:
> + ext4_exit_crypto();
> + mutex_unlock(&crypto_init);
> + return res;
> +}
> +
> +/**
> + * ext4_xts_tweak_for_page() - Generates an XTS tweak for a page
> + * @xts_tweak: Buffer into which this writes the XTS tweak.
> + * @page: The page for which this generates a tweak.
> + *
> + * Generates an XTS tweak value for the given page.
> + */
> +static void ext4_xts_tweak_for_page(u8 xts_tweak[EXT4_XTS_TWEAK_SIZE],
> + const struct page *page)
> +{
> + /* Only do this for XTS tweak values. For other modes (CBC,
> + * GCM, etc.), you most likely will need to do something
> + * different. */
> + BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(page->index));
> + memcpy(xts_tweak, &page->index, sizeof(page->index));
> + memset(&xts_tweak[sizeof(page->index)], 0,
> + EXT4_XTS_TWEAK_SIZE - sizeof(page->index));
> +}
> +
> +void ext4_restore_control_page(struct page *data_page)
> +{
> + struct ext4_crypto_ctx *ctx =
> + (struct ext4_crypto_ctx *)page_private(data_page);
> +
> + set_page_private(data_page, (unsigned long)NULL);
> + ClearPagePrivate(data_page);
> + unlock_page(data_page);
> + ext4_release_crypto_ctx(ctx);
> +}
> +
> +struct ext4_crypt_result {
> + struct completion completion;
> + int res;
> +};
> +
> +/**
> + * ext4_crypt_complete() - The completion callback for page encryption
> + * @req: The asynchronous encryption request context
> + * @res: The result of the encryption operation
> + */
> +static void ext4_crypt_complete(struct crypto_async_request *req, int res)
> +{
> + struct ext4_crypt_result *ecr = req->data;
> +
> + if (res == -EINPROGRESS)
> + return;
> + ecr->res = res;
> + complete(&ecr->completion);
> +}
> +
> +/**
> + * ext4_prep_pages_for_write() - Prepares pages for write
> + * @ciphertext_page: Ciphertext page that will actually be written.
> + * @plaintext_page: Plaintext page that acts as a control page.
> + * @ctx: Encryption context for the pages.
> + */
> +static void ext4_prep_pages_for_write(struct page *ciphertext_page,
> + struct page *plaintext_page,
> + struct ext4_crypto_ctx *ctx)
> +{
> + SetPageDirty(ciphertext_page);
> + SetPagePrivate(ciphertext_page);
> + ctx->control_page = plaintext_page;
> + set_page_private(ciphertext_page, (unsigned long)ctx);
> + lock_page(ciphertext_page);
> +}
> +
> +/**
> + * ext4_xts_encrypt() - Encrypts a page using AES-256-XTS
> + * @ctx: The encryption context.
> + * @plaintext_page: The page to encrypt. Must be locked.
> + *
> + * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
> + * encryption context. Uses AES-256-XTS.
> + *
> + * Called on the page write path.
> + *
> + * Return: An allocated page with the encrypted content on success. Else, an
> + * error value or NULL.
> + */
> +static struct page *ext4_xts_encrypt(struct ext4_crypto_ctx *ctx,
> + struct page *plaintext_page)
> +{
> + struct page *ciphertext_page = ctx->bounce_page;
> + u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
> + struct ablkcipher_request *req = NULL;
> + struct ext4_crypt_result ecr;
> + struct scatterlist dst, src;
> + struct ext4_inode_info *ei = EXT4_I(plaintext_page->mapping->host);
> + struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
> + int res = 0;
> +
> + BUG_ON(!ciphertext_page);
> + BUG_ON(!ctx->tfm);
> + BUG_ON(ei->i_encryption_key.mode != EXT4_ENCRYPTION_MODE_AES_256_XTS);
> + crypto_ablkcipher_clear_flags(atfm, ~0);
> + crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
> +
> + /* Since in AES-256-XTS mode we only perform one cryptographic operation
> + * on each block and there are no constraints about how many blocks a
> + * single key can encrypt, we directly use the inode master key */
> + res = crypto_ablkcipher_setkey(atfm, ei->i_encryption_key.raw,
> + ei->i_encryption_key.size);
> + req = ablkcipher_request_alloc(atfm, GFP_NOFS);
> + if (!req) {
> + printk_ratelimited(KERN_ERR
> + "%s: crypto_request_alloc() failed\n",
> + __func__);
> + ciphertext_page = ERR_PTR(-ENOMEM);
> + goto out;
> + }
> + ablkcipher_request_set_callback(
> + req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
> + ext4_crypt_complete, &ecr);
> + ext4_xts_tweak_for_page(xts_tweak, plaintext_page);
> + sg_init_table(&dst, 1);
> + sg_set_page(&dst, ciphertext_page, PAGE_CACHE_SIZE, 0);
> + sg_init_table(&src, 1);
> + sg_set_page(&src, plaintext_page, PAGE_CACHE_SIZE, 0);
> + ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
> + xts_tweak);
> + res = crypto_ablkcipher_encrypt(req);
> + if (res == -EINPROGRESS || res == -EBUSY) {
> + BUG_ON(req->base.data != &ecr);
> + wait_for_completion(&ecr.completion);
> + res = ecr.res;
> + }
> + ablkcipher_request_free(req);
> + if (res) {
> + printk_ratelimited(
> + KERN_ERR
> + "%s: crypto_ablkcipher_encrypt() returned %d\n",
> + __func__, res);
> + ciphertext_page = ERR_PTR(res);
> + goto out;
> + }
> +out:
> + return ciphertext_page;
> +}
> +
> +/**
> + * ext4_encrypt() - Encrypts a page
> + * @ctx: The encryption context.
> + * @plaintext_page: The page to encrypt. Must be locked.
> + *
> + * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
> + * encryption context.
> + *
> + * Called on the page write path.
> + *
> + * Return: An allocated page with the encrypted content on success. Else, an
> + * error value or NULL.
> + */
> +struct page *ext4_encrypt(struct inode *inode,
> + struct page *plaintext_page)
> +{
> + struct ext4_crypto_ctx *ctx;
> + struct page *ciphertext_page = NULL;
> +
> + BUG_ON(!PageLocked(plaintext_page));
> +
> + ctx = ext4_get_crypto_ctx(inode);
> + if (IS_ERR(ctx))
> + return (struct page *) ctx;
> +
> + /* The encryption operation will require a bounce page. */
> + ctx->bounce_page = alloc_page(GFP_NOFS);
> + if (!ctx->bounce_page) {
> + /* This is a potential bottleneck, but at least we'll have
> + * forward progress. */
> + ctx->bounce_page = mempool_alloc(ext4_bounce_page_pool,
> + GFP_NOFS);
> + if (WARN_ON_ONCE(!ctx->bounce_page)) {
> + ctx->bounce_page = mempool_alloc(ext4_bounce_page_pool,
> + GFP_NOFS | __GFP_WAIT);
> + }
> + ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
> + } else {
> + ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
> + }
> +
> + switch (ctx->mode) {
> + case EXT4_ENCRYPTION_MODE_AES_256_XTS:
> + ciphertext_page = ext4_xts_encrypt(ctx, plaintext_page);
> + break;
> + case EXT4_ENCRYPTION_MODE_AES_256_GCM:
> + /* TODO(mhalcrow): We'll need buffers for the
> + * generated IV and/or auth tag for this mode and the
> + * ones below */
> + ciphertext_page = ERR_PTR(-ENOTSUPP);
> + break;
> + default:
> + BUG();
> + }
> + if (IS_ERR_OR_NULL(ciphertext_page))
> + ext4_release_crypto_ctx(ctx);
> + else
> + ext4_prep_pages_for_write(ciphertext_page, plaintext_page, ctx);
> + return ciphertext_page;
> +}
> +
> +/**
> + * ext4_xts_decrypt() - Decrypts a page using AES-256-XTS
> + * @ctx: The encryption context.
> + * @page: The page to decrypt. Must be locked.
> + *
> + * Return: Zero on success, non-zero otherwise.
> + */
> +static int ext4_xts_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
> +{
> + u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
> + struct ablkcipher_request *req = NULL;
> + struct ext4_crypt_result ecr;
> + struct scatterlist sg;
> + struct ext4_inode_info *ei = EXT4_I(page->mapping->host);
> + struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
> + int res = 0;
> +
> + BUG_ON(!ctx->tfm);
> + BUG_ON(ei->i_encryption_key.mode != EXT4_ENCRYPTION_MODE_AES_256_XTS);
> + crypto_ablkcipher_clear_flags(atfm, ~0);
> + crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
> +
> + /* Since in AES-256-XTS mode we only perform one cryptographic operation
> + * on each block and there are no constraints about how many blocks a
> + * single key can encrypt, we directly use the inode master key */
> + res = crypto_ablkcipher_setkey(atfm, ei->i_encryption_key.raw,
> + ei->i_encryption_key.size);
The return value of crypto_ablkcipher_setkey() is not checked for errors.
> + req = ablkcipher_request_alloc(atfm, GFP_NOFS);
> + if (!req) {
> + res = -ENOMEM;
> + goto out;
> + }
> + ablkcipher_request_set_callback(
> + req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
> + ext4_crypt_complete, &ecr);
> + ext4_xts_tweak_for_page(xts_tweak, page);
> + sg_init_table(&sg, 1);
> + sg_set_page(&sg, page, PAGE_CACHE_SIZE, 0);
> + ablkcipher_request_set_crypt(req, &sg, &sg, PAGE_CACHE_SIZE, xts_tweak);
> + res = crypto_ablkcipher_decrypt(req);
> + if (res == -EINPROGRESS || res == -EBUSY) {
> + BUG_ON(req->base.data != &ecr);
> + wait_for_completion(&ecr.completion);
> + res = ecr.res;
> + }
> + ablkcipher_request_free(req);
> +out:
> + if (res)
> + printk_ratelimited(KERN_ERR "%s: res = %d\n", __func__, res);
> + return res;
> +}
> +
> +/**
> + * ext4_decrypt() - Decrypts a page in-place
> + * @ctx: The encryption context.
> + * @page: The page to decrypt. Must be locked.
> + *
> + * Decrypts page in-place using the ctx encryption context.
> + *
> + * Called from the read completion callback.
> + *
> + * Return: Zero on success, non-zero otherwise.
> + */
> +int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
> +{
> + int res = 0;
> +
> + BUG_ON(!PageLocked(page));
> +
> + switch (ctx->mode) {
> + case EXT4_ENCRYPTION_MODE_AES_256_XTS:
> + res = ext4_xts_decrypt(ctx, page);
> + break;
> + case EXT4_ENCRYPTION_MODE_AES_256_GCM:
> + res = -ENOTSUPP;
> + break;
> + default:
> + BUG();
> + }
> + return res;
> +}
> +
> +/*
> + * Convenience function which takes care of allocating and
> + * deallocating the encryption context
> + */
> +int ext4_decrypt_one(struct inode *inode, struct page *page)
> +{
> + int ret;
> +
> + struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode);
> + if (!ctx)
> + return -ENOMEM;
> + ret = ext4_decrypt(ctx, page);
> + ext4_release_crypto_ctx(ctx);
> + return ret;
> +}
> +
> +/**
> + * ext4_validate_encryption_mode() - Validates the encryption key mode
> + * @mode: The key mode to validate.
> + *
> + * Return: The validated key mode. EXT4_ENCRYPTION_MODE_INVALID if invalid.
> + */
> +uint32_t ext4_validate_encryption_mode(uint32_t mode)
> +{
> + switch (mode) {
> + case EXT4_ENCRYPTION_MODE_AES_256_XTS:
> + return mode;
> + case EXT4_ENCRYPTION_MODE_AES_256_CBC:
> + return mode;
> + default:
> + break;
> + }
> + return EXT4_ENCRYPTION_MODE_INVALID;
> +}
> +
> +/**
> + * ext4_validate_encryption_key_size() - Validate the encryption key size
> + * @mode: The key mode.
> + * @size: The key size to validate.
> + *
> + * Return: The validated key size for @mode. Zero if invalid.
> + */
> +uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
> +{
> + if (size == ext4_encryption_key_size(mode))
> + return size;
> + return 0;
> +}
> diff --git a/fs/ext4/crypto_policy.c b/fs/ext4/crypto_policy.c
> index 5cb4e74..3ff4c75 100644
> --- a/fs/ext4/crypto_policy.c
> +++ b/fs/ext4/crypto_policy.c
> @@ -71,14 +71,31 @@ static int ext4_create_encryption_context_from_policy(
> ctx.format = EXT4_ENCRYPTION_CONTEXT_FORMAT_V0;
> memcpy(ctx.master_key_descriptor, policy->master_key_descriptor,
> EXT4_KEY_DESCRIPTOR_SIZE);
> - ctx.contents_encryption_mode = policy->contents_encryption_mode;
> - ctx.filenames_encryption_mode = policy->filenames_encryption_mode;
> + ctx.contents_encryption_mode = ext4_validate_encryption_mode(
> + policy->contents_encryption_mode);
> + if (ctx.contents_encryption_mode == EXT4_ENCRYPTION_MODE_INVALID) {
> + printk(KERN_WARNING
> + "%s: Invalid contents encryption mode %d\n", __func__,
> + policy->contents_encryption_mode);
> + res = -EINVAL;
> + goto out;
> + }
> + ctx.filenames_encryption_mode = ext4_validate_encryption_mode(
> + policy->filenames_encryption_mode);
> + if (ctx.filenames_encryption_mode == EXT4_ENCRYPTION_MODE_INVALID) {
> + printk(KERN_WARNING
> + "%s: Invalid filenames encryption mode %d\n", __func__,
> + policy->filenames_encryption_mode);
> + res = -EINVAL;
> + goto out;
> + }
> BUILD_BUG_ON(sizeof(ctx.nonce) != EXT4_KEY_DERIVATION_NONCE_SIZE);
> get_random_bytes(ctx.nonce, EXT4_KEY_DERIVATION_NONCE_SIZE);
>
> res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION,
> EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, &ctx,
> sizeof(ctx), 0);
> +out:
> if (!res)
> ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
> return res;
> diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h
> index 2d7fcb6..f7ee6c0 100644
> --- a/fs/ext4/ext4.h
> +++ b/fs/ext4/ext4.h
> @@ -948,6 +948,11 @@ struct ext4_inode_info {
>
> /* Precomputed uuid+inum+igen checksum for seeding inode checksums */
> __u32 i_csum_seed;
> +
> +#ifdef CONFIG_EXT4_FS_ENCRYPTION
> + /* Encryption params */
> + struct ext4_encryption_key i_encryption_key;
> +#endif
> };
>
> /*
> @@ -1349,6 +1354,12 @@ struct ext4_sb_info {
> struct ratelimit_state s_err_ratelimit_state;
> struct ratelimit_state s_warning_ratelimit_state;
> struct ratelimit_state s_msg_ratelimit_state;
> +
> +#ifdef CONFIG_EXT4_FS_ENCRYPTION
> + /* Encryption */
> + uint32_t s_file_encryption_mode;
> + uint32_t s_dir_encryption_mode;
> +#endif
> };
>
> static inline struct ext4_sb_info *EXT4_SB(struct super_block *sb)
> @@ -1998,6 +2009,34 @@ extern unsigned ext4_free_clusters_after_init(struct super_block *sb,
> struct ext4_group_desc *gdp);
> ext4_fsblk_t ext4_inode_to_goal_block(struct inode *);
>
> +/* crypto.c */
> +uint32_t ext4_validate_encryption_mode(uint32_t mode);
> +uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size);
> +extern struct workqueue_struct *ext4_read_workqueue;
> +struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode);
> +void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx);
> +void ext4_restore_control_page(struct page *data_page);
> +struct page *ext4_encrypt(struct inode *inode,
> + struct page *plaintext_page);
> +int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page);
> +int ext4_decrypt_one(struct inode *inode, struct page *page);
> +
> +#ifdef CONFIG_EXT4_FS_ENCRYPTION
> +int ext4_init_crypto(void);
> +void ext4_exit_crypto(void);
> +static inline int ext4_sb_has_crypto(struct super_block *sb)
> +{
> + return EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
> +}
> +#else
> +static inline int ext4_init_crypto(void) { return 0; }
> +static inline void ext4_exit_crypto(void) { }
> +static inline int ext4_sb_has_crypto(struct super_block *sb)
> +{
> + return 0;
> +}
> +#endif
> +
> /* dir.c */
> extern int __ext4_check_dir_entry(const char *, unsigned int, struct inode *,
> struct file *,
> diff --git a/fs/ext4/ext4_crypto.h b/fs/ext4/ext4_crypto.h
> index 984ff38..fb73935 100644
> --- a/fs/ext4/ext4_crypto.h
> +++ b/fs/ext4/ext4_crypto.h
> @@ -51,4 +51,47 @@ void ext4_to_hex(char *dst, char *src, size_t src_size);
> int ext4_process_policy(const struct ext4_encryption_policy *policy,
> struct inode *inode);
>
> +/* Encryption parameters */
> +#define EXT4_AES_256_XTS_KEY_SIZE 64
> +#define EXT4_XTS_TWEAK_SIZE 16
> +#define EXT4_AES_128_ECB_KEY_SIZE 16
> +#define EXT4_AES_256_GCM_KEY_SIZE 32
> +#define EXT4_AES_256_CBC_KEY_SIZE 32
> +#define EXT4_MAX_KEY_SIZE 64
> +
> +struct ext4_encryption_key {
> + uint32_t mode;
> + char raw[EXT4_MAX_KEY_SIZE];
> + uint32_t size;
> +};
> +
> +#define EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL 0x00000001
> +#define EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL 0x00000002
> +
> +struct ext4_crypto_ctx {
> + struct crypto_tfm *tfm; /* Crypto API context */
> + struct page *bounce_page; /* Ciphertext page on write path */
> + struct page *control_page; /* Original page on write path */
> + struct bio *bio; /* The bio for this context */
> + struct work_struct work; /* Work queue for read complete path */
> + struct list_head free_list; /* Free list */
> + int flags; /* Flags */
> + int mode; /* Encryption mode for tfm */
> +};
> +
> +static inline int ext4_encryption_key_size(int mode)
> +{
> + switch (mode) {
> + case EXT4_ENCRYPTION_MODE_AES_256_XTS:
> + return EXT4_AES_256_XTS_KEY_SIZE;
> + case EXT4_ENCRYPTION_MODE_AES_256_GCM:
> + return EXT4_AES_256_GCM_KEY_SIZE;
> + case EXT4_ENCRYPTION_MODE_AES_256_CBC:
> + return EXT4_AES_256_CBC_KEY_SIZE;
> + default:
> + BUG();
> + }
> + return 0;
> +}
> +
> #endif /* _EXT4_CRYPTO_H */
> diff --git a/fs/ext4/super.c b/fs/ext4/super.c
> index 74c5f53..3dcafe9 100644
> --- a/fs/ext4/super.c
> +++ b/fs/ext4/super.c
> @@ -893,6 +893,9 @@ static struct inode *ext4_alloc_inode(struct super_block *sb)
> atomic_set(&ei->i_ioend_count, 0);
> atomic_set(&ei->i_unwritten, 0);
> INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
> +#ifdef CONFIG_EXT4_FS_ENCRYPTION
> + ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID;
> +#endif
>
> return &ei->vfs_inode;
> }
> @@ -3439,6 +3442,11 @@ static int ext4_fill_super(struct super_block *sb, void *data, int silent)
> if (sb->s_bdev->bd_part)
> sbi->s_sectors_written_start =
> part_stat_read(sb->s_bdev->bd_part, sectors[1]);
> +#ifdef CONFIG_EXT4_FS_ENCRYPTION
> + /* Modes of operations for file and directory encryption. */
> + sbi->s_file_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS;
> + sbi->s_dir_encryption_mode = EXT4_ENCRYPTION_MODE_INVALID;
> +#endif
>
> /* Cleanup superblock name */
> for (cp = sb->s_id; (cp = strchr(cp, '/'));)
> @@ -4052,6 +4060,9 @@ no_journal:
> goto failed_mount4;
> }
>
> + if (ext4_sb_has_crypto(sb))
> + ext4_init_crypto();
> +
> /*
> * The jbd2_journal_load will have done any necessary log recovery,
> * so we can safely mount the rest of the filesystem now.
--
To unsubscribe from this list: send the line "unsubscribe linux-ext4" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Powered by blists - more mailing lists