lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <1239365545-10356-13-git-send-email-philipp.reisner@linbit.com>
Date:	Fri, 10 Apr 2009 14:12:23 +0200
From:	Philipp Reisner <philipp.reisner@...bit.com>
To:	linux-kernel@...r.kernel.org
Cc:	Jens Axboe <jens.axboe@...cle.com>, Greg KH <gregkh@...e.de>,
	Neil Brown <neilb@...e.de>,
	James Bottomley <James.Bottomley@...senPartnership.com>,
	Andi Kleen <andi@...stfloor.org>,
	Sam Ravnborg <sam@...nborg.org>, Dave Jones <davej@...hat.com>,
	Nikanth Karthikesan <knikanth@...e.de>,
	"Lars Marowsky-Bree" <lmb@...e.de>,
	"Nicholas A. Bellinger" <nab@...ux-iscsi.org>,
	Lars Ellenberg <lars.ellenberg@...bit.com>,
	Philipp Reisner <philipp.reisner@...bit.com>
Subject: [PATCH 12/14] DRBD: variable_length_integer_encoding

Encoding of our simple LRE compression scheme. It is very effective since
large parts of our bitmap are sparse.

Signed-off-by: Philipp Reisner <philipp.reisner@...bit.com>
Signed-off-by: Lars Ellenberg <lars.ellenberg@...bit.com>

---
diff -uNrp linux-2.6.30-rc1/drivers/block/drbd/drbd_vli.h linux-2.6.30-rc1-drbd/drivers/block/drbd/drbd_vli.h
--- linux-2.6.30-rc1/drivers/block/drbd/drbd_vli.h	1970-01-01 01:00:00.000000000 +0100
+++ linux-2.6.30-rc1-drbd/drivers/block/drbd/drbd_vli.h	2009-03-30 15:41:58.419134000 +0200
@@ -0,0 +1,474 @@
+/*
+-*- linux-c -*-
+   drbd_receiver.c
+   This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
+
+   Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
+   Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@...bit.com>.
+   Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@...bit.com>.
+
+   drbd is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2, or (at your option)
+   any later version.
+
+   drbd is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with drbd; see the file COPYING.  If not, write to
+   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#ifndef _DRBD_VLI_H
+#define _DRBD_VLI_H
+
+/*
+ * At a granularity of 4KiB storage represented per bit,
+ * and stroage sizes of several TiB,
+ * and possibly small-bandwidth replication,
+ * the bitmap transfer time can take much too long,
+ * if transmitted in plain text.
+ *
+ * We try to reduce the transfered bitmap information
+ * by encoding runlengths of bit polarity.
+ *
+ * We never actually need to encode a "zero" (runlengths are positive).
+ * But then we have to store the value of the first bit.
+ * So we can as well have the "zero" be a valid runlength,
+ * and start encoding/decoding by "number of _set_ bits" by convention.
+ *
+ * We assume that large areas are either completely set or unset,
+ * which gives good compression with any runlength method,
+ * even when encoding the runlength as fixed size 32bit/64bit integers.
+ *
+ * Still, there may be areas where the polarity flips every few bits,
+ * and encoding the runlength sequence of those ares with fix size
+ * integers would be much worse than plaintext.
+ *
+ * We want to encode small runlength values with minimum code length,
+ * while still being able to encode a Huge run of all zeros.
+ *
+ * Thus we need a Variable Length Integer encoding, VLI.
+ *
+ * For runlength < 8, we produce more code bits than plaintext input.
+ * we need to send incompressible chunks as plaintext, skip over them
+ * and then see if the next chunk compresses better.
+ *
+ * We don't care too much about "excellent" compression ratio
+ * for large runlengths, 249 bit/24 bit still gives a factor of > 10.
+ *
+ * We care for cpu time needed to actually encode/decode
+ * into the transmitted byte stream.
+ *
+ * There are endless variants of VLI.
+ * For this special purpose, we just need something that is "good enough",
+ * and easy to understand and code, fast to encode and decode,
+ * and does not consume memory.
+ */
+
+/*
+ * buf points to the current position in the tranfered byte stream.
+ * stream is by definition little endian.
+ * *buf_len gives the remaining number of bytes at that position.
+ * *out will receive the decoded value.
+ * returns number of bytes consumed,
+ * or 0 if not enough bytes left in buffer (which would be invalid input).
+ */
+static inline int vli_decode_bytes(u64 *out, unsigned char *buf, unsigned buf_len)
+{
+	u64 tmp = 0;
+	unsigned bytes; /* extra bytes after code byte */
+
+	if (buf_len == 0)
+		return 0;
+
+	switch(*buf) {
+	case 0xff: bytes = 8; break;
+	case 0xfe: bytes = 7; break;
+	case 0xfd: bytes = 6; break;
+	case 0xfc: bytes = 5; break;
+	case 0xfb: bytes = 4; break;
+	case 0xfa: bytes = 3; break;
+	case 0xf9: bytes = 2; break;
+	default:
+		*out = *buf;
+		return 1;
+	}
+
+	if (buf_len <= bytes)
+		return 0;
+
+	/* no pointer cast assignment, there may be funny alignment
+	 * requirements on certain architectures */
+	memcpy(&tmp, buf+1, bytes);
+	*out = le64_to_cpu(tmp);
+	return bytes+1;
+}
+
+/*
+ * similarly, encode n into buf.
+ * returns consumed bytes,
+ * or zero if not enough room left in buffer
+ * (in which case the buf is left unchanged).
+ *
+ * encoding is little endian, first byte codes how much bytes follow.
+ * first byte <= 0xf8 means just this byte, value = code byte.
+ * first byte == 0xf9 .. 0xff: (code byte - 0xf7) data bytes follow.
+ */
+static inline int vli_encode_bytes(unsigned char *buf, u64 n, unsigned buf_len)
+{
+	unsigned bytes; /* _extra_ bytes after code byte */
+
+	if (buf_len == 0)
+		return 0;
+
+	if (n <= 0xf8) {
+		*buf = (unsigned char)n;
+		return 1;
+	}
+
+	bytes = (n < (1ULL << 32))
+	      ? (n < (1ULL << 16)) ? 2
+	      : (n < (1ULL << 24)) ? 3 : 4
+	      : (n < (1ULL << 48)) ?
+		(n < (1ULL << 40)) ? 5 : 6
+	      : (n < (1ULL << 56)) ? 7 : 8;
+
+	if (buf_len <= bytes)
+		return 0;
+
+	/* no pointer cast assignment, there may be funny alignment
+	 * requirements on certain architectures */
+	*buf++ = 0xf7 + bytes; /* code, 0xf9 .. 0xff */
+	n = cpu_to_le64(n);
+	memcpy(buf, &n, bytes); /* plain */
+	return bytes+1;
+}
+
+/* ================================================================== */
+
+/* And here the more involved variants of VLI.
+ *
+ * Code length is determined by some unique (e.g. unary) prefix.
+ * This encodes arbitrary bit length, not whole bytes: we have a bit-stream,
+ * not a byte stream.
+ */
+
+/* for the bitstream, we need a cursor */
+struct bitstream_cursor {
+	/* the current byte */
+	u8 *b;
+	/* the current bit within *b, nomalized: 0..7 */
+	unsigned int bit;
+};
+
+/* initialize cursor to point to first bit of stream */
+static inline void bitstream_cursor_reset(struct bitstream_cursor *cur, void *s)
+{
+	cur->b = s;
+	cur->bit = 0;
+}
+
+/* advance cursor by that many bits; maximum expected input value: 64,
+ * but depending on VLI implementation, it may be more. */
+static inline void bitstream_cursor_advance(struct bitstream_cursor *cur, unsigned int bits)
+{
+	bits += cur->bit;
+	cur->b = cur->b + (bits >> 3);
+	cur->bit = bits & 7;
+}
+
+/* the bitstream itself knows its length */
+struct bitstream {
+	struct bitstream_cursor cur;
+	unsigned char *buf;
+	size_t buf_len;		/* in bytes */
+
+	/* for input stream:
+	 * number of trailing 0 bits for padding
+	 * total number of valid bits in stream: buf_len * 8 - pad_bits */
+	unsigned int pad_bits;
+};
+
+static inline void bitstream_init(struct bitstream *bs, void *s, size_t len, unsigned int pad_bits)
+{
+	bs->buf = s;
+	bs->buf_len = len;
+	bs->pad_bits = pad_bits;
+	bitstream_cursor_reset(&bs->cur, bs->buf);
+}
+
+static inline void bitstream_rewind(struct bitstream *bs)
+{
+	bitstream_cursor_reset(&bs->cur, bs->buf);
+	memset(bs->buf, 0, bs->buf_len);
+}
+
+/* Put (at most 64) least significant bits of val into bitstream, and advance cursor.
+ * Ignores "pad_bits".
+ * Returns zero if bits == 0 (nothing to do).
+ * Returns number of bits used if successful.
+ *
+ * If there is not enough room left in bitstream,
+ * leaves bitstream unchanged and returns -ENOBUFS.
+ */
+static inline int bitstream_put_bits(struct bitstream *bs, u64 val, const unsigned int bits)
+{
+	unsigned char *b = bs->cur.b;
+	unsigned int tmp;
+
+	if (bits == 0)
+		return 0;
+
+	if ((bs->cur.b + ((bs->cur.bit + bits -1) >> 3)) - bs->buf >= bs->buf_len)
+		return -ENOBUFS;
+
+	/* paranoia: strip off hi bits; they should not be set anyways. */
+	if (bits < 64)
+		val &= ~0ULL >> (64 - bits);
+
+	*b++ |= (val & 0xff) << bs->cur.bit;
+
+	for (tmp = 8 - bs->cur.bit; tmp < bits; tmp += 8)
+		*b++ |= (val >> tmp) & 0xff;
+
+	bitstream_cursor_advance(&bs->cur, bits);
+	return bits;
+}
+
+/* Fetch (at most 64) bits from bitstream into *out, and advance cursor.
+ *
+ * If more than 64 bits are requested, returns -EINVAL and leave *out unchanged.
+ *
+ * If there are less than the requested number of valid bits left in the
+ * bitstream, still fetches all available bits.
+ *
+ * Returns number of actually fetched bits.
+ */
+static inline int bitstream_get_bits(struct bitstream *bs, u64 *out, int bits)
+{
+	u64 val;
+	unsigned int n;
+
+	if (bits > 64)
+		return -EINVAL;
+
+	if (bs->cur.b + ((bs->cur.bit + bs->pad_bits + bits -1) >> 3) - bs->buf >= bs->buf_len)
+		bits = ((bs->buf_len - (bs->cur.b - bs->buf)) << 3)
+			- bs->cur.bit - bs->pad_bits;
+
+	if (bits == 0) {
+		*out = 0;
+		return 0;
+	}
+
+	/* get the high bits */
+	val = 0;
+	n = (bs->cur.bit + bits + 7) >> 3;
+	/* n may be at most 9, if cur.bit + bits > 64 */
+	/* which means this copies at most 8 byte */
+	if (n) {
+		memcpy(&val, bs->cur.b+1, n - 1);
+		val = le64_to_cpu(val) << (8 - bs->cur.bit);
+	}
+
+	/* we still need the low bits */
+	val |= bs->cur.b[0] >> bs->cur.bit;
+
+	/* and mask out bits we don't want */
+	val &= ~0ULL >> (64 - bits);
+
+	bitstream_cursor_advance(&bs->cur, bits);
+	*out = val;
+
+	return bits;
+}
+
+/* we still need to actually define the code. */
+
+/*
+ * encoding is "visualised" as
+ * __little endian__ bitstream, least significant bit first (left most)
+ *
+ * this particular encoding is chosen so that the prefix code
+ * starts as unary encoding the level, then modified so that
+ * 11 levels can be described in 8bit, with minimal overhead
+ * for the smaller levels.
+ *
+ * Number of data bits follow fibonacci sequence, with the exception of the
+ * last level (+1 data bit, so it makes 64bit total).  The only worse code when
+ * encoding bit polarity runlength is 2 plain bits => 3 code bits.
+prefix    data bits                                  max val    NÂș data bits
+0                                                                     0x1  0
+10 x                                                                  0x3  1
+110 x                                                                 0x5  1
+1110 xx                                                               0x9  2
+11110 xxx                                                            0x11  3
+1111100 x xxxx                                                       0x31  5
+1111101 x xxxxxxx                                                   0x131  8
+11111100  xxxxxxxx xxxxx                                           0x2131 13
+11111110  xxxxxxxx xxxxxxxx xxxxx                                0x202131 21
+11111101  xxxxxxxx xxxxxxxx xxxxxxxx  xxxxxxxx xx             0x400202131 34
+11111111  xxxxxxxx xxxxxxxx xxxxxxxx  xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 56
+ * maximum encodable value: 0x100000400202131 == 2**56 + some */
+
+/* LEVEL: (total bits, prefix bits, prefix value),
+ * sorted ascending by number of total bits.
+ * The rest of the code table is calculated at compiletime from this. */
+
+/* fibonacci data 0, 1, ... */
+#define VLI_L_0_1() do { \
+	LEVEL( 1, 1, 0x00); \
+	LEVEL( 3, 2, 0x01); \
+	LEVEL( 4, 3, 0x03); \
+	LEVEL( 6, 4, 0x07); \
+	LEVEL( 8, 5, 0x0f); \
+	LEVEL(12, 7, 0x1f); \
+	LEVEL(15, 7, 0x5f); \
+	LEVEL(21, 8, 0x3f); \
+	LEVEL(29, 8, 0x7f); \
+	LEVEL(42, 8, 0xbf); \
+	LEVEL(64, 8, 0xff); \
+	} while (0)
+
+/* Some variants, differeing in number of levels, prefix value, and number of
+ * databits in each level.  I tried a lot of variants. Those where the number
+ * of data bits follows the fibonacci sequence (with a certain offset) simply
+ * "look best" ;-)
+ * All of these can encode at least "2 ** 56". */
+
+/* fibonacci data 1, 1, ... */
+#define VLI_L_1_1() do { \
+	LEVEL( 2, 1, 0x00); \
+	LEVEL( 3, 2, 0x01); \
+	LEVEL( 5, 3, 0x03); \
+	LEVEL( 7, 4, 0x07); \
+	LEVEL(10, 5, 0x0f); \
+	LEVEL(14, 6, 0x1f); \
+	LEVEL(21, 8, 0x3f); \
+	LEVEL(29, 8, 0x7f); \
+	LEVEL(42, 8, 0xbf); \
+	LEVEL(64, 8, 0xff); \
+	} while (0)
+
+/* fibonacci data 1, 2, ... */
+#define VLI_L_1_2() do { \
+	LEVEL( 2, 1, 0x00); \
+	LEVEL( 4, 2, 0x01); \
+	LEVEL( 6, 3, 0x03); \
+	LEVEL( 9, 4, 0x07); \
+	LEVEL(13, 5, 0x0f); \
+	LEVEL(19, 6, 0x1f); \
+	LEVEL(28, 7, 0x3f); \
+	LEVEL(42, 8, 0x7f); \
+	LEVEL(64, 8, 0xff); \
+	} while (0)
+
+/* fibonacci data 2, 3, ... */
+#define VLI_L_2_3() do { \
+	LEVEL( 3, 1, 0x00); \
+	LEVEL( 5, 2, 0x01); \
+	LEVEL( 8, 3, 0x03); \
+	LEVEL(12, 4, 0x07); \
+	LEVEL(18, 5, 0x0f); \
+	LEVEL(27, 6, 0x1f); \
+	LEVEL(41, 7, 0x3f); \
+	LEVEL(64, 7, 0x5f); \
+	} while (0)
+
+/* fibonacci data 3, 5, ... */
+#define VLI_L_3_5() do { \
+	LEVEL( 4, 1, 0x00); \
+	LEVEL( 7, 2, 0x01); \
+	LEVEL(11, 3, 0x03); \
+	LEVEL(17, 4, 0x07); \
+	LEVEL(26, 5, 0x0f); \
+	LEVEL(40, 6, 0x1f); \
+	LEVEL(64, 6, 0x3f); \
+	} while (0)
+
+/* CONFIG */
+#ifndef VLI_LEVELS
+#define VLI_LEVELS() VLI_L_3_5()
+#endif
+
+/* finds a suitable level to decode the least significant part of in.
+ * returns number of bits consumed.
+ *
+ * BUG() for bad input, as that would mean a buggy code table. */
+static inline int vli_decode_bits(u64 *out, const u64 in)
+{
+	u64 adj = 1;
+
+#define LEVEL(t,b,v)					\
+	do {						\
+		if ((in & ((1 << b) -1)) == v) {	\
+			*out = ((in & ((~0ULL) >> (64-t))) >> b) + adj;	\
+			return t;			\
+		}					\
+		adj += 1ULL << (t - b);			\
+	} while (0)
+
+	VLI_LEVELS();
+
+	/* NOT REACHED, if VLI_LEVELS code table is defined properly */
+	BUG();
+#undef LEVEL
+}
+
+/* return number of code bits needed,
+ * or negative error number */
+static inline int __vli_encode_bits(u64 *out, const u64 in)
+{
+	u64 max = 0;
+	u64 adj = 1;
+
+	if (in == 0)
+		return -EINVAL;
+
+#define LEVEL(t,b,v) do {		\
+		max += 1ULL << (t - b);	\
+		if (in <= max) {	\
+			if (out)	\
+				*out = ((in - adj) << b) | v;	\
+			return t;	\
+		}			\
+		adj = max + 1;		\
+	} while (0)
+
+	VLI_LEVELS();
+
+	return -EOVERFLOW;
+#undef LEVEL
+}
+
+/* encodes @in as vli into @bs;
+
+ * return values
+ *  > 0: number of bits successfully stored in bitstream
+ * -ENOBUFS @bs is full
+ * -EINVAL input zero (invalid)
+ * -EOVERFLOW input too large for this vli code (invalid)
+ */
+static inline int vli_encode_bits(struct bitstream *bs, u64 in)
+{
+	u64 code = code;
+	int bits = __vli_encode_bits(&code, in);
+
+	if (bits <= 0)
+		return bits;
+
+	return bitstream_put_bits(bs, code, bits);
+}
+
+#undef VLI_L_0_1
+#undef VLI_L_1_1
+#undef VLI_L_1_2
+#undef VLI_L_2_3
+#undef VLI_L_3_5
+
+#undef VLI_LEVELS
+#endif
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ