lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:	Wed, 14 Jul 2010 11:10:20 -0700
From:	Linus Torvalds <torvalds@...ux-foundation.org>
To:	Mathieu Desnoyers <mathieu.desnoyers@...icios.com>
Cc:	LKML <linux-kernel@...r.kernel.org>,
	Andrew Morton <akpm@...ux-foundation.org>,
	Ingo Molnar <mingo@...e.hu>,
	Peter Zijlstra <peterz@...radead.org>,
	Steven Rostedt <rostedt@...dmis.org>,
	Steven Rostedt <rostedt@...tedt.homelinux.com>,
	Frederic Weisbecker <fweisbec@...il.com>,
	Thomas Gleixner <tglx@...utronix.de>,
	Christoph Hellwig <hch@....de>, Li Zefan <lizf@...fujitsu.com>,
	Lai Jiangshan <laijs@...fujitsu.com>,
	Johannes Berg <johannes.berg@...el.com>,
	Masami Hiramatsu <masami.hiramatsu.pt@...achi.com>,
	Arnaldo Carvalho de Melo <acme@...radead.org>,
	Tom Zanussi <tzanussi@...il.com>,
	KOSAKI Motohiro <kosaki.motohiro@...fujitsu.com>,
	Andi Kleen <andi@...stfloor.org>,
	"H. Peter Anvin" <hpa@...or.com>,
	Jeremy Fitzhardinge <jeremy@...p.org>,
	"Frank Ch. Eigler" <fche@...hat.com>, Tejun Heo <htejun@...il.com>
Subject: Re: [patch 1/2] x86_64 page fault NMI-safe

On Wed, Jul 14, 2010 at 10:06 AM, Mathieu Desnoyers
<mathieu.desnoyers@...icios.com> wrote:
>>
>> This patch (1/2) doesn't look horrible per se. I have no problems with
>> it. I just want to understand why it is needed.

[ And patch 2/2 is much more intrusive, and touches a critical path
too.. If it was just the 1/2 series, I don't think I would care. For
the 2/2, I think I'd want to explore all the alternative options ]

> The problem originally addressed by this patch is the case where a NMI handler
> try to access vmalloc'd per-cpu data, which goes as follow:
>
> - One CPU does a fork(), which copies the basic kernel mappings.
> - Perf allocates percpu memory for buffer control data structures.
>  This mapping does not get copied.
> - Tracing is activated.
> - switch_to() to the newly forked process which missed the new percpu
>  allocation.
> - We take a NMI, which touches the vmalloc'd percpu memory in the Perf tracing
>  handler, therefore leading to a page fault in NMI context. Here, we might be
>  in the middle of switch_to(), where ->current might not be in sync with the
>  current cr3 register.

Ok. I was wondering why anybody would allocate core percpu variables
so late that this would ever be an issue, but I guess perf is a
reasonable such case. And reasonable to do from NMI.

That said - grr. I really wish there was some other alternative than
adding yet more complexity to the exception return path. That "iret
re-enables NMI's unconditionally" thing annoys me.

In fact, I wonder if we couldn't just do a software NMI disable
instead? Hav ea per-cpu variable (in the _core_ percpu areas that get
allocated statically) that points to the NMI stack frame, and just
make the NMI code itself do something like

 NMI entry:
 - load percpu NMI stack frame pointer
 - if non-zero we know we're nested, and should ignore this NMI:
    - we're returning to kernel mode, so return immediately by using
"popf/ret", which also keeps NMI's disabled in the hardware until the
"real" NMI iret happens.
    - before the popf/iret, use the NMI stack pointer to make the NMI
return stack be invalid and cause a fault
  - set the NMI stack pointer to the current stack pointer

 NMI exit (not the above "immediate exit because we nested"):
   clear the percpu NMI stack pointer
   Just do the iret.

Now, the thing is, now the "iret" is atomic. If we had a nested NMI,
we'll take a fault, and that re-does our "delayed" NMI - and NMI's
will stay masked.

And if we didn't have a nested NMI, that iret will now unmask NMI's,
and everything is happy.

Doesn't the above sound like a good solution? In other words, we solve
the whole problem by simply _fixing_ the crazy Intel "iret-vs-NMI"
semantics. And we don't need to change the hotpath, and we'll just
_allow_ nested faults within NMI's.

Am I missing something? Maybe I'm not as clever as I think I am... But
I _feel_ clever.

                   Linus
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ