[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20110407184946.GC6104@Krystal>
Date: Thu, 7 Apr 2011 14:49:46 -0400
From: Mathieu Desnoyers <mathieu.desnoyers@...icios.com>
To: Huang Ying <ying.huang@...el.com>
Cc: Len Brown <lenb@...nel.org>, linux-kernel@...r.kernel.org,
Andi Kleen <andi@...stfloor.org>,
Tony Luck <tony.luck@...el.com>, linux-acpi@...r.kernel.org,
Andrew Morton <akpm@...ux-foundation.org>
Subject: Re: [PATCH -v2 3/4] lib, Make gen_pool memory allocator lockless
* Huang Ying (ying.huang@...el.com) wrote:
> This version of the gen_pool memory allocator supports lockless
> operation.
>
> This makes it safe to use in NMI handlers and other special
> unblockable contexts that could otherwise deadlock on locks. This is
> implemented by using atomic operations and retries on any conflicts.
> The disadvantage is that there may be livelocks in extreme cases. For
> better scalability, one gen_pool allocator can be used for each CPU.
>
> The lockless operation only works if there is enough memory available.
> If new memory is added to the pool a lock has to be still taken. So
> any user relying on locklessness has to ensure that sufficient memory
> is preallocated.
>
> The basic atomic operation of this allocator is cmpxchg on long. On
> architectures that don't have NMI-safe cmpxchg implementation, the
> allocator can NOT be used in NMI handler. So code uses the allocator
> in NMI handler should depend on CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
>
> Signed-off-by: Huang Ying <ying.huang@...el.com>
> Reviewed-by: Andi Kleen <ak@...ux.intel.com>
> Cc: Mathieu Desnoyers <mathieu.desnoyers@...icios.com>
> Cc: Andrew Morton <akpm@...ux-foundation.org>
> ---
> include/linux/bitmap.h | 1
> include/linux/genalloc.h | 46 +++++++-
> lib/bitmap.c | 2
> lib/genalloc.c | 256 ++++++++++++++++++++++++++++++++++++++---------
> 4 files changed, 250 insertions(+), 55 deletions(-)
>
> --- a/include/linux/bitmap.h
> +++ b/include/linux/bitmap.h
> @@ -142,6 +142,7 @@ extern void bitmap_release_region(unsign
> extern int bitmap_allocate_region(unsigned long *bitmap, int pos, int order);
> extern void bitmap_copy_le(void *dst, const unsigned long *src, int nbits);
>
> +#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
> #define BITMAP_LAST_WORD_MASK(nbits) \
> ( \
> ((nbits) % BITS_PER_LONG) ? \
> --- a/include/linux/genalloc.h
> +++ b/include/linux/genalloc.h
> @@ -1,8 +1,28 @@
> +#ifndef GENALLOC_H
> +#define GENALLOC_H
> /*
> - * Basic general purpose allocator for managing special purpose memory
> - * not managed by the regular kmalloc/kfree interface.
> - * Uses for this includes on-device special memory, uncached memory
> - * etc.
> + * Basic general purpose allocator for managing special purpose
> + * memory, for example, memory that is not managed by the regular
> + * kmalloc/kfree interface. Uses for this includes on-device special
> + * memory, uncached memory etc.
> + *
> + * It is safe to use the allocator in NMI handlers and other special
> + * unblockable contexts that could otherwise deadlock on locks. This
> + * is implemented by using atomic operations and retries on any
> + * conflicts. The disadvantage is that there may be livelocks in
> + * extreme cases. For better scalability, one allocator can be used
> + * for each CPU.
> + *
> + * The lockless operation only works if there is enough memory
> + * available. If new memory is added to the pool a lock has to be
> + * still taken. So any user relying on locklessness has to ensure
> + * that sufficient memory is preallocated.
> + *
> + * The basic atomic operation of this allocator is cmpxchg on long.
> + * On architectures that don't have NMI-safe cmpxchg implementation,
> + * the allocator can NOT be used in NMI handler. So code uses the
> + * allocator in NMI handler should depend on
> + * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
> *
> * This source code is licensed under the GNU General Public License,
> * Version 2. See the file COPYING for more details.
> @@ -13,7 +33,7 @@
> * General purpose special memory pool descriptor.
> */
> struct gen_pool {
> - rwlock_t lock;
> + spinlock_t lock;
> struct list_head chunks; /* list of chunks in this pool */
> int min_alloc_order; /* minimum allocation order */
> };
> @@ -22,15 +42,29 @@ struct gen_pool {
> * General purpose special memory pool chunk descriptor.
> */
> struct gen_pool_chunk {
> - spinlock_t lock;
> struct list_head next_chunk; /* next chunk in pool */
> + atomic_t avail;
> unsigned long start_addr; /* starting address of memory chunk */
> unsigned long end_addr; /* ending address of memory chunk */
> unsigned long bits[0]; /* bitmap for allocating memory chunk */
> };
>
> +/**
> + * gen_pool_for_each_chunk - iterate over chunks of generic memory pool
> + * @chunk: the struct gen_pool_chunk * to use as a loop cursor
> + * @pool: the generic memory pool
> + *
> + * Not lockless, proper mutual exclusion is needed to use this macro
> + * with other gen_pool function simultaneously.
> + */
> +#define gen_pool_for_each_chunk(chunk, pool) \
> + list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
> +
> extern struct gen_pool *gen_pool_create(int, int);
> extern int gen_pool_add(struct gen_pool *, unsigned long, size_t, int);
> extern void gen_pool_destroy(struct gen_pool *);
> extern unsigned long gen_pool_alloc(struct gen_pool *, size_t);
> extern void gen_pool_free(struct gen_pool *, unsigned long, size_t);
> +extern size_t gen_pool_avail(struct gen_pool *);
> +extern size_t gen_pool_size(struct gen_pool *);
> +#endif /* GENALLOC_H */
> --- a/lib/bitmap.c
> +++ b/lib/bitmap.c
> @@ -271,8 +271,6 @@ int __bitmap_weight(const unsigned long
> }
> EXPORT_SYMBOL(__bitmap_weight);
>
> -#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
> -
> void bitmap_set(unsigned long *map, int start, int nr)
> {
> unsigned long *p = map + BIT_WORD(start);
> --- a/lib/genalloc.c
> +++ b/lib/genalloc.c
> @@ -1,8 +1,33 @@
> /*
> - * Basic general purpose allocator for managing special purpose memory
> - * not managed by the regular kmalloc/kfree interface.
> - * Uses for this includes on-device special memory, uncached memory
> - * etc.
> + * Basic general purpose allocator for managing special purpose
> + * memory, for example, memory that is not managed by the regular
> + * kmalloc/kfree interface. Uses for this includes on-device special
> + * memory, uncached memory etc.
> + *
> + * It is safe to use the allocator in NMI handlers and other special
> + * unblockable contexts that could otherwise deadlock on locks. This
> + * is implemented by using atomic operations and retries on any
> + * conflicts. The disadvantage is that there may be livelocks in
> + * extreme cases. For better scalability, one allocator can be used
> + * for each CPU.
> + *
> + * The lockless operation only works if there is enough memory
> + * available. If new memory is added to the pool a lock has to be
> + * still taken. So any user relying on locklessness has to ensure
> + * that sufficient memory is preallocated.
> + *
> + * The basic atomic operation of this allocator is cmpxchg on long.
> + * On architectures that don't have NMI-safe cmpxchg implementation,
> + * the allocator can NOT be used in NMI handler. So code uses the
> + * allocator in NMI handler should depend on
> + * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
> + *
> + * rcu_read_lock and rcu_read_unlock is not used int gen_pool_alloc,
> + * gen_pool_free, gen_pool_avail and gen_pool_size etc, because chunks
> + * are only added into pool, not deleted from pool unless the pool
> + * itself is destroyed. If chunk will be deleted from pool,
> + * rcu_read_lock and rcu_read_unlock should be uses in these
> + * functions.
> *
> * Copyright 2005 (C) Jes Sorensen <jes@...ined-monkey.org>
> *
> @@ -13,8 +38,109 @@
> #include <linux/slab.h>
> #include <linux/module.h>
> #include <linux/bitmap.h>
> +#include <linux/rculist.h>
> +#include <linux/interrupt.h>
> #include <linux/genalloc.h>
>
> +static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
> +{
> + unsigned long val, nval;
> +
> + nval = *addr;
> + do {
> + val = nval;
> + if (val & mask_to_set)
> + return -EBUSY;
> + cpu_relax();
> + } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
Some architectures have their own atomic set bit already (e.g. intel),
you should probably extend the existing set "bit" to a set "bits"
instead, and use that instead for those, and put the generic
implementation in asm-generic.
> +
> + return 0;
> +}
> +
> +static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
> +{
> + unsigned long val, nval;
> +
> + nval = *addr;
> + do {
> + val = nval;
> + if ((val & mask_to_clear) != mask_to_clear)
> + return -EBUSY;
> + cpu_relax();
> + } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
Same as above.
> +
> + return 0;
> +}
> +
> +/*
> + * bitmap_set_ll - set the specified number of bits at the specified position
> + * @map: pointer to a bitmap
> + * @start: a bit position in @map
> + * @nr: number of bits to set
> + *
> + * Set @nr bits start from @start in @map lock-lessly. Several users
> + * can set/clear the same bitmap simultaneously without lock. If two
> + * users set the same bit, one user will return remain bits, otherwise
> + * return 0.
> + */
> +static int bitmap_set_ll(unsigned long *map, int start, int nr)
> +{
> + unsigned long *p = map + BIT_WORD(start);
> + const int size = start + nr;
> + int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
> + unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
Ah :) I've had some fun working on bitfield management headers. First
question: how did you test this code ? Shift of "32" being turned to a
no-op on Intel is an example of how some odd cases can creep into this
kind of code. If you are interested, you might want to have a look at my
portable bitfield read/write MIT-licensed header in the Babeltrace
library, file include/babeltrace/bitfield.h
(http://git.efficios.com/?p=babeltrace.git). It's not using atomic
read/writes, but supports bitfield read/write event across different
endiannesses. I made a testing program for it by providing limit values
and random value, and checking that what is read/written matches. That
helped me find interesting corner-cases.
> +
> + while (nr - bits_to_set >= 0) {
> + if (set_bits_ll(p, mask_to_set))
> + return nr;
> + nr -= bits_to_set;
> + bits_to_set = BITS_PER_LONG;
> + mask_to_set = ~0UL;
> + p++;
> + }
> + if (nr) {
> + mask_to_set &= BITMAP_LAST_WORD_MASK(size);
> + if (set_bits_ll(p, mask_to_set))
> + return nr;
> + }
> +
> + return 0;
> +}
> +
> +/*
> + * bitmap_clear_ll - clear the specified number of bits at the specified position
> + * @map: pointer to a bitmap
> + * @start: a bit position in @map
> + * @nr: number of bits to set
> + *
> + * Clear @nr bits start from @start in @map lock-lessly. Several users
> + * can set/clear the same bitmap simultaneously without lock. If two
> + * users clear the same bit, one user will return remain bits,
> + * otherwise return 0.
> + */
> +static int bitmap_clear_ll(unsigned long *map, int start, int nr)
> +{
> + unsigned long *p = map + BIT_WORD(start);
> + const int size = start + nr;
> + int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
> + unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
> +
> + while (nr - bits_to_clear >= 0) {
> + if (clear_bits_ll(p, mask_to_clear))
> + return nr;
> + nr -= bits_to_clear;
> + bits_to_clear = BITS_PER_LONG;
> + mask_to_clear = ~0UL;
> + p++;
> + }
> + if (nr) {
> + mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
> + if (clear_bits_ll(p, mask_to_clear))
> + return nr;
> + }
> +
> + return 0;
> +}
>
> /**
> * gen_pool_create - create a new special memory pool
> @@ -30,7 +156,7 @@ struct gen_pool *gen_pool_create(int min
>
> pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
> if (pool != NULL) {
> - rwlock_init(&pool->lock);
> + spin_lock_init(&pool->lock);
> INIT_LIST_HEAD(&pool->chunks);
> pool->min_alloc_order = min_alloc_order;
> }
> @@ -58,15 +184,15 @@ int gen_pool_add(struct gen_pool *pool,
>
> chunk = kmalloc_node(nbytes, GFP_KERNEL | __GFP_ZERO, nid);
> if (unlikely(chunk == NULL))
> - return -1;
> + return -ENOMEM;
>
> - spin_lock_init(&chunk->lock);
> chunk->start_addr = addr;
> chunk->end_addr = addr + size;
> + atomic_set(&chunk->avail, size);
>
> - write_lock(&pool->lock);
> - list_add(&chunk->next_chunk, &pool->chunks);
> - write_unlock(&pool->lock);
> + spin_lock(&pool->lock);
> + list_add_rcu(&chunk->next_chunk, &pool->chunks);
hrm, where is the list_del_rcu ? Is there anywhere where we have some
call_rcu scheme or synchronize_rcu to handle chunk teardown ?
> + spin_unlock(&pool->lock);
>
> return 0;
> }
> @@ -86,7 +212,6 @@ void gen_pool_destroy(struct gen_pool *p
> int order = pool->min_alloc_order;
> int bit, end_bit;
>
> -
> list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
> chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
> list_del(&chunk->next_chunk);
> @@ -108,43 +233,47 @@ EXPORT_SYMBOL(gen_pool_destroy);
> * @size: number of bytes to allocate from the pool
> *
> * Allocate the requested number of bytes from the specified pool.
> - * Uses a first-fit algorithm.
> + * Uses a first-fit algorithm. Can not be used in NMI handler on
> + * architectures without NMI-safe cmpxchg implementation.
> */
> unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
> {
> - struct list_head *_chunk;
> struct gen_pool_chunk *chunk;
> - unsigned long addr, flags;
> + unsigned long addr;
> int order = pool->min_alloc_order;
> - int nbits, start_bit, end_bit;
> + int nbits, start_bit = 0, end_bit, remain;
> +
> +#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
> + BUG_ON(in_nmi());
> +#endif
>
> if (size == 0)
> return 0;
>
> nbits = (size + (1UL << order) - 1) >> order;
> -
> - read_lock(&pool->lock);
> - list_for_each(_chunk, &pool->chunks) {
> - chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
missing rcu_read_lock() ?
> + list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
> + if (size > atomic_read(&chunk->avail))
> + continue;
>
> end_bit = (chunk->end_addr - chunk->start_addr) >> order;
> -
> - spin_lock_irqsave(&chunk->lock, flags);
> - start_bit = bitmap_find_next_zero_area(chunk->bits, end_bit, 0,
> - nbits, 0);
> - if (start_bit >= end_bit) {
> - spin_unlock_irqrestore(&chunk->lock, flags);
> +retry:
> + start_bit = bitmap_find_next_zero_area(chunk->bits, end_bit,
> + start_bit, nbits, 0);
> + if (start_bit >= end_bit)
> continue;
> + remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
> + if (remain) {
> + remain = bitmap_clear_ll(chunk->bits, start_bit,
> + nbits - remain);
> + BUG_ON(remain);
maybe add cpu_relax() ? This is a busy loop after all.
> + goto retry;
> }
>
> addr = chunk->start_addr + ((unsigned long)start_bit << order);
> -
> - bitmap_set(chunk->bits, start_bit, nbits);
> - spin_unlock_irqrestore(&chunk->lock, flags);
> - read_unlock(&pool->lock);
> + size = nbits << order;
> + atomic_sub(size, &chunk->avail);
> return addr;
> }
> - read_unlock(&pool->lock);
> return 0;
> }
> EXPORT_SYMBOL(gen_pool_alloc);
> @@ -155,33 +284,66 @@ EXPORT_SYMBOL(gen_pool_alloc);
> * @addr: starting address of memory to free back to pool
> * @size: size in bytes of memory to free
> *
> - * Free previously allocated special memory back to the specified pool.
> + * Free previously allocated special memory back to the specified
> + * pool. Can not be used in NMI handler on architectures without
> + * NMI-safe cmpxchg implementation.
> */
> void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
> {
> - struct list_head *_chunk;
> struct gen_pool_chunk *chunk;
> - unsigned long flags;
> int order = pool->min_alloc_order;
> - int bit, nbits;
> -
> - nbits = (size + (1UL << order) - 1) >> order;
> + int start_bit, nbits, remain;
>
> - read_lock(&pool->lock);
> - list_for_each(_chunk, &pool->chunks) {
> - chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
> +#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
> + BUG_ON(in_nmi());
> +#endif
>
> + nbits = (size + (1UL << order) - 1) >> order;
missing rcu_read_lock ?
> + list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
> if (addr >= chunk->start_addr && addr < chunk->end_addr) {
> BUG_ON(addr + size > chunk->end_addr);
> - spin_lock_irqsave(&chunk->lock, flags);
> - bit = (addr - chunk->start_addr) >> order;
> - while (nbits--)
> - __clear_bit(bit++, chunk->bits);
> - spin_unlock_irqrestore(&chunk->lock, flags);
> - break;
> + start_bit = (addr - chunk->start_addr) >> order;
> + remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
> + BUG_ON(remain);
> + size = nbits << order;
> + atomic_add(size, &chunk->avail);
> + return;
> }
> }
> - BUG_ON(nbits > 0);
> - read_unlock(&pool->lock);
> + BUG();
> }
> EXPORT_SYMBOL(gen_pool_free);
> +
> +/**
> + * gen_pool_avail - get available free space of the pool
> + * @pool: pool to get available free space
> + *
> + * Return available free space of the specified pool.
> + */
> +size_t gen_pool_avail(struct gen_pool *pool)
> +{
> + struct gen_pool_chunk *chunk;
> + size_t avail = 0;
> +
rcu_read_lock ?
> + list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
> + avail += atomic_read(&chunk->avail);
> + return avail;
> +}
> +EXPORT_SYMBOL_GPL(gen_pool_avail);
> +
> +/**
> + * gen_pool_size - get size in bytes of memory managed by the pool
> + * @pool: pool to get size
> + *
> + * Return size in bytes of memory managed by the pool.
> + */
> +size_t gen_pool_size(struct gen_pool *pool)
> +{
> + struct gen_pool_chunk *chunk;
> + size_t size = 0;
> +
rcu_read_lock ?
Thanks,
Mathieu
> + list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
> + size += chunk->end_addr - chunk->start_addr;
> + return size;
> +}
> +EXPORT_SYMBOL_GPL(gen_pool_size);
--
Mathieu Desnoyers
Operating System Efficiency R&D Consultant
EfficiOS Inc.
http://www.efficios.com
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists