[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Message-Id: <1304507741-3075-1-git-send-email-wanlong.gao@gmail.com>
Date: Wed, 4 May 2011 19:15:41 +0800
From: Wanlong Gao <wanlong.gao@...il.com>
To: gregkh@...e.de, rdunlap@...otime.net
Cc: linux-doc@...r.kernel.org, linux-kernel@...r.kernel.org,
Wanlong Gao <wanlong.gao@...il.com>
Subject: [PATCH v5]KernelDoc:Add the device driver-model structures to kerneldoc
Hi Greg:
Sorry for adding your signed-off. But because that I thought I had got some thing
from your articles and book in this patch.
Hi Randy:
Thanks very much for your careful checking this patch, and sorry for the errors,
I'll be more carefully next time.
And don't forget the other patch which removed these structures from the
Documentation/driver-model/ .
Thanks very much.
Best regards
Wanlong Gao
Add the comments to the structure bus_type, device_driver, device,
class for generating the driver-model kerneldoc.
Signed-off-by: Wanlong Gao <wanlong.gao@...il.com>
---
Documentation/DocBook/device-drivers.tmpl | 6 +-
include/linux/device.h | 154 ++++++++++++++++++++++++++++-
2 files changed, 154 insertions(+), 6 deletions(-)
diff --git a/Documentation/DocBook/device-drivers.tmpl b/Documentation/DocBook/device-drivers.tmpl
index 36f63d4..b638e50 100644
--- a/Documentation/DocBook/device-drivers.tmpl
+++ b/Documentation/DocBook/device-drivers.tmpl
@@ -96,10 +96,10 @@ X!Iinclude/linux/kobject.h
<chapter id="devdrivers">
<title>Device drivers infrastructure</title>
+ <sect1><title>The Basic Device Driver-Model Structures </title>
+!Iinclude/linux/device.h
+ </sect1>
<sect1><title>Device Drivers Base</title>
-<!--
-X!Iinclude/linux/device.h
--->
!Edrivers/base/driver.c
!Edrivers/base/core.c
!Edrivers/base/class.c
diff --git a/include/linux/device.h b/include/linux/device.h
index ab8dfc0..cfcf072 100644
--- a/include/linux/device.h
+++ b/include/linux/device.h
@@ -47,6 +47,38 @@ extern int __must_check bus_create_file(struct bus_type *,
struct bus_attribute *);
extern void bus_remove_file(struct bus_type *, struct bus_attribute *);
+/**
+ * struct bus_type - The bus type of the device
+ *
+ * @name: The name of the bus.
+ * @bus_attrs: Default attributes of the bus.
+ * @dev_attrs: Default attributes of the devices on the bus.
+ * @drv_attrs: Default attributes of the device drivers on the bus.
+ * @match: Called, perhaps multiple times, whenever a new device or driver
+ * is added for this bus. It should return a nonzero value if the
+ * given device can be handled by the given driver.
+ * @uevent: Called when a device is added, removed, or a few other things
+ * that generate uevents to add the environment variables.
+ * @probe: Called when a new device or driver add to this bus, and callback
+ * the specific driver's probe to initial the matched device.
+ * @remove: Called when a device removed from this bus.
+ * @shutdown: Called at shut-down time to quiesce the device.
+ * @suspend: Called when a device on this bus wants to go to sleep mode.
+ * @resume: Called to bring a device on this bus out of sleep mode.
+ * @pm: Power management operations of this bus, callback the specific
+ * device driver's pm-ops.
+ * @p: The private data of the driver core, only the driver core can
+ * touch this.
+ *
+ * A bus is a channel between the processor and one or more devices. For the
+ * purposes of the device model, all devices are connected via a bus, even if
+ * it is an internal, virtual, "platform" bus. Buses can plug into each other.
+ * A USB controller is usually a PCI device, for example. The device model
+ * represents the actual connections between buses and the devices they control.
+ * A bus is represented by the bus_type structure. It contains the name, the
+ * default attributes, the bus' methods, PM operations, and the driver core's
+ * private data.
+ */
struct bus_type {
const char *name;
struct bus_attribute *bus_attrs;
@@ -119,6 +151,37 @@ extern int bus_unregister_notifier(struct bus_type *bus,
extern struct kset *bus_get_kset(struct bus_type *bus);
extern struct klist *bus_get_device_klist(struct bus_type *bus);
+/**
+ * struct device_driver - The basic device driver structure
+ * @name: Name of the device driver.
+ * @bus: The bus which the device of this driver belongs to.
+ * @owner: The module owner.
+ * @mod_name: Used for built-in modules.
+ * @suppress_bind_attrs: Disables bind/unbind via sysfs.
+ * @of_match_table: The open firmware table.
+ * @probe: Called to query the existence of a specific device,
+ * whether this driver can work with it, and bind the driver
+ * to a specific device.
+ * @remove: Called when the device is removed from the system to
+ * unbind a device from this driver.
+ * @shutdown: Called at shut-down time to quiesce the device.
+ * @suspend: Called to put the device to sleep mode. Usually to a
+ * low power state.
+ * @resume: Called to bring a device from sleep mode.
+ * @groups: Default attributes that get created by the driver core
+ * automatically.
+ * @pm: Power management operations of the device which matched
+ * this driver.
+ * @p: Driver core's private data, no one other than the driver
+ * core can touch this.
+ *
+ * The device driver-model tracks all of the drivers known to the system.
+ * The main reason for this tracking is to enable the driver core to match
+ * up drivers with new devices. Once drivers are known objects within the
+ * system, however, a number of other things become possible. Device drivers
+ * can export information and configuration variables that are independent
+ * of any specific device.
+ */
struct device_driver {
const char *name;
struct bus_type *bus;
@@ -185,8 +248,34 @@ struct device *driver_find_device(struct device_driver *drv,
struct device *start, void *data,
int (*match)(struct device *dev, void *data));
-/*
- * device classes
+/**
+ * struct class - device classes
+ * @name: Name of the class.
+ * @owner: The module owner.
+ * @class_attrs: Default attributes of this class.
+ * @dev_attrs: Default attributes of the devices belong to the class.
+ * @dev_bin_attrs: Default binary attributes of the devices belong to the class.
+ * @dev_kobj: The kobject that represents this class and links it into the hierarchy.
+ * @dev_uevent: Called when a device is added, removed from this class, or a
+ * few other things that generate uevents to add the environment
+ * variables.
+ * @devnode: Callback to provide the devtmpfs.
+ * @class_release: Called to release this class.
+ * @dev_release: Called to release the device.
+ * @suspend: Used to put the device to sleep mode, usually to a low power
+ * state.
+ * @resume: Used to bring the device from the sleep mode.
+ * @ns_type: Callbacks so sysfs can detemine namespaces.
+ * @namespace: Namespace of the device belongs to this class.
+ * @pm: The default device power management operations of this class.
+ * @p: The private data of the driver core, no one other than the
+ * driver core can touch this.
+ *
+ * A class is a higher-level view of a device that abstracts out low-level
+ * implementation details. Drivers may see a SCSI disk or an ATA disk, but,
+ * at the class level, they are all simply disks. Classes allow user space
+ * to work with devices based on what they do, rather than how they are
+ * connected or how they work.
*/
struct class {
const char *name;
@@ -401,6 +490,65 @@ struct device_dma_parameters {
unsigned long segment_boundary_mask;
};
+/**
+ * struct device - The basic device structure
+ * @parent: The device's "parent" device, the device to which it is attached.
+ * In most cases, a parent device is some sort of bus or host
+ * controller. If parent is NULL, the device, is a top-level device,
+ * which is not usually what you want.
+ * @p: Holds the private data of the driver core portions of the device.
+ * See the comment of the struct device_private for detail.
+ * @kobj: A top-level, abstract class from which other classes are derived.
+ * @init_name: Initial name of the device.
+ * @type: The type of device.
+ * This identifies the device type and carries type-specific
+ * information.
+ * @mutex: Mutex to synchronize calls to its driver.
+ * @bus: Type of bus device is on.
+ * @driver: Which driver has allocated this
+ * @platform_data: Platform data specific to the device.
+ * Example: For devices on custom boards, as typical of embedded
+ * and SOC based hardware, Linux often uses platform_data to point
+ * to board-specific structures describing devices and how they
+ * are wired. That can include what ports are available, chip
+ * variants, which GPIO pins act in what additional roles, and so
+ * on. This shrinks the "Board Support Packages" (BSPs) and
+ * minimizes board-specific #ifdefs in drivers.
+ * @power: For device power management.
+ * See Documentation/power/devices.txt for details.
+ * @pwr_domain: Provide callbacks that are executed during system suspend,
+ * hibernation, system resume and during runtime PM transitions
+ * along with subsystem-level and driver-level callbacks.
+ * @numa_node: NUMA node this device is close to.
+ * @dma_mask: Dma mask (if dma'ble device).
+ * @coherent_dma_mask: Like dma_mask, but for alloc_coherent mapping as not all
+ * hardware supports 64-bit addresses for consistent allocations
+ * such descriptors.
+ * @dma_parms: A low level driver may set these to teach IOMMU code about
+ * segment limitations.
+ * @dma_pools: Dma pools (if dma'ble device).
+ * @dma_mem: Internal for coherent mem override.
+ * @archdata: For arch-specific additions.
+ * @of_node: Associated device tree node.
+ * @of_match: Matching of_device_id from driver.
+ * @devt: For creating the sysfs "dev".
+ * @devres_lock: Spinlock to protect the resource of the device.
+ * @devres_head: The resources list of the device.
+ * @knode_class: The node used to add the device to the class list.
+ * @class: The class of the device.
+ * @groups: Optional attribute groups.
+ * @release: Callback to free the device after all references have
+ * gone away. This should be set by the allocator of the
+ * device (i.e. the bus driver that discovered the device).
+ *
+ * At the lowest level, every device in a Linux system is represented by an
+ * instance of struct device. The device structure contains the information
+ * that the device model core needs to model the system. Most subsystems,
+ * however, track additional information about the devices they host. As a
+ * result, it is rare for devices to be represented by bare device structures;
+ * instead, that structure, like kobject structures, is usually embedded within
+ * a higher-level representation of the device.
+ */
struct device {
struct device *parent;
@@ -611,7 +759,7 @@ extern int (*platform_notify)(struct device *dev);
extern int (*platform_notify_remove)(struct device *dev);
-/**
+/*
* get_device - atomically increment the reference count for the device.
*
*/
--
1.7.4.1
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists