[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <d625dd8ca816543e03668b74921563c1@agner.ch>
Date: Fri, 08 Jun 2018 23:51:01 +0200
From: Stefan Agner <stefan@...er.ch>
To: Dmitry Osipenko <digetx@...il.com>
Cc: boris.brezillon@...tlin.com, dwmw2@...radead.org,
computersforpeace@...il.com, marek.vasut@...il.com,
robh+dt@...nel.org, mark.rutland@....com, thierry.reding@...il.com,
dev@...xeye.de, miquel.raynal@...tlin.com, richard@....at,
marcel@...wiler.com, krzk@...nel.org, benjamin.lindqvist@...ian.se,
jonathanh@...dia.com, pdeschrijver@...dia.com, pgaikwad@...dia.com,
mirza.krak@...il.com, linux-mtd@...ts.infradead.org,
linux-tegra@...r.kernel.org, devicetree@...r.kernel.org,
linux-kernel@...r.kernel.org
Subject: Re: [PATCH v3 4/6] mtd: rawnand: add NVIDIA Tegra NAND Flash
controller driver
On 01.06.2018 11:20, Dmitry Osipenko wrote:
> On 01.06.2018 01:16, Stefan Agner wrote:
>> Add support for the NAND flash controller found on NVIDIA
>> Tegra 2 SoCs. This implementation does not make use of the
>> command queue feature. Regular operations/data transfers are
>> done in PIO mode. Page read/writes with hardware ECC make
>> use of the DMA for data transfer.
>>
>> Signed-off-by: Lucas Stach <dev@...xeye.de>
>> Signed-off-by: Stefan Agner <stefan@...er.ch>
>> ---
>> MAINTAINERS | 7 +
>> drivers/mtd/nand/raw/Kconfig | 6 +
>> drivers/mtd/nand/raw/Makefile | 1 +
>> drivers/mtd/nand/raw/tegra_nand.c | 1143 +++++++++++++++++++++++++++++
>> 4 files changed, 1157 insertions(+)
>> create mode 100644 drivers/mtd/nand/raw/tegra_nand.c
>>
>> diff --git a/MAINTAINERS b/MAINTAINERS
>> index 58b9861ccf99..c2e5571c85d4 100644
>> --- a/MAINTAINERS
>> +++ b/MAINTAINERS
>> @@ -13844,6 +13844,13 @@ M: Laxman Dewangan <ldewangan@...dia.com>
>> S: Supported
>> F: drivers/input/keyboard/tegra-kbc.c
>>
>> +TEGRA NAND DRIVER
>> +M: Stefan Agner <stefan@...er.ch>
>> +M: Lucas Stach <dev@...xeye.de>
>> +S: Maintained
>> +F: Documentation/devicetree/bindings/mtd/nvidia-tegra20-nand.txt
>> +F: drivers/mtd/nand/raw/tegra_nand.c
>> +
>> TEGRA PWM DRIVER
>> M: Thierry Reding <thierry.reding@...il.com>
>> S: Supported
>> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
>> index 19a2b283fbbe..e9093f52371e 100644
>> --- a/drivers/mtd/nand/raw/Kconfig
>> +++ b/drivers/mtd/nand/raw/Kconfig
>> @@ -534,4 +534,10 @@ config MTD_NAND_MTK
>> Enables support for NAND controller on MTK SoCs.
>> This controller is found on mt27xx, mt81xx, mt65xx SoCs.
>>
>> +config MTD_NAND_TEGRA
>> + tristate "Support for NAND controller on NVIDIA Tegra"
>> + depends on ARCH_TEGRA || COMPILE_TEST
>> + help
>> + Enables support for NAND flash controller on NVIDIA Tegra SoC.
>> +
>> endif # MTD_NAND
>> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
>> index 165b7ef9e9a1..d5a5f9832b88 100644
>> --- a/drivers/mtd/nand/raw/Makefile
>> +++ b/drivers/mtd/nand/raw/Makefile
>> @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
>> obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
>> obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
>> obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
>> +obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o
>>
>> nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
>> nand-objs += nand_amd.o
>> diff --git a/drivers/mtd/nand/raw/tegra_nand.c b/drivers/mtd/nand/raw/tegra_nand.c
>> new file mode 100644
>> index 000000000000..e9664f2938a3
>> --- /dev/null
>> +++ b/drivers/mtd/nand/raw/tegra_nand.c
>> @@ -0,0 +1,1143 @@
>> +// SPDX-License-Identifier: GPL-2.0
>> +/*
>> + * Copyright (C) 2018 Stefan Agner <stefan@...er.ch>
>> + * Copyright (C) 2014-2015 Lucas Stach <dev@...xeye.de>
>> + * Copyright (C) 2012 Avionic Design GmbH
>> + */
>> +
>> +#include <linux/clk.h>
>> +#include <linux/completion.h>
>> +#include <linux/delay.h>
>> +#include <linux/dma-mapping.h>
>> +#include <linux/err.h>
>> +#include <linux/gpio/consumer.h>
>> +#include <linux/interrupt.h>
>> +#include <linux/io.h>
>> +#include <linux/module.h>
>> +#include <linux/mtd/partitions.h>
>> +#include <linux/mtd/rawnand.h>
>> +#include <linux/of.h>
>> +#include <linux/platform_device.h>
>> +#include <linux/reset.h>
>> +
>> +#define CMD 0x00
>> +#define CMD_GO BIT(31)
>> +#define CMD_CLE BIT(30)
>> +#define CMD_ALE BIT(29)
>> +#define CMD_PIO BIT(28)
>> +#define CMD_TX BIT(27)
>> +#define CMD_RX BIT(26)
>> +#define CMD_SEC_CMD BIT(25)
>> +#define CMD_AFT_DAT BIT(24)
>> +#define CMD_TRANS_SIZE(x) (((x - 1) & 0xf) << 20)
>> +#define CMD_A_VALID BIT(19)
>> +#define CMD_B_VALID BIT(18)
>> +#define CMD_RD_STATUS_CHK BIT(17)
>> +#define CMD_RBSY_CHK BIT(16)
>> +#define CMD_CE(x) BIT((8 + ((x) & 0x7)))
>> +#define CMD_CLE_SIZE(x) (((x - 1) & 0x3) << 4)
>> +#define CMD_ALE_SIZE(x) (((x - 1) & 0xf) << 0)
>> +
>> +#define STATUS 0x04
>> +
>> +#define ISR 0x08
>> +#define ISR_CORRFAIL_ERR BIT(24)
>> +#define ISR_UND BIT(7)
>> +#define ISR_OVR BIT(6)
>> +#define ISR_CMD_DONE BIT(5)
>> +#define ISR_ECC_ERR BIT(4)
>> +
>> +#define IER 0x0c
>> +#define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16)
>> +#define IER_UND BIT(7)
>> +#define IER_OVR BIT(6)
>> +#define IER_CMD_DONE BIT(5)
>> +#define IER_ECC_ERR BIT(4)
>> +#define IER_GIE BIT(0)
>> +
>> +#define CFG 0x10
>> +#define CFG_HW_ECC BIT(31)
>> +#define CFG_ECC_SEL BIT(30)
>> +#define CFG_ERR_COR BIT(29)
>> +#define CFG_PIPE_EN BIT(28)
>> +#define CFG_TVAL_4 (0 << 24)
>> +#define CFG_TVAL_6 (1 << 24)
>> +#define CFG_TVAL_8 (2 << 24)
>> +#define CFG_SKIP_SPARE BIT(23)
>> +#define CFG_BUS_WIDTH_16 BIT(21)
>> +#define CFG_COM_BSY BIT(20)
>> +#define CFG_PS_256 (0 << 16)
>> +#define CFG_PS_512 (1 << 16)
>> +#define CFG_PS_1024 (2 << 16)
>> +#define CFG_PS_2048 (3 << 16)
>> +#define CFG_PS_4096 (4 << 16)
>> +#define CFG_SKIP_SPARE_SIZE_4 (0 << 14)
>> +#define CFG_SKIP_SPARE_SIZE_8 (1 << 14)
>> +#define CFG_SKIP_SPARE_SIZE_12 (2 << 14)
>> +#define CFG_SKIP_SPARE_SIZE_16 (3 << 14)
>> +#define CFG_TAG_BYTE_SIZE(x) ((x) & 0xff)
>> +
>> +#define TIMING_1 0x14
>> +#define TIMING_TRP_RESP(x) (((x) & 0xf) << 28)
>> +#define TIMING_TWB(x) (((x) & 0xf) << 24)
>> +#define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20)
>> +#define TIMING_TWHR(x) (((x) & 0xf) << 16)
>> +#define TIMING_TCS(x) (((x) & 0x3) << 14)
>> +#define TIMING_TWH(x) (((x) & 0x3) << 12)
>> +#define TIMING_TWP(x) (((x) & 0xf) << 8)
>> +#define TIMING_TRH(x) (((x) & 0x3) << 4)
>> +#define TIMING_TRP(x) (((x) & 0xf) << 0)
>> +
>> +#define RESP 0x18
>> +
>> +#define TIMING_2 0x1c
>> +#define TIMING_TADL(x) ((x) & 0xf)
>> +
>> +#define CMD_1 0x20
>> +#define CMD_2 0x24
>> +#define ADDR_1 0x28
>> +#define ADDR_2 0x2c
>> +
>> +#define DMA_CTRL 0x30
>> +#define DMA_CTRL_GO BIT(31)
>> +#define DMA_CTRL_IN (0 << 30)
>> +#define DMA_CTRL_OUT BIT(30)
>> +#define DMA_CTRL_PERF_EN BIT(29)
>> +#define DMA_CTRL_IE_DONE BIT(28)
>> +#define DMA_CTRL_REUSE BIT(27)
>> +#define DMA_CTRL_BURST_1 (2 << 24)
>> +#define DMA_CTRL_BURST_4 (3 << 24)
>> +#define DMA_CTRL_BURST_8 (4 << 24)
>> +#define DMA_CTRL_BURST_16 (5 << 24)
>> +#define DMA_CTRL_IS_DONE BIT(20)
>> +#define DMA_CTRL_EN_A BIT(2)
>> +#define DMA_CTRL_EN_B BIT(1)
>> +
>> +#define DMA_CFG_A 0x34
>> +#define DMA_CFG_B 0x38
>> +
>> +#define FIFO_CTRL 0x3c
>> +#define FIFO_CTRL_CLR_ALL BIT(3)
>> +
>> +#define DATA_PTR 0x40
>> +#define TAG_PTR 0x44
>> +#define ECC_PTR 0x48
>> +
>> +#define DEC_STATUS 0x4c
>> +#define DEC_STATUS_A_ECC_FAIL BIT(1)
>> +#define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000
>> +#define DEC_STATUS_ERR_COUNT_SHIFT 16
>> +
>> +#define HWSTATUS_CMD 0x50
>> +#define HWSTATUS_MASK 0x54
>> +#define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24)
>> +#define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16)
>> +#define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8)
>> +#define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0)
>> +
>> +#define BCH_CONFIG 0xcc
>> +#define BCH_ENABLE BIT(0)
>> +#define BCH_TVAL_4 (0 << 4)
>> +#define BCH_TVAL_8 (1 << 4)
>> +#define BCH_TVAL_14 (2 << 4)
>> +#define BCH_TVAL_16 (3 << 4)
>> +
>> +#define DEC_STAT_RESULT 0xd0
>> +#define DEC_STAT_BUF 0xd4
>> +#define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000
>> +#define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24
>> +#define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000
>> +#define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16
>> +#define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00
>> +#define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8
>> +
>> +#define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off))
>> +
>> +#define SKIP_SPARE_BYTES 4
>> +#define BITS_PER_STEP_RS 18
>> +#define BITS_PER_STEP_BCH 13
>> +
>> +struct tegra_nand_controller {
>> + struct nand_hw_control controller;
>> + void __iomem *regs;
>> + struct clk *clk;
>> + struct device *dev;
>> + struct completion command_complete;
>> + struct completion dma_complete;
>> + bool last_read_error;
>> + int cur_chip;
>> + struct nand_chip *chip;
>> +};
>> +
>> +struct tegra_nand_chip {
>> + struct nand_chip chip;
>> + struct gpio_desc *wp_gpio;
>> + struct mtd_oob_region tag;
>> +};
>> +
>> +static inline struct tegra_nand_controller *to_tegra_ctrl(
>> + struct nand_hw_control *hw_ctrl)
>> +{
>> + return container_of(hw_ctrl, struct tegra_nand_controller, controller);
>> +}
>> +
>> +static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
>> +{
>> + return container_of(chip, struct tegra_nand_chip, chip);
>> +}
>> +
>> +static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
>> + struct mtd_oob_region *oobregion)
>> +{
>> + struct nand_chip *chip = mtd_to_nand(mtd);
>> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
>> + BITS_PER_BYTE);
>> +
>> + if (section > 0)
>> + return -ERANGE;
>> +
>> + oobregion->offset = SKIP_SPARE_BYTES;
>> + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
>> +
>> + return 0;
>> +}
>> +
>> +static int tegra_nand_ooblayout_rs_free(struct mtd_info *mtd, int section,
>> + struct mtd_oob_region *oobregion)
>> +{
>> + struct nand_chip *chip = mtd_to_nand(mtd);
>> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
>> + BITS_PER_BYTE);
>> +
>> + if (section > 0)
>> + return -ERANGE;
>> +
>> + oobregion->offset = SKIP_SPARE_BYTES +
>> + round_up(bytes_per_step * chip->ecc.steps, 4);
>> + oobregion->length = mtd->oobsize - oobregion->offset;
>> +
>> + return 0;
>> +}
>> +
>> +static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
>> + .ecc = tegra_nand_ooblayout_rs_ecc,
>> + .free = tegra_nand_ooblayout_rs_free,
>> +};
>> +
>> +static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
>> + struct mtd_oob_region *oobregion)
>> +{
>> + struct nand_chip *chip = mtd_to_nand(mtd);
>> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
>> + BITS_PER_BYTE);
>> +
>> + if (section > 0)
>> + return -ERANGE;
>> +
>> + oobregion->offset = SKIP_SPARE_BYTES;
>> + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
>> +
>> + return 0;
>> +}
>> +
>> +static int tegra_nand_ooblayout_bch_free(struct mtd_info *mtd, int section,
>> + struct mtd_oob_region *oobregion)
>> +{
>> + struct nand_chip *chip = mtd_to_nand(mtd);
>> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
>> + BITS_PER_BYTE);
>> +
>> + if (section > 0)
>> + return -ERANGE;
>> +
>> + oobregion->offset = SKIP_SPARE_BYTES +
>> + round_up(bytes_per_step * chip->ecc.steps, 4);
>> + oobregion->length = mtd->oobsize - oobregion->offset;
>> +
>> + return 0;
>> +}
>> +
>> +/*
>> + * Layout with tag bytes is
>> + *
>> + * --------------------------------------------------------------------------
>> + * | main area | skip bytes | tag bytes | parity | .. |
>> + * --------------------------------------------------------------------------
>> + *
>> + * If not tag bytes are written, parity moves right after skip bytes!
>> + */
>> +static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
>> + .ecc = tegra_nand_ooblayout_bch_ecc,
>> + .free = tegra_nand_ooblayout_bch_free,
>> +};
>> +
>> +static irqreturn_t tegra_nand_irq(int irq, void *data)
>> +{
>> + struct tegra_nand_controller *ctrl = data;
>> + u32 isr, dma;
>> +
>> + isr = readl_relaxed(ctrl->regs + ISR);
>> + dma = readl_relaxed(ctrl->regs + DMA_CTRL);
>> + dev_dbg(ctrl->dev, "isr %08x\n", isr);
>> +
>> + if (!isr && !(dma & DMA_CTRL_IS_DONE))
>> + return IRQ_NONE;
>> +
>> + /*
>> + * The bit name is somewhat missleading: This is also set when
>> + * HW ECC was successful. The data sheet states:
>> + * Correctable OR Un-correctable errors occurred in the DMA transfer...
>> + */
>> + if (isr & ISR_CORRFAIL_ERR)
>> + ctrl->last_read_error = true;
>> +
>> + if (isr & ISR_CMD_DONE)
>> + complete(&ctrl->command_complete);
>> +
>> + if (isr & ISR_UND)
>> + dev_err(ctrl->dev, "FIFO underrun\n");
>> +
>> + if (isr & ISR_OVR)
>> + dev_err(ctrl->dev, "FIFO overrun\n");
>> +
>> + /* handle DMA interrupts */
>> + if (dma & DMA_CTRL_IS_DONE) {
>> + writel_relaxed(dma, ctrl->regs + DMA_CTRL);
>> + complete(&ctrl->dma_complete);
>> + }
>> +
>> + /* clear interrupts */
>> + writel_relaxed(isr, ctrl->regs + ISR);
>> +
>> + return IRQ_HANDLED;
>> +}
>> +
>> +static const char * const tegra_nand_reg_names[] = {
>> + "COMMAND",
>> + "STATUS",
>> + "ISR",
>> + "IER",
>> + "CONFIG",
>> + "TIMING",
>> + NULL,
>> + "TIMING2",
>> + "CMD_REG1",
>> + "CMD_REG2",
>> + "ADDR_REG1",
>> + "ADDR_REG2",
>> + "DMA_MST_CTRL",
>> + "DMA_CFG_A",
>> + "DMA_CFG_B",
>> + "FIFO_CTRL",
>> +};
>> +
>> +static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
>> +{
>> + u32 reg;
>> + int i;
>> +
>> + dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
>> + for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
>> + const char *reg_name = tegra_nand_reg_names[i];
>> +
>> + if (!reg_name)
>> + continue;
>> +
>> + reg = readl_relaxed(ctrl->regs + (i * 4));
>> + dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
>> + }
>> +}
>> +
>> +static int tegra_nand_cmd(struct nand_chip *chip,
>> + const struct nand_subop *subop)
>> +{
>> + const struct nand_op_instr *instr;
>> + const struct nand_op_instr *instr_data_in = NULL;
>> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>> + unsigned int op_id, size = 0, offset = 0;
>> + bool first_cmd = true;
>> + u32 reg, cmd = 0;
>> + int ret;
>> +
>> + for (op_id = 0; op_id < subop->ninstrs; op_id++) {
>> + unsigned int naddrs, i;
>> + const u8 *addrs;
>> + u32 addr1 = 0, addr2 = 0;
>> +
>> + instr = &subop->instrs[op_id];
>> +
>> + switch (instr->type) {
>> + case NAND_OP_CMD_INSTR:
>> + if (first_cmd) {
>> + cmd |= CMD_CLE;
>> + writel_relaxed(instr->ctx.cmd.opcode,
>> + ctrl->regs + CMD_1);
>> + } else {
>> + cmd |= CMD_SEC_CMD;
>> + writel_relaxed(instr->ctx.cmd.opcode,
>> + ctrl->regs + CMD_2);
>> + }
>> + first_cmd = false;
>> + break;
>> + case NAND_OP_ADDR_INSTR:
>> + offset = nand_subop_get_addr_start_off(subop, op_id);
>> + naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
>> + addrs = &instr->ctx.addr.addrs[offset];
>> +
>> + cmd |= CMD_ALE | CMD_ALE_SIZE(naddrs);
>> + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
>> + addr1 |= *addrs++ << (BITS_PER_BYTE * i);
>> + naddrs -= i;
>> + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
>> + addr2 |= *addrs++ << (BITS_PER_BYTE * i);
>> + writel_relaxed(addr1, ctrl->regs + ADDR_1);
>> + writel_relaxed(addr2, ctrl->regs + ADDR_2);
>> + break;
>> +
>> + case NAND_OP_DATA_IN_INSTR:
>> + size = nand_subop_get_data_len(subop, op_id);
>> + offset = nand_subop_get_data_start_off(subop, op_id);
>> +
>> + cmd |= CMD_TRANS_SIZE(size) | CMD_PIO | CMD_RX |
>> + CMD_A_VALID;
>> +
>> + instr_data_in = instr;
>> + break;
>> +
>> + case NAND_OP_DATA_OUT_INSTR:
>> + size = nand_subop_get_data_len(subop, op_id);
>> + offset = nand_subop_get_data_start_off(subop, op_id);
>> +
>> + cmd |= CMD_TRANS_SIZE(size) | CMD_PIO | CMD_TX |
>> + CMD_A_VALID;
>> +
>> + memcpy(®, instr->ctx.data.buf.out + offset, size);
>> + writel_relaxed(reg, ctrl->regs + RESP);
>> +
>> + break;
>> + case NAND_OP_WAITRDY_INSTR:
>> + cmd |= CMD_RBSY_CHK;
>> + break;
>> +
>> + }
>> + }
>> +
>> + cmd |= CMD_GO | CMD_CE(ctrl->cur_chip);
>> + writel_relaxed(cmd, ctrl->regs + CMD);
>> + ret = wait_for_completion_timeout(&ctrl->command_complete,
>> + msecs_to_jiffies(500));
>> + if (!ret) {
>> + dev_err(ctrl->dev, "CMD timeout\n");
>> + tegra_nand_dump_reg(ctrl);
>> + return -ETIMEDOUT;
>> + }
>
> - wait_for_completion_timeout() could fail
Not according to:
https://elixir.bootlin.com/linux/latest/source/kernel/sched/completion.c#L140
https://www.kernel.org/doc/Documentation/scheduler/completion.txt
Afaik, only the _interruptible variant can fail.
Btw, maybe we should use the _io variant?
> - HW shall be reset
> - completion shall be re-inited because IRQ could fire just after the completion
> timeout
>
> I'd write it something like this:
>
> #define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
>
> #define HWSTATUS_MASK (HWSTATUS_RDSTATUS_MASK(1) | \
> HWSTATUS_RDSTATUS_VALUE(0) | \
> HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
> HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))
>
> #define HW_TIMEOUT 500
>
> void tegra_nand_controller_reset(struct tegra_nand_controller *ctrl)
> {
> int err;
>
> disable_irq(ctrl->irq);
>
> err = reset_control_reset(ctrl->rst);
> if (err) {
> dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
> msleep(HW_TIMEOUT);
> }
>
> writel_relaxed(NAND_CMD_STATUS, ctrl->regs + HWSTATUS_CMD);
> writel_relaxed(HWSTATUS_MASK, ctrl->regs + HWSTATUS_MASK);
> writel_relaxed(INT_MASK, ctrl->regs + ISR);
If we do a controller reset, there is much more state than that which
needs to be restored. A lot of it is not readily available currently
(timing, ECC settings...)
That seems a lot of work for a code path I do not intend to ever use :-)
--
Stefan
>
> reinit_completion(&ctrl->command_complete);
> reinit_completion(&ctrl->dma_complete);
>
> enable_irq(ctrl->irq);
> }
>
> ...
>
> ret = wait_for_completion_timeout(&ctrl->command_complete,
> msecs_to_jiffies(HW_TIMEOUT));
> if (ret <= 0) {
> if (ret == 0) {
> dev_err(ctrl->dev, "CMD timeout\n");
> tegra_nand_dump_reg(ctrl);
> ret = -ETIMEDOUT;
> } else {
> dev_err(ctrl->dev,
> "Failed to wait for CMD completion: %d\n",
> ret);
> }
>
> tegra_nand_controller_reset(ctrl);
> return ret;
> }
>
>> +
>> + if (instr_data_in) {
>> + reg = readl_relaxed(ctrl->regs + RESP);
>> + memcpy(instr_data_in->ctx.data.buf.in + offset, ®, size);
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
>> + NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
>> + NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
>> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
>> + NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
>> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
>> + );
>> +
>> +static int tegra_nand_exec_op(struct nand_chip *chip,
>> + const struct nand_operation *op,
>> + bool check_only)
>> +{
>> + return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
>> + check_only);
>> +}
>> +static void tegra_nand_select_chip(struct mtd_info *mtd, int chip_nr)
>> +{
>> + struct nand_chip *chip = mtd_to_nand(mtd);
>> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>> +
>> + ctrl->cur_chip = chip_nr;
>> +}
>> +
>> +static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
>> + struct nand_chip *chip, bool enable)
>> +{
>> + u32 reg;
>> +
>> + switch (chip->ecc.algo) {
>> + case NAND_ECC_RS:
>> + reg = readl_relaxed(ctrl->regs + CFG);
>> + if (enable)
>> + reg |= CFG_HW_ECC | CFG_ERR_COR;
>> + else
>> + reg &= ~(CFG_HW_ECC | CFG_ERR_COR);
>> + writel_relaxed(reg, ctrl->regs + CFG);
>> + break;
>> + case NAND_ECC_BCH:
>> + reg = readl_relaxed(ctrl->regs + BCH_CONFIG);
>> + if (enable)
>> + reg |= BCH_ENABLE;
>> + else
>> + reg &= ~BCH_ENABLE;
>> + writel_relaxed(reg, ctrl->regs + BCH_CONFIG);
>> + break;
>> + default:
>> + dev_err(ctrl->dev, "Unsupported hardware ECC algorithm\n");
>> + break;
>> + }
>> +}
>> +
>> +static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
>> + void *buf, int oob_required, int page,
>> + bool read)
>> +{
>> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>> + struct tegra_nand_chip *nand = to_tegra_chip(chip);
>> + enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
>> + dma_addr_t dma_addr;
>> + u32 cmd, dma_ctrl;
>> + int ret, dma_len;
>> +
>> + if (read) {
>> + writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_1);
>> + writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_2);
>> + } else {
>> + writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_1);
>> + writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_2);
>> + }
>> + cmd = CMD_CLE | CMD_SEC_CMD;
>> +
>> + /* Lower 16-bits are column, always 0 */
>> + writel_relaxed(page << 16, ctrl->regs + ADDR_1);
>> +
>> + if (chip->options & NAND_ROW_ADDR_3) {
>> + writel_relaxed(page >> 16, ctrl->regs + ADDR_2);
>> + cmd |= CMD_ALE | CMD_ALE_SIZE(5);
>> + } else {
>> + cmd |= CMD_ALE | CMD_ALE_SIZE(4);
>> + }
>> +
>> + dma_len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
>> + dma_addr = dma_map_single(ctrl->dev, buf, dma_len, dir);
>> + ret = dma_mapping_error(ctrl->dev, dma_addr);
>> + if (ret) {
>> + dev_err(ctrl->dev, "dma mapping error\n");
>> + return -EINVAL;
>> + }
>> +
>> + writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
>> + writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
>> +
>> + if (oob_required) {
>> + dma_addr_t dma_addr_tag = dma_addr + mtd->writesize;
>> +
>> + writel_relaxed(nand->tag.length - 1, ctrl->regs + DMA_CFG_B);
>> + writel_relaxed(dma_addr_tag + nand->tag.offset,
>> + ctrl->regs + TAG_PTR);
>> + } else {
>> + writel_relaxed(0, ctrl->regs + DMA_CFG_B);
>> + writel_relaxed(0, ctrl->regs + TAG_PTR);
>> + }
>> +
>> + dma_ctrl = DMA_CTRL_GO | DMA_CTRL_PERF_EN |
>> + DMA_CTRL_IE_DONE | DMA_CTRL_IS_DONE |
>> + DMA_CTRL_BURST_16 | DMA_CTRL_EN_A;
>> + if (oob_required)
>> + dma_ctrl |= DMA_CTRL_EN_B;
>> + if (read)
>> + dma_ctrl |= DMA_CTRL_IN | DMA_CTRL_REUSE;
>> + else
>> + dma_ctrl |= DMA_CTRL_OUT;
>> +
>> + writel_relaxed(dma_ctrl, ctrl->regs + DMA_CTRL);
>> +
>> + cmd |= CMD_GO | CMD_RBSY_CHK | CMD_TRANS_SIZE(9) |
>> + CMD_CE(ctrl->cur_chip) | CMD_A_VALID;
>> + if (oob_required)
>> + cmd |= CMD_B_VALID;
>> + if (read)
>> + cmd |= CMD_RX;
>> + else
>> + cmd |= CMD_TX | CMD_AFT_DAT;
>> +
>> + writel_relaxed(cmd, ctrl->regs + CMD);
>> +
>> + ret = wait_for_completion_timeout(&ctrl->command_complete,
>> + msecs_to_jiffies(500));
>> + if (!ret) {
>> + dev_err(ctrl->dev, "CMD timeout\n");
>> + tegra_nand_dump_reg(ctrl);
>> + ret = -ETIMEDOUT;
>> + goto err_unmap_dma;
>> + }
>> +
>> + ret = wait_for_completion_timeout(&ctrl->dma_complete,
>> + msecs_to_jiffies(500));
>> + if (!ret) {
>> + dev_err(ctrl->dev, "DMA timeout\n");
>> + tegra_nand_dump_reg(ctrl);
>> + ret = -ETIMEDOUT;
>> + goto err_unmap_dma;
>> + }
>> + ret = 0;
>
> Same as the above comment regarding the wait_for_completion_timeout().
>
>> +
>> +err_unmap_dma:
>> + dma_unmap_single(ctrl->dev, dma_addr, dma_len, dir);
>> +
>> + return ret;
>> +}
>> +
>> +static int tegra_nand_read_page_hwecc(struct mtd_info *mtd,
>> + struct nand_chip *chip,
>> + uint8_t *buf, int oob_required, int page)
>> +{
>> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>> + u32 dec_stat, max_corr_cnt;
>> + unsigned long fail_sec_flag;
>> + int ret;
>> +
>> + tegra_nand_hw_ecc(ctrl, chip, true);
>> + ret = tegra_nand_page_xfer(mtd, chip, buf, oob_required, page, true);
>> + tegra_nand_hw_ecc(ctrl, chip, false);
>> + if (ret)
>> + return ret;
>> +
>> + /* No correctable or un-correctable errors, page must have 0 bitflips */
>> + if (!ctrl->last_read_error)
>> + return 0;
>> +
>> + /*
>> + * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
>> + * which contains information for all ECC selections.
>> + *
>> + * Note that since we do not use Command Queues DEC_RESULT does not
>> + * state the number of pages we can read from the DEC_STAT_BUF. But
>> + * since CORRFAIL_ERR did occur during page read we do have a valid
>> + * result in DEC_STAT_BUF.
>> + */
>> + ctrl->last_read_error = false;
>> + dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);
>> +
>> + fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
>> + DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;
>> +
>> + max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
>> + DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
>> +
>> + if (fail_sec_flag) {
>> + int bit, max_bitflips = 0;
>> +
>> + /*
>> + * Check if all sectors in a page failed. If only some failed
>> + * its definitly not an erased page and we can return error
>> + * stats right away.
>> + *
>> + * E.g. controller might return fail_sec_flag with 0x4, which
>> + * would mean only the third sector failed to correct.
>> + */
>> + if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
>> + mtd->ecc_stats.failed += hweight8(fail_sec_flag);
>> + return max_corr_cnt;
>> + }
>> +
>> + /*
>> + * All sectors failed to correct, but the ECC isn't smart
>> + * enough to figure out if a page is really completely erased.
>> + * We check the read data here to figure out if it's a
>> + * legitimate ECC error or only an erased page.
>> + */
>> + for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
>> + u8 *data = buf + (chip->ecc.size * bit);
>> +
>> + ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
>> + NULL, 0,
>> + NULL, 0,
>> + chip->ecc.strength);
>> + if (ret < 0)
>> + mtd->ecc_stats.failed++;
>> + else
>> + max_bitflips = max(ret, max_bitflips);
>> + }
>> +
>> + return max_t(unsigned int, max_corr_cnt, max_bitflips);
>> + } else {
>> + int corr_sec_flag;
>> +
>> + corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
>> + DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
>> +
>> + /*
>> + * The value returned in the register is the maximum of
>> + * bitflips encountered in any of the ECC regions. As there is
>> + * no way to get the number of bitflips in a specific regions
>> + * we are not able to deliver correct stats but instead
>> + * overestimate the number of corrected bitflips by assuming
>> + * that all regions where errors have been corrected
>> + * encountered the maximum number of bitflips.
>> + */
>> + mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
>> +
>> + return max_corr_cnt;
>> + }
>> +
>> +}
>> +
>> +static int tegra_nand_write_page_hwecc(struct mtd_info *mtd,
>> + struct nand_chip *chip,
>> + const uint8_t *buf, int oob_required,
>> + int page)
>> +{
>> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>> + int ret;
>> +
>> + tegra_nand_hw_ecc(ctrl, chip, true);
>> + ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_required, page,
>> + false);
>> + tegra_nand_hw_ecc(ctrl, chip, false);
>> +
>> + return ret;
>> +}
>> +
>> +static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
>> + const struct nand_sdr_timings *timings)
>> +{
>> + /*
>> + * The period (and all other timings in this function) is in ps,
>> + * so need to take care here to avoid integer overflows.
>> + */
>> + unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
>> + unsigned int period = DIV_ROUND_UP(1000000, rate);
>> + u32 val, reg = 0;
>> +
>> + val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
>> + timings->tRC_min), period);
>> + reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));
>> +
>> + val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
>> + max(timings->tALS_min, timings->tALH_min)),
>> + period);
>> + reg |= TIMING_TCS(OFFSET(val, 2));
>> +
>> + val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
>> + period);
>> + reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));
>> +
>> + reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
>> + reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
>> + reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
>> + reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
>> + reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));
>> +
>> + writel_relaxed(reg, ctrl->regs + TIMING_1);
>> +
>> + val = DIV_ROUND_UP(timings->tADL_min, period);
>> + reg = TIMING_TADL(OFFSET(val, 3));
>> +
>> + writel_relaxed(reg, ctrl->regs + TIMING_2);
>> +}
>> +
>> +static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline,
>> + const struct nand_data_interface *conf)
>> +{
>> + struct nand_chip *chip = mtd_to_nand(mtd);
>> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>> + const struct nand_sdr_timings *timings;
>> +
>> + timings = nand_get_sdr_timings(conf);
>> + if (IS_ERR(timings))
>> + return PTR_ERR(timings);
>> +
>> + if (csline == NAND_DATA_IFACE_CHECK_ONLY)
>> + return 0;
>> +
>> + tegra_nand_setup_timing(ctrl, timings);
>> +
>> + return 0;
>> +}
>> +
>> +
>> +const int rs_strength_bootable[] = { 4 };
>> +const int rs_strength[] = { 4, 6, 8 };
>> +const int bch_strength_bootable[] = { 8, 16 };
>> +const int bch_strength[] = { 4, 8, 14, 16 };
>
> These const's shall be 'static'.
>
>> +
>> +static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
>> + int strength_len, int oobsize)
>> +{
>> + bool maximize = chip->ecc.options & NAND_ECC_MAXIMIZE;
>> + int i;
>> +
>> + /*
>> + * Loop through available strengths. Backwards in case we try to
>> + * maximize the BCH strength.
>> + */
>> + for (i = 0; i < strength_len; i++) {
>> + int strength_sel, bytes_per_step, bytes_per_page;
>> +
>> + if (maximize) {
>> + strength_sel = strength[strength_len - i - 1];
>> + } else {
>> + strength_sel = strength[i];
>> +
>> + if (strength_sel < chip->ecc_strength_ds)
>> + continue;
>> + }
>> +
>> + bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * strength_sel,
>> + BITS_PER_BYTE);
>> + bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);
>> +
>> + /* Check whether strength fits OOB */
>> + if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
>> + return strength_sel;
>> + }
>> +
>> + return -EINVAL;
>> +}
>> +
>> +static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
>> +{
>> + const int *strength;
>> + int strength_len;
>> +
>> + switch (chip->ecc.algo) {
>> + case NAND_ECC_RS:
>> + if (chip->options & NAND_IS_BOOT_MEDIUM) {
>> + strength = rs_strength_bootable;
>> + strength_len = ARRAY_SIZE(rs_strength_bootable);
>> + } else {
>> + strength = rs_strength;
>> + strength_len = ARRAY_SIZE(rs_strength);
>> + }
>> + break;
>> + case NAND_ECC_BCH:
>> + if (chip->options & NAND_IS_BOOT_MEDIUM) {
>> + strength = bch_strength_bootable;
>> + strength_len = ARRAY_SIZE(bch_strength_bootable);
>> + } else {
>> + strength = bch_strength;
>> + strength_len = ARRAY_SIZE(bch_strength);
>> + }
>> + break;
>> + default:
>> + return -EINVAL;
>> + }
>> +
>> + return tegra_nand_get_strength(chip, strength, strength_len, oobsize);
>> +}
>> +
>> +static int tegra_nand_chips_init(struct device *dev,
>> + struct tegra_nand_controller *ctrl)
>> +{
>> + struct device_node *np = dev->of_node;
>> + struct device_node *np_nand;
>> + int nchips = of_get_child_count(np);
>> + struct tegra_nand_chip *nand;
>> + struct mtd_info *mtd;
>> + struct nand_chip *chip;
>> + unsigned long config, bch_config = 0;
>> + int bits_per_step;
>> + int ret;
>> +
>> + if (nchips != 1) {
>> + dev_err(dev, "Currently only one NAND chip supported\n");
>> + return -EINVAL;
>> + }
>> +
>> + np_nand = of_get_next_child(np, NULL);
>> +
>> + nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
>> + if (!nand)
>> + return -ENOMEM;
>> +
>> + nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
>> +
>> + if (IS_ERR(nand->wp_gpio)) {
>> + ret = PTR_ERR(nand->wp_gpio);
>> + dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
>> + return ret;
>> + }
>> +
>> + chip = &nand->chip;
>> + chip->controller = &ctrl->controller;
>> +
>> + mtd = nand_to_mtd(chip);
>> +
>> + mtd->dev.parent = dev;
>> + if (!mtd->name)
>> + mtd->name = "tegra_nand";
>> + mtd->owner = THIS_MODULE;
>> +
>> + nand_set_flash_node(chip, np_nand);
>> +
>> + chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
>> + chip->exec_op = tegra_nand_exec_op;
>> + chip->select_chip = tegra_nand_select_chip;
>> + chip->setup_data_interface = tegra_nand_setup_data_interface;
>> +
>> + ret = nand_scan_ident(mtd, 1, NULL);
>> + if (ret)
>> + return ret;
>> +
>> + if (chip->bbt_options & NAND_BBT_USE_FLASH)
>> + chip->bbt_options |= NAND_BBT_NO_OOB;
>> +
>> + chip->ecc.mode = NAND_ECC_HW;
>> + chip->ecc.size = 512;
>> + chip->ecc.steps = mtd->writesize / chip->ecc.size;
>> + if (chip->ecc_step_ds != 512) {
>> + dev_err(dev, "Unsupported step size %d\n", chip->ecc_step_ds);
>> + return -EINVAL;
>> + }
>> +
>> + chip->ecc.read_page = tegra_nand_read_page_hwecc;
>> + chip->ecc.write_page = tegra_nand_write_page_hwecc;
>> +
>> + config = readl_relaxed(ctrl->regs + CFG);
>> + config |= CFG_PIPE_EN | CFG_SKIP_SPARE | CFG_SKIP_SPARE_SIZE_4;
>> +
>> + if (chip->options & NAND_BUSWIDTH_16)
>> + config |= CFG_BUS_WIDTH_16;
>> +
>> + if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
>> + if (mtd->writesize < 2048)
>> + chip->ecc.algo = NAND_ECC_RS;
>> + else
>> + chip->ecc.algo = NAND_ECC_BCH;
>> + }
>> +
>> + if (chip->ecc.algo == NAND_ECC_BCH && mtd->writesize < 2048) {
>> + dev_err(dev, "BCH supportes 2K or 4K page size only\n");
>> + return -EINVAL;
>> + }
>> +
>> + if (!chip->ecc.strength) {
>> + ret = tegra_nand_select_strength(chip, mtd->oobsize);
>> + if (ret < 0) {
>> + dev_err(dev, "No valid strenght found, minimum %d\n",
>> + chip->ecc_strength_ds);
>> + return ret;
>> + }
>> +
>> + chip->ecc.strength = ret;
>> + }
>> +
>> + switch (chip->ecc.algo) {
>> + case NAND_ECC_RS:
>> + bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
>> + mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
>> + switch (chip->ecc.strength) {
>> + case 4:
>> + config |= CFG_ECC_SEL | CFG_TVAL_4;
>> + break;
>> + case 6:
>> + config |= CFG_ECC_SEL | CFG_TVAL_6;
>> + break;
>> + case 8:
>> + config |= CFG_ECC_SEL | CFG_TVAL_8;
>> + break;
>> + default:
>> + dev_err(dev, "ECC strength %d not supported\n",
>> + chip->ecc.strength);
>> + return -EINVAL;
>> + }
>> + break;
>> + case NAND_ECC_BCH:
>> + bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
>> + mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
>> + switch (chip->ecc.strength) {
>> + case 4:
>> + bch_config = BCH_TVAL_4;
>> + break;
>> + case 8:
>> + bch_config = BCH_TVAL_8;
>> + break;
>> + case 14:
>> + bch_config = BCH_TVAL_14;
>> + break;
>> + case 16:
>> + bch_config = BCH_TVAL_16;
>> + break;
>> + default:
>> + dev_err(dev, "ECC strength %d not supported\n",
>> + chip->ecc.strength);
>> + return -EINVAL;
>> + }
>> + break;
>> + default:
>> + dev_err(dev, "ECC algorithm not supported\n");
>> + return -EINVAL;
>> + }
>> +
>> + dev_info(dev, "Using %s with strength %d per 512 byte step\n",
>> + chip->ecc.algo == NAND_ECC_BCH ? "BCH" : "RS",
>> + chip->ecc.strength);
>> +
>> + chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);
>> +
>> + switch (mtd->writesize) {
>> + case 256:
>> + config |= CFG_PS_256;
>> + break;
>> + case 512:
>> + config |= CFG_PS_512;
>> + break;
>> + case 1024:
>> + config |= CFG_PS_1024;
>> + break;
>> + case 2048:
>> + config |= CFG_PS_2048;
>> + break;
>> + case 4096:
>> + config |= CFG_PS_4096;
>> + break;
>> + default:
>> + dev_err(dev, "Unsupported writesize %d\n", mtd->writesize);
>> + return -ENODEV;
>> + }
>> +
>> + writel_relaxed(config, ctrl->regs + CFG);
>> + writel_relaxed(bch_config, ctrl->regs + BCH_CONFIG);
>> +
>> + ret = nand_scan_tail(mtd);
>> + if (ret)
>> + return ret;
>> +
>> + mtd_ooblayout_free(mtd, 0, &nand->tag);
>> +
>> + config |= CFG_TAG_BYTE_SIZE(nand->tag.length - 1);
>> + writel_relaxed(config, ctrl->regs + CFG);
>> +
>> + ret = mtd_device_register(mtd, NULL, 0);
>> + if (ret) {
>> + dev_err(dev, "Failed to register mtd device: %d\n", ret);
>> + nand_cleanup(chip);
>> + return ret;
>> + }
>> +
>> + ctrl->chip = chip;
>> +
>> + return 0;
>> +}
>> +
>> +static int tegra_nand_probe(struct platform_device *pdev)
>> +{
>> + struct reset_control *rst;
>> + struct tegra_nand_controller *ctrl;
>> + struct resource *res;
>> + unsigned long reg;
>> + int irq, err = 0;
>> +
>> + ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
>> + if (!ctrl)
>> + return -ENOMEM;
>> +
>> + ctrl->dev = &pdev->dev;
>> + nand_hw_control_init(&ctrl->controller);
>> +
>> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
>> + ctrl->regs = devm_ioremap_resource(&pdev->dev, res);
>> + if (IS_ERR(ctrl->regs))
>> + return PTR_ERR(ctrl->regs);
>> +
>> + rst = devm_reset_control_get(&pdev->dev, "nand");
>> + if (IS_ERR(rst))
>> + return PTR_ERR(rst);
>> +
>> + ctrl->clk = devm_clk_get(&pdev->dev, "nand");
>> + if (IS_ERR(ctrl->clk))
>> + return PTR_ERR(ctrl->clk);
>> +
>> + err = clk_prepare_enable(ctrl->clk);
>> + if (err)
>> + return err;
>> +
>> + err = reset_control_reset(rst);
>> + if (err)
>> + goto err_disable_clk;
>> +
>> + reg = HWSTATUS_RDSTATUS_MASK(1) | HWSTATUS_RDSTATUS_VALUE(0) |
>> + HWSTATUS_RBSY_MASK(NAND_STATUS_READY) |
>> + HWSTATUS_RBSY_VALUE(NAND_STATUS_READY);
>> + writel_relaxed(NAND_CMD_STATUS, ctrl->regs + HWSTATUS_CMD);
>> + writel_relaxed(reg, ctrl->regs + HWSTATUS_MASK);
>> +
>> + init_completion(&ctrl->command_complete);
>> + init_completion(&ctrl->dma_complete);
>> +
>> + /* clear interrupts */
>> + reg = readl_relaxed(ctrl->regs + ISR);
>> + writel_relaxed(reg, ctrl->regs + ISR);
>> +
>> + irq = platform_get_irq(pdev, 0);
>> + err = devm_request_irq(&pdev->dev, irq, tegra_nand_irq, 0,
>> + dev_name(&pdev->dev), ctrl);
>> + if (err)
>> + goto err_disable_clk;
>> +
>> + writel_relaxed(DMA_CTRL_IS_DONE, ctrl->regs + DMA_CTRL);
>> +
>> + /* enable interrupts */
>> + reg = IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE;
>> + writel_relaxed(reg, ctrl->regs + IER);
>> +
>> + /* reset config */
>> + writel_relaxed(0, ctrl->regs + CFG);
>> +
>> + err = tegra_nand_chips_init(ctrl->dev, ctrl);
>> + if (err)
>> + goto err_disable_clk;
>> +
>> + platform_set_drvdata(pdev, ctrl);
>> +
>> + return 0;
>> +
>> +err_disable_clk:
>> + clk_disable_unprepare(ctrl->clk);
>> + return err;
>> +}
>> +
>> +static int tegra_nand_remove(struct platform_device *pdev)
>> +{
>> + struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
>> +
>> + nand_release(nand_to_mtd(ctrl->chip));
>> +
>> + clk_disable_unprepare(ctrl->clk);
>> +
>> + return 0;
>> +}
>> +
>> +static const struct of_device_id tegra_nand_of_match[] = {
>> + { .compatible = "nvidia,tegra20-nand" },
>> + { /* sentinel */ }
>> +};
>> +
>> +static struct platform_driver tegra_nand_driver = {
>> + .driver = {
>> + .name = "tegra-nand",
>> + .of_match_table = tegra_nand_of_match,
>> + },
>> + .probe = tegra_nand_probe,
>> + .remove = tegra_nand_remove,
>> +};
>> +module_platform_driver(tegra_nand_driver);
>> +
>> +MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
>> +MODULE_AUTHOR("Thierry Reding <thierry.reding@...dia.com>");
>> +MODULE_AUTHOR("Lucas Stach <dev@...xeye.de>");
>> +MODULE_AUTHOR("Stefan Agner <stefan@...er.ch>");
>> +MODULE_LICENSE("GPL v2");
>> +MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
>>
Powered by blists - more mailing lists