[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <b6eaf471-7279-ca4f-bb7c-d25df8db2419@gmail.com>
Date: Wed, 18 Jul 2018 10:16:05 +0200
From: Milan Broz <gmazyland@...il.com>
To: Xiongfeng Wang <wangxiongfeng2@...wei.com>, agk@...hat.com,
snitzer@...hat.com, herbert@...dor.apana.org.au
Cc: dm-devel@...hat.com, linux-kernel@...r.kernel.org,
broonie@...nel.org, arnd@...db.de, jonathan.cameron@...wei.com
Subject: Re: [PATCH 4/5] crypto: Add IV generation templates
On 18/07/18 09:30, Xiongfeng Wang wrote:
> Currently, the IV generation algorithms are implemented in dm-crypt.c.
> This patch implement these algorithms as template ciphers, so that
> dm-crypt layer can be simplified, and also these algorithms can be
> implemented in hardware for performance.
>
> Synchronous crypto requests to encrypt/decrypt a sector are processed
> sequentially. Asynchronous requests if processed in paralled, are freed
> in the async callback.
So we are here again and moving INTERNAL dm-crypt functionality into
cryptoapi.
The TCW,LMK IVs generator make sense only for dm-crypt
for compatible old disk encryption mappings.
I strongly disagree to move this outside of dm-crypt.
Sorry, the last discussion was that it remains inside dm-crypt
and it will be only registered through crypto API.
And this for all files:
> + * Copyright (C) 2018, Linaro
It is NOT YOUR code! Please keep copyright and authors as in dm-crypt.
Milan
>
> Interface to the crypto layer - include/crypto/geniv.h
>
> This patch is based on the patchset originally started by
> Binoy Jayan <binoy.jayan@...aro.org>
> ( crypto: Add IV generation algorithms
> https://patchwork.kernel.org/patch/9803469/ )
>
> Signed-off-by: Binoy Jayan <binoy.jayan@...aro.org>
> Signed-off-by: Xiongfeng Wang <wangxiongfeng2@...aro.org>
> ---
> crypto/Kconfig | 7 +
> crypto/Makefile | 1 +
> crypto/geniv.c | 2240 ++++++++++++++++++++++++++++++++++++++++++++++++
> include/crypto/geniv.h | 47 +
> 4 files changed, 2295 insertions(+)
> create mode 100644 crypto/geniv.c
> create mode 100644 include/crypto/geniv.h
>
> diff --git a/crypto/Kconfig b/crypto/Kconfig
> index f3e40ac..98f025a 100644
> --- a/crypto/Kconfig
> +++ b/crypto/Kconfig
> @@ -257,6 +257,13 @@ config CRYPTO_GLUE_HELPER_X86
> config CRYPTO_ENGINE
> tristate
>
> +config CRYPTO_GENIV
> + tristate "IV Generator Template"
> + select CRYPTO_AEAD
> + select CRYPTO_BLKCIPHER
> + help
> + Support for IV generator template, so that dm-crypt can rely on it.
> +
> comment "Authenticated Encryption with Associated Data"
>
> config CRYPTO_CCM
> diff --git a/crypto/Makefile b/crypto/Makefile
> index 6d1d40e..1077d2f 100644
> --- a/crypto/Makefile
> +++ b/crypto/Makefile
> @@ -23,6 +23,7 @@ crypto_blkcipher-y += skcipher.o
> obj-$(CONFIG_CRYPTO_BLKCIPHER2) += crypto_blkcipher.o
> obj-$(CONFIG_CRYPTO_SEQIV) += seqiv.o
> obj-$(CONFIG_CRYPTO_ECHAINIV) += echainiv.o
> +obj-$(CONFIG_CRYPTO_GENIV) += geniv.o
>
> crypto_hash-y += ahash.o
> crypto_hash-y += shash.o
> diff --git a/crypto/geniv.c b/crypto/geniv.c
> new file mode 100644
> index 0000000..55d1212
> --- /dev/null
> +++ b/crypto/geniv.c
> @@ -0,0 +1,2240 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * geniv.c - crypto template for generating IV
> + *
> + * Copyright (C) 2018, Linaro
> + *
> + * This file adds a crypto template to generate IV, so the dm-crypt can rely
> + * on it and remove the existing generating IV code.
> + */
> +
> +#include <linux/completion.h>
> +#include <linux/err.h>
> +#include <linux/module.h>
> +#include <linux/init.h>
> +#include <linux/kernel.h>
> +#include <linux/key.h>
> +#include <linux/bio.h>
> +#include <linux/blkdev.h>
> +#include <linux/mempool.h>
> +#include <linux/slab.h>
> +#include <linux/crypto.h>
> +#include <linux/atomic.h>
> +#include <linux/scatterlist.h>
> +#include <linux/ctype.h>
> +#include <asm/page.h>
> +#include <asm/unaligned.h>
> +#include <crypto/hash.h>
> +#include <crypto/md5.h>
> +#include <crypto/algapi.h>
> +#include <crypto/skcipher.h>
> +#include <crypto/aead.h>
> +#include <crypto/authenc.h>
> +#include <crypto/geniv.h>
> +#include <crypto/internal/aead.h>
> +#include <crypto/internal/skcipher.h>
> +#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
> +#include <keys/user-type.h>
> +#include <linux/backing-dev.h>
> +#include <linux/device-mapper.h>
> +#include <linux/log2.h>
> +
> +#define DM_MSG_PREFIX "crypt"
> +#define MIN_IOS 64
> +#define IV_TYPE_NUM 8
> +#define SECTOR_MASK ((1 << SECTOR_SHIFT) - 1)
> +
> +struct geniv_ctx;
> +struct geniv_req_ctx;
> +
> +/* Sub request for each of the skcipher_request's for a segment */
> +struct geniv_subreq {
> + struct scatterlist sg_in[4];
> + struct scatterlist sg_out[4];
> + sector_t iv_sector;
> + struct geniv_req_ctx *rctx;
> + union {
> + struct skcipher_request req;
> + struct aead_request req_aead;
> + } r CRYPTO_MINALIGN_ATTR;
> +};
> +
> +/* used to iter the src scatterlist of the input parent request */
> +struct scatterlist_iter {
> + /* current segment to be processed */
> + unsigned int seg_no;
> + /* bytes had been processed in current segment */
> + unsigned int done;
> + /* bytes to be processed in the next request */
> + unsigned int len;
> +};
> +
> +/* contex of the input parent request */
> +struct geniv_req_ctx {
> + struct geniv_subreq *subreq;
> + bool is_write;
> + bool is_aead_request;
> + sector_t cc_sector;
> + /* array size of src scatterlist of parent request */
> + unsigned int nents;
> + struct scatterlist_iter iter;
> + struct completion restart;
> + atomic_t req_pending;
> + u8 *integrity_metadata;
> + /* point to the input parent request */
> + union {
> + struct skcipher_request *req;
> + struct aead_request *req_aead;
> + } r;
> +};
> +
> +struct crypt_iv_operations {
> + int (*ctr)(struct geniv_ctx *ctx);
> + void (*dtr)(struct geniv_ctx *ctx);
> + int (*init)(struct geniv_ctx *ctx);
> + int (*wipe)(struct geniv_ctx *ctx);
> + int (*generator)(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq, u8 *iv);
> + int (*post)(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq, u8 *iv);
> +};
> +
> +struct geniv_essiv_private {
> + struct crypto_ahash *hash_tfm;
> + u8 *salt;
> +};
> +
> +struct geniv_benbi_private {
> + int shift;
> +};
> +
> +#define LMK_SEED_SIZE 64 /* hash + 0 */
> +struct geniv_lmk_private {
> + struct crypto_shash *hash_tfm;
> + u8 *seed;
> +};
> +
> +#define TCW_WHITENING_SIZE 16
> +struct geniv_tcw_private {
> + struct crypto_shash *crc32_tfm;
> + u8 *iv_seed;
> + u8 *whitening;
> +};
> +
> +/* context of geniv tfm */
> +struct geniv_ctx {
> + unsigned int tfms_count;
> + union {
> + struct crypto_skcipher *tfm;
> + struct crypto_aead *tfm_aead;
> + } tfm_child;
> + union {
> + struct crypto_skcipher **tfms;
> + struct crypto_aead **tfms_aead;
> + } tfms;
> +
> + char *ivmode;
> + unsigned int iv_size;
> + unsigned int iv_start;
> + unsigned int rctx_start;
> + sector_t iv_offset;
> + unsigned short int sector_size;
> + unsigned char sector_shift;
> + char *algname;
> + char *ivopts;
> + char *cipher;
> + char *ciphermode;
> + unsigned long cipher_flags;
> +
> + const struct crypt_iv_operations *iv_gen_ops;
> + union {
> + struct geniv_essiv_private essiv;
> + struct geniv_benbi_private benbi;
> + struct geniv_lmk_private lmk;
> + struct geniv_tcw_private tcw;
> + } iv_gen_private;
> + void *iv_private;
> +
> + mempool_t *subreq_pool;
> + unsigned int key_size;
> + unsigned int key_parts; /* independent parts in key buffer */
> + unsigned int key_extra_size; /* additional keys length */
> + unsigned int key_mac_size;
> +
> + unsigned int integrity_tag_size;
> + unsigned int integrity_iv_size;
> + unsigned int on_disk_tag_size;
> +
> + char *msg;
> + u8 *authenc_key; /* space for keys in authenc() format (if used) */
> + u8 *key;
> +};
> +
> +static struct scatterlist *crypt_get_sg_data(struct geniv_ctx *ctx,
> + struct scatterlist *sg);
> +
> +static bool geniv_integrity_aead(struct geniv_ctx *ctx)
> +{
> + return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &ctx->cipher_flags);
> +}
> +
> +static bool geniv_integrity_hmac(struct geniv_ctx *ctx)
> +{
> + return geniv_integrity_aead(ctx) && ctx->key_mac_size;
> +}
> +
> +static struct geniv_req_ctx *geniv_skcipher_req_ctx(struct skcipher_request *req)
> +{
> + return (void *)PTR_ALIGN((u8 *)skcipher_request_ctx(req), __alignof__(struct geniv_req_ctx));
> +}
> +
> +static struct geniv_req_ctx *geniv_aead_req_ctx(struct aead_request *req)
> +{
> + return (void *)PTR_ALIGN((u8 *)aead_request_ctx(req), __alignof__(struct geniv_req_ctx));
> +}
> +
> +static u8 *iv_of_subreq(struct geniv_ctx *ctx, struct geniv_subreq *subreq)
> +{
> + if (geniv_integrity_aead(ctx))
> + return (u8 *)ALIGN((unsigned long)((char *)subreq + ctx->iv_start),
> + crypto_aead_alignmask(crypto_aead_reqtfm(subreq->rctx->r.req_aead)) + 1);
> + else
> + return (u8 *)ALIGN((unsigned long)((char *)subreq + ctx->iv_start),
> + crypto_skcipher_alignmask(crypto_skcipher_reqtfm(subreq->rctx->r.req)) + 1);
> +}
> +
> +/* Get sg containing data */
> +static struct scatterlist *crypt_get_sg_data(struct geniv_ctx *ctx,
> + struct scatterlist *sg)
> +{
> + if (unlikely(geniv_integrity_aead(ctx)))
> + return &sg[2];
> +
> + return sg;
> +}
> +
> +/*
> + * Different IV generation algorithms:
> + *
> + * plain: the initial vector is the 32-bit little-endian version of the sector
> + * number, padded with zeros if necessary.
> + *
> + * plain64: the initial vector is the 64-bit little-endian version of the sector
> + * number, padded with zeros if necessary.
> + *
> + * plain64be: the initial vector is the 64-bit big-endian version of the sector
> + * number, padded with zeros if necessary.
> + *
> + * essiv: "encrypted sector|salt initial vector", the sector number is
> + * encrypted with the bulk cipher using a salt as key. The salt
> + * should be derived from the bulk cipher's key via hashing.
> + *
> + * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
> + * (needed for LRW-32-AES and possible other narrow block modes)
> + *
> + * null: the initial vector is always zero. Provides compatibility with
> + * obsolete loop_fish2 devices. Do not use for new devices.
> + *
> + * lmk: Compatible implementation of the block chaining mode used
> + * by the Loop-AES block device encryption system
> + * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
> + * It operates on full 512 byte sectors and uses CBC
> + * with an IV derived from the sector number, the data and
> + * optionally extra IV seed.
> + * This means that after decryption the first block
> + * of sector must be tweaked according to decrypted data.
> + * Loop-AES can use three encryption schemes:
> + * version 1: is plain aes-cbc mode
> + * version 2: uses 64 multikey scheme with lmk IV generator
> + * version 3: the same as version 2 with additional IV seed
> + * (it uses 65 keys, last key is used as IV seed)
> + *
> + * tcw: Compatible implementation of the block chaining mode used
> + * by the TrueCrypt device encryption system (prior to version 4.1).
> + * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
> + * It operates on full 512 byte sectors and uses CBC
> + * with an IV derived from initial key and the sector number.
> + * In addition, whitening value is applied on every sector, whitening
> + * is calculated from initial key, sector number and mixed using CRC32.
> + * Note that this encryption scheme is vulnerable to watermarking attacks
> + * and should be used for old compatible containers access only.
> + *
> + * plumb: unimplemented, see:
> + * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
> + */
> +
> +static int crypt_iv_plain_gen(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq, u8 *iv)
> +{
> + memset(iv, 0, ctx->iv_size);
> + *(__le32 *)iv = cpu_to_le32(subreq->iv_sector & 0xffffffff);
> +
> + return 0;
> +}
> +
> +static int crypt_iv_plain64_gen(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq, u8 *iv)
> +{
> + memset(iv, 0, ctx->iv_size);
> + *(__le64 *)iv = cpu_to_le64(subreq->iv_sector);
> +
> + return 0;
> +}
> +
> +static int crypt_iv_plain64be_gen(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq, u8 *iv)
> +{
> + memset(iv, 0, ctx->iv_size);
> + /* iv_size is at least of size u64; usually it is 16 bytes */
> + *(__be64 *)&iv[ctx->iv_size - sizeof(u64)] = cpu_to_be64(subreq->iv_sector);
> +
> + return 0;
> +}
> +
> +/* Initialise ESSIV - compute salt but no local memory allocations */
> +static int crypt_iv_essiv_init(struct geniv_ctx *ctx)
> +{
> + struct geniv_essiv_private *essiv = &ctx->iv_gen_private.essiv;
> + AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
> + struct scatterlist sg;
> + struct crypto_cipher *essiv_tfm;
> + int err;
> +
> + sg_init_one(&sg, ctx->key, ctx->key_size);
> + ahash_request_set_tfm(req, essiv->hash_tfm);
> + ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
> + ahash_request_set_crypt(req, &sg, essiv->salt, ctx->key_size);
> +
> + err = crypto_ahash_digest(req);
> + ahash_request_zero(req);
> + if (err)
> + return err;
> +
> + essiv_tfm = ctx->iv_private;
> +
> + return crypto_cipher_setkey(essiv_tfm, essiv->salt,
> + crypto_ahash_digestsize(essiv->hash_tfm));
> +}
> +
> +/* Wipe salt and reset key derived from volume key */
> +static int crypt_iv_essiv_wipe(struct geniv_ctx *ctx)
> +{
> + struct geniv_essiv_private *essiv = &ctx->iv_gen_private.essiv;
> + unsigned int salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
> + struct crypto_cipher *essiv_tfm;
> +
> + memset(essiv->salt, 0, salt_size);
> +
> + essiv_tfm = ctx->iv_private;
> + return crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
> +}
> +
> +/* Allocate the cipher for ESSIV */
> +static struct crypto_cipher *alloc_essiv_cipher(struct geniv_ctx *ctx,
> + u8 *salt, unsigned int saltsize)
> +{
> + struct crypto_cipher *essiv_tfm;
> + int err;
> +
> + /* Setup the essiv_tfm with the given salt */
> + essiv_tfm = crypto_alloc_cipher(ctx->cipher, 0, CRYPTO_ALG_ASYNC);
> + if (IS_ERR(essiv_tfm)) {
> + DMERR("Error allocating crypto tfm for ESSIV\n");
> + return essiv_tfm;
> + }
> +
> + if (crypto_cipher_blocksize(essiv_tfm) != ctx->iv_size) {
> + DMERR("Block size of ESSIV cipher does "
> + "not match IV size of block cipher\n");
> + crypto_free_cipher(essiv_tfm);
> + return ERR_PTR(-EINVAL);
> + }
> +
> + err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
> + if (err) {
> + DMERR("Failed to set key for ESSIV cipher\n");
> + crypto_free_cipher(essiv_tfm);
> + return ERR_PTR(err);
> + }
> +
> + return essiv_tfm;
> +}
> +
> +static void crypt_iv_essiv_dtr(struct geniv_ctx *ctx)
> +{
> + struct crypto_cipher *essiv_tfm;
> + struct geniv_essiv_private *essiv = &ctx->iv_gen_private.essiv;
> +
> + crypto_free_ahash(essiv->hash_tfm);
> + essiv->hash_tfm = NULL;
> +
> + kzfree(essiv->salt);
> + essiv->salt = NULL;
> +
> + essiv_tfm = ctx->iv_private;
> +
> + if (essiv_tfm)
> + crypto_free_cipher(essiv_tfm);
> +
> + ctx->iv_private = NULL;
> +}
> +
> +static int crypt_iv_essiv_ctr(struct geniv_ctx *ctx)
> +{
> + struct crypto_cipher *essiv_tfm = NULL;
> + struct crypto_ahash *hash_tfm = NULL;
> + u8 *salt = NULL;
> + int err;
> +
> + if (!ctx->ivopts) {
> + DMERR("Digest algorithm missing for ESSIV mode\n");
> + return -EINVAL;
> + }
> +
> + /* Allocate hash algorithm */
> + hash_tfm = crypto_alloc_ahash(ctx->ivopts, 0, CRYPTO_ALG_ASYNC);
> + if (IS_ERR(hash_tfm)) {
> + DMERR("Error initializing ESSIV hash\n");
> + err = PTR_ERR(hash_tfm);
> + goto bad;
> + }
> +
> + salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
> + if (!salt) {
> + DMERR("Error kmallocing salt storage in ESSIV\n");
> + err = -ENOMEM;
> + goto bad;
> + }
> +
> + ctx->iv_gen_private.essiv.salt = salt;
> + ctx->iv_gen_private.essiv.hash_tfm = hash_tfm;
> +
> + essiv_tfm = alloc_essiv_cipher(ctx, salt,
> + crypto_ahash_digestsize(hash_tfm));
> + if (IS_ERR(essiv_tfm)) {
> + crypt_iv_essiv_dtr(ctx);
> + return PTR_ERR(essiv_tfm);
> + }
> + ctx->iv_private = essiv_tfm;
> +
> + return 0;
> +
> +bad:
> + if (hash_tfm && !IS_ERR(hash_tfm))
> + crypto_free_ahash(hash_tfm);
> + kfree(salt);
> + return err;
> +}
> +
> +static int crypt_iv_essiv_gen(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq, u8 *iv)
> +{
> + struct crypto_cipher *essiv_tfm = ctx->iv_private;
> +
> + memset(iv, 0, ctx->iv_size);
> + *(__le64 *)iv = cpu_to_le64(subreq->iv_sector);
> + crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
> +
> + return 0;
> +}
> +
> +static int crypt_iv_benbi_ctr(struct geniv_ctx *ctx)
> +{
> + unsigned int bs = crypto_skcipher_blocksize(ctx->tfms.tfms[0]);
> + int log = ilog2(bs);
> +
> + /* we need to calculate how far we must shift the sector count
> + * to get the cipher block count, we use this shift in _gen */
> +
> + if (1 << log != bs) {
> + DMERR("cypher blocksize is not a power of 2\n");
> + return -EINVAL;
> + }
> +
> + if (log > 9) {
> + DMERR("cypher blocksize is > 512\n");
> + return -EINVAL;
> + }
> +
> + ctx->iv_gen_private.benbi.shift = 9 - log;
> +
> + return 0;
> +}
> +
> +static void crypt_iv_benbi_dtr(struct geniv_ctx *ctx)
> +{
> +}
> +
> +static int crypt_iv_benbi_gen(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq, u8 *iv)
> +{
> + __be64 val;
> +
> + memset(iv, 0, ctx->iv_size - sizeof(u64)); /* rest is cleared below */
> +
> + val = cpu_to_be64(((u64)subreq->iv_sector << ctx->iv_gen_private.benbi.shift) + 1);
> + put_unaligned(val, (__be64 *)(iv + ctx->iv_size - sizeof(u64)));
> +
> + return 0;
> +}
> +
> +static int crypt_iv_null_gen(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq, u8 *iv)
> +{
> + memset(iv, 0, ctx->iv_size);
> +
> + return 0;
> +}
> +
> +static void crypt_iv_lmk_dtr(struct geniv_ctx *ctx)
> +{
> + struct geniv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
> +
> + if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
> + crypto_free_shash(lmk->hash_tfm);
> + lmk->hash_tfm = NULL;
> +
> + kzfree(lmk->seed);
> + lmk->seed = NULL;
> +}
> +
> +static int crypt_iv_lmk_ctr(struct geniv_ctx *ctx)
> +{
> + struct geniv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
> +
> + if (ctx->sector_size != (1 << SECTOR_SHIFT)) {
> + DMERR("Unsupported sector size for LMK\n");
> + return -EINVAL;
> + }
> +
> + lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
> + if (IS_ERR(lmk->hash_tfm)) {
> + DMERR("Error initializing LMK hash, err=%ld\n",
> + PTR_ERR(lmk->hash_tfm));
> + return PTR_ERR(lmk->hash_tfm);
> + }
> +
> + /* No seed in LMK version 2 */
> + if (ctx->key_parts == ctx->tfms_count) {
> + lmk->seed = NULL;
> + return 0;
> + }
> +
> + lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
> + if (!lmk->seed) {
> + crypt_iv_lmk_dtr(ctx);
> + DMERR("Error kmallocing seed storage in LMK\n");
> + return -ENOMEM;
> + }
> +
> + return 0;
> +}
> +
> +static int crypt_iv_lmk_init(struct geniv_ctx *ctx)
> +{
> + struct geniv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
> + int subkey_size = ctx->key_size / ctx->key_parts;
> +
> + /* LMK seed is on the position of LMK_KEYS + 1 key */
> + if (lmk->seed)
> + memcpy(lmk->seed, ctx->key + (ctx->tfms_count * subkey_size),
> + crypto_shash_digestsize(lmk->hash_tfm));
> +
> + return 0;
> +}
> +
> +static int crypt_iv_lmk_wipe(struct geniv_ctx *ctx)
> +{
> + struct geniv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
> +
> + if (lmk->seed)
> + memset(lmk->seed, 0, LMK_SEED_SIZE);
> +
> + return 0;
> +}
> +
> +static int crypt_iv_lmk_one(struct geniv_ctx *ctx, u8 *iv,
> + struct geniv_subreq *subreq, u8 *data)
> +{
> + struct geniv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
> + SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
> + struct md5_state md5state;
> + __le32 buf[4];
> + int i, r;
> +
> + desc->tfm = lmk->hash_tfm;
> + desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
> +
> + r = crypto_shash_init(desc);
> + if (r)
> + return r;
> +
> + if (lmk->seed) {
> + r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
> + if (r)
> + return r;
> + }
> +
> + /* Sector is always 512B, block size 16, add data of blocks 1-31 */
> + r = crypto_shash_update(desc, data + 16, 16 * 31);
> + if (r)
> + return r;
> +
> + /* Sector is cropped to 56 bits here */
> + buf[0] = cpu_to_le32(subreq->iv_sector & 0xFFFFFFFF);
> + buf[1] = cpu_to_le32((((u64)subreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
> + buf[2] = cpu_to_le32(4024);
> + buf[3] = 0;
> + r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
> + if (r)
> + return r;
> +
> + /* No MD5 padding here */
> + r = crypto_shash_export(desc, &md5state);
> + if (r)
> + return r;
> +
> + for (i = 0; i < MD5_HASH_WORDS; i++)
> + __cpu_to_le32s(&md5state.hash[i]);
> + memcpy(iv, &md5state.hash, ctx->iv_size);
> +
> + return 0;
> +}
> +
> +static int crypt_iv_lmk_gen(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq, u8 *iv)
> +{
> + struct scatterlist *sg;
> + u8 *src;
> + int r = 0;
> +
> + if (rctx->is_write) {
> + sg = crypt_get_sg_data(ctx, subreq->sg_in);
> + src = kmap_atomic(sg_page(sg));
> + r = crypt_iv_lmk_one(ctx, iv, subreq, src + sg->offset);
> + kunmap_atomic(src);
> + } else
> + memset(iv, 0, ctx->iv_size);
> +
> + return r;
> +}
> +
> +static int crypt_iv_lmk_post(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq, u8 *iv)
> +{
> + struct scatterlist *sg;
> + u8 *dst;
> + int r;
> +
> + if (rctx->is_write)
> + return 0;
> +
> + sg = crypt_get_sg_data(ctx, subreq->sg_out);
> + dst = kmap_atomic(sg_page(sg));
> + r = crypt_iv_lmk_one(ctx, iv, subreq, dst + sg->offset);
> +
> + /* Tweak the first block of plaintext sector */
> + if (!r)
> + crypto_xor(dst + sg->offset, iv, ctx->iv_size);
> +
> + kunmap_atomic(dst);
> + return r;
> +}
> +
> +static void crypt_iv_tcw_dtr(struct geniv_ctx *ctx)
> +{
> + struct geniv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
> +
> + kzfree(tcw->iv_seed);
> + tcw->iv_seed = NULL;
> + kzfree(tcw->whitening);
> + tcw->whitening = NULL;
> +
> + if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
> + crypto_free_shash(tcw->crc32_tfm);
> + tcw->crc32_tfm = NULL;
> +}
> +
> +static int crypt_iv_tcw_ctr(struct geniv_ctx *ctx)
> +{
> + struct geniv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
> +
> + if (ctx->sector_size != (1 << SECTOR_SHIFT)) {
> + DMERR("Unsupported sector size for TCW\n");
> + return -EINVAL;
> + }
> +
> + if (ctx->key_size <= (ctx->iv_size + TCW_WHITENING_SIZE)) {
> + DMERR("Wrong key size (%d) for TCW. Choose a value > %d bytes\n",
> + ctx->key_size, ctx->iv_size + TCW_WHITENING_SIZE);
> + return -EINVAL;
> + }
> +
> + tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
> + if (IS_ERR(tcw->crc32_tfm)) {
> + DMERR("Error initializing CRC32 in TCW; err=%ld\n",
> + PTR_ERR(tcw->crc32_tfm));
> + return PTR_ERR(tcw->crc32_tfm);
> + }
> +
> + tcw->iv_seed = kzalloc(ctx->iv_size, GFP_KERNEL);
> + tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
> + if (!tcw->iv_seed || !tcw->whitening) {
> + crypt_iv_tcw_dtr(ctx);
> + DMERR("Error allocating seed storage in TCW\n");
> + return -ENOMEM;
> + }
> +
> + return 0;
> +}
> +
> +static int crypt_iv_tcw_init(struct geniv_ctx *ctx)
> +{
> + struct geniv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
> + int key_offset = ctx->key_size - ctx->iv_size - TCW_WHITENING_SIZE;
> +
> + memcpy(tcw->iv_seed, &ctx->key[key_offset], ctx->iv_size);
> + memcpy(tcw->whitening, &ctx->key[key_offset + ctx->iv_size],
> + TCW_WHITENING_SIZE);
> +
> + return 0;
> +}
> +
> +static int crypt_iv_tcw_wipe(struct geniv_ctx *ctx)
> +{
> + struct geniv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
> +
> + memset(tcw->iv_seed, 0, ctx->iv_size);
> + memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
> +
> + return 0;
> +}
> +
> +static int crypt_iv_tcw_whitening(struct geniv_ctx *ctx,
> + struct geniv_subreq *subreq, u8 *data)
> +{
> + struct geniv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
> + __le64 sector = cpu_to_le64(subreq->iv_sector);
> + u8 buf[TCW_WHITENING_SIZE];
> + SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
> + int i, r;
> +
> + /* xor whitening with sector number */
> + crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8);
> + crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8);
> +
> + /* calculate crc32 for every 32bit part and xor it */
> + desc->tfm = tcw->crc32_tfm;
> + desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
> + for (i = 0; i < 4; i++) {
> + r = crypto_shash_init(desc);
> + if (r)
> + goto out;
> + r = crypto_shash_update(desc, &buf[i * 4], 4);
> + if (r)
> + goto out;
> + r = crypto_shash_final(desc, &buf[i * 4]);
> + if (r)
> + goto out;
> + }
> + crypto_xor(&buf[0], &buf[12], 4);
> + crypto_xor(&buf[4], &buf[8], 4);
> +
> + /* apply whitening (8 bytes) to whole sector */
> + for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
> + crypto_xor(data + i * 8, buf, 8);
> +out:
> + memzero_explicit(buf, sizeof(buf));
> + return r;
> +}
> +
> +static int crypt_iv_tcw_gen(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq, u8 *iv)
> +{
> + struct scatterlist *sg;
> + struct geniv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
> + __le64 sector = cpu_to_le64(subreq->iv_sector);
> + u8 *src;
> + int r = 0;
> +
> + /* Remove whitening from ciphertext */
> + if (!rctx->is_write) {
> + sg = crypt_get_sg_data(ctx, subreq->sg_in);
> + src = kmap_atomic(sg_page(sg));
> + r = crypt_iv_tcw_whitening(ctx, subreq, src + sg->offset);
> + kunmap_atomic(src);
> + }
> +
> + /* Calculate IV */
> + crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8);
> + if (ctx->iv_size > 8)
> + crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or,
> + ctx->iv_size - 8);
> +
> + return r;
> +}
> +
> +static int crypt_iv_tcw_post(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq, u8 *iv)
> +{
> + struct scatterlist *sg;
> + u8 *dst;
> + int r;
> +
> + if (!rctx->is_write)
> + return 0;
> +
> + /* Apply whitening on ciphertext */
> + sg = crypt_get_sg_data(ctx, subreq->sg_out);
> + dst = kmap_atomic(sg_page(sg));
> + r = crypt_iv_tcw_whitening(ctx, subreq, dst + sg->offset);
> + kunmap_atomic(dst);
> +
> + return r;
> +}
> +
> +static int crypt_iv_random_gen(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq, u8 *iv)
> +{
> + /* Used only for writes, there must be an additional space to store IV */
> + get_random_bytes(iv, ctx->iv_size);
> + return 0;
> +}
> +
> +static const struct crypt_iv_operations crypt_iv_plain_ops = {
> + .generator = crypt_iv_plain_gen
> +};
> +
> +static const struct crypt_iv_operations crypt_iv_plain64_ops = {
> + .generator = crypt_iv_plain64_gen
> +};
> +
> +static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
> + .generator = crypt_iv_plain64be_gen
> +};
> +
> +static const struct crypt_iv_operations crypt_iv_essiv_ops = {
> + .ctr = crypt_iv_essiv_ctr,
> + .dtr = crypt_iv_essiv_dtr,
> + .init = crypt_iv_essiv_init,
> + .wipe = crypt_iv_essiv_wipe,
> + .generator = crypt_iv_essiv_gen
> +};
> +
> +static const struct crypt_iv_operations crypt_iv_benbi_ops = {
> + .ctr = crypt_iv_benbi_ctr,
> + .dtr = crypt_iv_benbi_dtr,
> + .generator = crypt_iv_benbi_gen
> +};
> +
> +static const struct crypt_iv_operations crypt_iv_null_ops = {
> + .generator = crypt_iv_null_gen
> +};
> +
> +static const struct crypt_iv_operations crypt_iv_lmk_ops = {
> + .ctr = crypt_iv_lmk_ctr,
> + .dtr = crypt_iv_lmk_dtr,
> + .init = crypt_iv_lmk_init,
> + .wipe = crypt_iv_lmk_wipe,
> + .generator = crypt_iv_lmk_gen,
> + .post = crypt_iv_lmk_post
> +};
> +
> +static const struct crypt_iv_operations crypt_iv_tcw_ops = {
> + .ctr = crypt_iv_tcw_ctr,
> + .dtr = crypt_iv_tcw_dtr,
> + .init = crypt_iv_tcw_init,
> + .wipe = crypt_iv_tcw_wipe,
> + .generator = crypt_iv_tcw_gen,
> + .post = crypt_iv_tcw_post
> +};
> +
> +static struct crypt_iv_operations crypt_iv_random_ops = {
> + .generator = crypt_iv_random_gen
> +};
> +
> +static int geniv_init_iv(struct geniv_ctx *ctx)
> +{
> + int ret;
> +
> + DMDEBUG("IV Generation algorithm : %s\n", ctx->ivmode);
> +
> + if (ctx->ivmode == NULL)
> + ctx->iv_gen_ops = NULL;
> + else if (strcmp(ctx->ivmode, "plain") == 0)
> + ctx->iv_gen_ops = &crypt_iv_plain_ops;
> + else if (strcmp(ctx->ivmode, "plain64") == 0)
> + ctx->iv_gen_ops = &crypt_iv_plain64_ops;
> + else if (strcmp(ctx->ivmode, "essiv") == 0)
> + ctx->iv_gen_ops = &crypt_iv_essiv_ops;
> + else if (strcmp(ctx->ivmode, "benbi") == 0)
> + ctx->iv_gen_ops = &crypt_iv_benbi_ops;
> + else if (strcmp(ctx->ivmode, "null") == 0)
> + ctx->iv_gen_ops = &crypt_iv_null_ops;
> + else if (strcmp(ctx->ivmode, "lmk") == 0) {
> + ctx->iv_gen_ops = &crypt_iv_lmk_ops;
> + /*
> + * Version 2 and 3 is recognised according
> + * to length of provided multi-key string.
> + * If present (version 3), last key is used as IV seed.
> + * All keys (including IV seed) are always the same size.
> + */
> + if (ctx->key_size % ctx->key_parts) {
> + ctx->key_parts++;
> + ctx->key_extra_size = ctx->key_size / ctx->key_parts;
> + }
> + } else if (strcmp(ctx->ivmode, "tcw") == 0) {
> + ctx->iv_gen_ops = &crypt_iv_tcw_ops;
> + ctx->key_parts += 2; /* IV + whitening */
> + ctx->key_extra_size = ctx->iv_size + TCW_WHITENING_SIZE;
> + } else if (strcmp(ctx->ivmode, "random") == 0) {
> + ctx->iv_gen_ops = &crypt_iv_random_ops;
> + /* Need storage space in integrity fields. */
> + ctx->integrity_iv_size = ctx->iv_size;
> + } else {
> + DMERR("Invalid IV mode %s\n", ctx->ivmode);
> + return -EINVAL;
> + }
> +
> + /* Allocate IV */
> + if (ctx->iv_gen_ops && ctx->iv_gen_ops->ctr) {
> + ret = ctx->iv_gen_ops->ctr(ctx);
> + if (ret < 0) {
> + DMERR("Error creating IV for %s\n", ctx->ivmode);
> + return ret;
> + }
> + }
> +
> + /* Initialize IV (set keys for ESSIV etc) */
> + if (ctx->iv_gen_ops && ctx->iv_gen_ops->init) {
> + ret = ctx->iv_gen_ops->init(ctx);
> + if (ret < 0) {
> + DMERR("Error creating IV for %s\n", ctx->ivmode);
> + return ret;
> + }
> + }
> +
> + return 0;
> +}
> +
> +static void geniv_free_tfms_aead(struct geniv_ctx *ctx)
> +{
> + if (!ctx->tfms.tfms_aead)
> + return;
> +
> + if (ctx->tfms.tfms_aead[0] && IS_ERR(ctx->tfms.tfms_aead[0])) {
> + crypto_free_aead(ctx->tfms.tfms_aead[0]);
> + ctx->tfms.tfms_aead[0] = NULL;
> + }
> +
> + kfree(ctx->tfms.tfms_aead);
> + ctx->tfms.tfms_aead = NULL;
> +}
> +
> +static void geniv_free_tfms_skcipher(struct geniv_ctx *ctx)
> +{
> + unsigned int i;
> +
> + if (!ctx->tfms.tfms)
> + return;
> +
> + for (i = 0; i < ctx->tfms_count; i++)
> + if (ctx->tfms.tfms[i] && IS_ERR(ctx->tfms.tfms[i])) {
> + crypto_free_skcipher(ctx->tfms.tfms[i]);
> + ctx->tfms.tfms[i] = NULL;
> + }
> +
> + kfree(ctx->tfms.tfms);
> + ctx->tfms.tfms = NULL;
> +}
> +
> +static void geniv_free_tfms(struct geniv_ctx *ctx)
> +{
> + if (geniv_integrity_aead(ctx))
> + geniv_free_tfms_aead(ctx);
> + else
> + geniv_free_tfms_skcipher(ctx);
> +}
> +
> +static int geniv_alloc_tfms_aead(struct crypto_aead *parent,
> + struct geniv_ctx *ctx)
> +{
> + unsigned int reqsize, align;
> +
> + ctx->tfms.tfms_aead = kcalloc(1, sizeof(struct crypto_aead *),
> + GFP_KERNEL);
> + if (!ctx->tfms.tfms_aead)
> + return -ENOMEM;
> +
> + /* First instance is already allocated in geniv_init_tfm */
> + ctx->tfms.tfms_aead[0] = ctx->tfm_child.tfm_aead;
> +
> + /* Setup the current cipher's request structure */
> + align = crypto_aead_alignmask(parent);
> + align &= ~(crypto_tfm_ctx_alignment() - 1);
> + reqsize = align + sizeof(struct geniv_req_ctx) +
> + crypto_aead_reqsize(ctx->tfms.tfms_aead[0]);
> +
> + crypto_aead_set_reqsize(parent, reqsize);
> +
> + return 0;
> +}
> +
> +/* Allocate memory for the underlying cipher algorithm. Ex: cbc(aes)
> + */
> +static int geniv_alloc_tfms_skcipher(struct crypto_skcipher *parent,
> + struct geniv_ctx *ctx)
> +{
> + unsigned int i, reqsize, align, err;
> +
> + ctx->tfms.tfms = kcalloc(ctx->tfms_count, sizeof(struct crypto_skcipher *),
> + GFP_KERNEL);
> + if (!ctx->tfms.tfms)
> + return -ENOMEM;
> +
> + /* First instance is already allocated in geniv_init_tfm */
> + ctx->tfms.tfms[0] = ctx->tfm_child.tfm;
> + for (i = 1; i < ctx->tfms_count; i++) {
> + ctx->tfms.tfms[i] = crypto_alloc_skcipher(ctx->ciphermode, 0, 0);
> + if (IS_ERR(ctx->tfms.tfms[i])) {
> + err = PTR_ERR(ctx->tfms.tfms[i]);
> + geniv_free_tfms(ctx);
> + return err;
> + }
> +
> + /* Setup the current cipher's request structure */
> + align = crypto_skcipher_alignmask(parent);
> + align &= ~(crypto_tfm_ctx_alignment() - 1);
> + reqsize = align + sizeof(struct geniv_req_ctx) +
> + crypto_skcipher_reqsize(ctx->tfms.tfms[i]);
> +
> + crypto_skcipher_set_reqsize(parent, reqsize);
> + }
> +
> + return 0;
> +}
> +
> +static unsigned int geniv_authenckey_size(struct geniv_ctx *ctx)
> +{
> + return ctx->key_size - ctx->key_extra_size +
> + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
> +}
> +
> +/* Initialize the cipher's context with the key, ivmode and other parameters.
> + * Also allocate IV generation template ciphers and initialize them.
> + */
> +static int geniv_setkey_init(void *parent, struct geniv_key_info *info)
> +{
> + struct geniv_ctx *ctx;
> + int ret;
> +
> + if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &info->cipher_flags))
> + ctx = crypto_aead_ctx((struct crypto_aead *)parent);
> + else
> + ctx = crypto_skcipher_ctx((struct crypto_skcipher *)parent);
> +
> + ctx->tfms_count = info->tfms_count;
> + ctx->key = info->key;
> + ctx->cipher_flags = info->cipher_flags;
> + ctx->ivopts = info->ivopts;
> + ctx->iv_offset = info->iv_offset;
> + ctx->sector_size = info->sector_size;
> + ctx->sector_shift = __ffs(ctx->sector_size) - SECTOR_SHIFT;
> +
> + ctx->key_size = info->key_size;
> + ctx->key_parts = info->key_parts;
> + ctx->key_mac_size = info->key_mac_size;
> + ctx->on_disk_tag_size = info->on_disk_tag_size;
> +
> + if (geniv_integrity_hmac(ctx)) {
> + ctx->authenc_key = kmalloc(geniv_authenckey_size(ctx), GFP_KERNEL);
> + if (!ctx->authenc_key)
> + return -ENOMEM;
> + }
> +
> + if (geniv_integrity_aead(ctx))
> + ret = geniv_alloc_tfms_aead((struct crypto_aead *)parent, ctx);
> + else
> + ret = geniv_alloc_tfms_skcipher((struct crypto_skcipher *)parent, ctx);
> + if (ret)
> + return ret;
> +
> + ret = geniv_init_iv(ctx);
> +
> + if (geniv_integrity_aead(ctx))
> + ctx->integrity_tag_size = ctx->on_disk_tag_size - ctx->integrity_iv_size;
> +
> + return ret;
> +}
> +
> +/*
> + * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
> + * the key must be for some reason in special format.
> + * This function converts cc->key to this special format.
> + */
> +static void crypt_copy_authenckey(char *p, const void *key,
> + unsigned int enckeylen, unsigned int authkeylen)
> +{
> + struct crypto_authenc_key_param *param;
> + struct rtattr *rta;
> +
> + rta = (struct rtattr *)p;
> + param = RTA_DATA(rta);
> + param->enckeylen = cpu_to_be32(enckeylen);
> + rta->rta_len = RTA_LENGTH(sizeof(*param));
> + rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
> + p += RTA_SPACE(sizeof(*param));
> + memcpy(p, key + enckeylen, authkeylen);
> + p += authkeylen;
> + memcpy(p, key, enckeylen);
> +}
> +
> +static int geniv_setkey_tfms_aead(struct crypto_aead *parent, struct geniv_ctx *ctx,
> + struct geniv_key_info *info)
> +{
> + unsigned int key_size;
> + unsigned int authenc_key_size;
> + struct crypto_aead *child_aead;
> + int ret = 0;
> +
> + /* Ignore extra keys (which are used for IV etc) */
> + key_size = ctx->key_size - ctx->key_extra_size;
> + authenc_key_size = key_size + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
> +
> + child_aead = ctx->tfms.tfms_aead[0];
> + crypto_aead_clear_flags(child_aead, CRYPTO_TFM_REQ_MASK);
> + crypto_aead_set_flags(child_aead, crypto_aead_get_flags(parent) & CRYPTO_TFM_REQ_MASK);
> +
> + if (geniv_integrity_hmac(ctx)) {
> + if (key_size < ctx->key_mac_size)
> + return -EINVAL;
> +
> + crypt_copy_authenckey(ctx->authenc_key, ctx->key, key_size - ctx->key_mac_size,
> + ctx->key_mac_size);
> + }
> +
> + if (geniv_integrity_hmac(ctx))
> + ret = crypto_aead_setkey(child_aead, ctx->authenc_key, authenc_key_size);
> + else
> + ret = crypto_aead_setkey(child_aead, ctx->key, key_size);
> + if (ret) {
> + DMERR("Error setting key for tfms[0]\n");
> + goto out;
> + }
> +
> + crypto_aead_set_flags(parent, crypto_aead_get_flags(child_aead) & CRYPTO_TFM_RES_MASK);
> +
> +out:
> + if (geniv_integrity_hmac(ctx))
> + memzero_explicit(ctx->authenc_key, authenc_key_size);
> +
> + return ret;
> +}
> +
> +static int geniv_setkey_tfms_skcipher(struct crypto_skcipher *parent, struct geniv_ctx *ctx,
> + struct geniv_key_info *info)
> +{
> + unsigned int subkey_size;
> + char *subkey;
> + struct crypto_skcipher *child;
> + int ret, i;
> +
> + /* Ignore extra keys (which are used for IV etc) */
> + subkey_size = (ctx->key_size - ctx->key_extra_size)
> + >> ilog2(ctx->tfms_count);
> +
> + for (i = 0; i < ctx->tfms_count; i++) {
> + child = ctx->tfms.tfms[i];
> + crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
> + crypto_skcipher_set_flags(child,
> + crypto_skcipher_get_flags(parent) & CRYPTO_TFM_REQ_MASK);
> +
> + subkey = ctx->key + (subkey_size) * i;
> +
> + ret = crypto_skcipher_setkey(child, subkey, subkey_size);
> + if (ret) {
> + DMERR("Error setting key for tfms[%d]\n", i);
> + return ret;
> + }
> +
> + crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
> + CRYPTO_TFM_RES_MASK);
> + }
> +
> + return 0;
> +}
> +
> +static int geniv_setkey_set(struct geniv_ctx *ctx)
> +{
> + if (ctx->iv_gen_ops && ctx->iv_gen_ops->init)
> + return ctx->iv_gen_ops->init(ctx);
> + else
> + return 0;
> +}
> +
> +static int geniv_setkey_wipe(struct geniv_ctx *ctx)
> +{
> + int ret;
> +
> + if (ctx->iv_gen_ops && ctx->iv_gen_ops->wipe) {
> + ret = ctx->iv_gen_ops->wipe(ctx);
> + if (ret)
> + return ret;
> + }
> +
> + if (geniv_integrity_hmac(ctx))
> + kzfree(ctx->authenc_key);
> +
> + return 0;
> +}
> +
> +static int geniv_setkey(void *parent, const u8 *key, unsigned int keylen)
> +{
> + int err = 0;
> + struct geniv_ctx *ctx;
> + struct geniv_key_info *info = (struct geniv_key_info *) key;
> +
> + if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &info->cipher_flags))
> + ctx = crypto_aead_ctx((struct crypto_aead *)parent);
> + else
> + ctx = crypto_skcipher_ctx((struct crypto_skcipher *)parent);
> +
> + DMDEBUG("SETKEY Operation : %d\n", info->keyop);
> +
> + switch (info->keyop) {
> + case SETKEY_OP_INIT:
> + err = geniv_setkey_init(parent, info);
> + break;
> + case SETKEY_OP_SET:
> + err = geniv_setkey_set(ctx);
> + break;
> + case SETKEY_OP_WIPE:
> + err = geniv_setkey_wipe(ctx);
> + break;
> + }
> +
> + if (err)
> + return err;
> +
> + if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &info->cipher_flags))
> + return geniv_setkey_tfms_aead((struct crypto_aead *)parent, ctx, info);
> + else
> + return geniv_setkey_tfms_skcipher((struct crypto_skcipher *)parent, ctx, info);
> +}
> +
> +static int geniv_aead_setkey(struct crypto_aead *parent,
> + const u8 *key, unsigned int keylen)
> +{
> + return geniv_setkey(parent, key, keylen);
> +}
> +
> +static int geniv_skcipher_setkey(struct crypto_skcipher *parent,
> + const u8 *key, unsigned int keylen)
> +{
> + return geniv_setkey(parent, key, keylen);
> +}
> +
> +static void geniv_async_done(struct crypto_async_request *async_req, int error);
> +
> +static int geniv_alloc_subreq_aead(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + u32 req_flags)
> +{
> + struct aead_request *req;
> +
> + if (!rctx->subreq) {
> + rctx->subreq = mempool_alloc(ctx->subreq_pool, GFP_NOIO);
> + if (!rctx->subreq)
> + return -ENOMEM;
> + }
> +
> + req = &rctx->subreq->r.req_aead;
> + rctx->subreq->rctx = rctx;
> +
> + aead_request_set_tfm(req, ctx->tfms.tfms_aead[0]);
> + aead_request_set_callback(req, req_flags,
> + geniv_async_done, rctx->subreq);
> +
> + return 0;
> +}
> +
> +/* req_flags: flags from parent request */
> +static int geniv_alloc_subreq_skcipher(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + u32 req_flags)
> +{
> + int key_index;
> + struct skcipher_request *req;
> +
> + if (!rctx->subreq) {
> + rctx->subreq = mempool_alloc(ctx->subreq_pool, GFP_NOIO);
> + if (!rctx->subreq)
> + return -ENOMEM;
> + }
> +
> + req = &rctx->subreq->r.req;
> + rctx->subreq->rctx = rctx;
> +
> + key_index = rctx->cc_sector & (ctx->tfms_count - 1);
> +
> + skcipher_request_set_tfm(req, ctx->tfms.tfms[key_index]);
> + skcipher_request_set_callback(req, req_flags,
> + geniv_async_done, rctx->subreq);
> +
> + return 0;
> +}
> +
> +/* Asynchronous IO completion callback for each sector in a segment. When all
> + * pending i/o are completed the parent cipher's async function is called.
> + */
> +static void geniv_async_done(struct crypto_async_request *async_req, int error)
> +{
> + struct geniv_subreq *subreq =
> + (struct geniv_subreq *) async_req->data;
> + struct geniv_req_ctx *rctx = subreq->rctx;
> + struct skcipher_request *req = NULL;
> + struct aead_request *req_aead = NULL;
> + struct geniv_ctx *ctx;
> + u8 *iv;
> +
> + if (!rctx->is_aead_request) {
> + req = rctx->r.req;
> + ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
> + } else {
> + req_aead = rctx->r.req_aead;
> + ctx = crypto_aead_ctx(crypto_aead_reqtfm(req_aead));
> + }
> +
> + /*
> + * A request from crypto driver backlog is going to be processed now,
> + * finish the completion and continue in crypt_convert().
> + * (Callback will be called for the second time for this request.)
> + */
> + if (error == -EINPROGRESS) {
> + complete(&rctx->restart);
> + return;
> + }
> +
> + iv = iv_of_subreq(ctx, subreq);
> + if (!error && ctx->iv_gen_ops && ctx->iv_gen_ops->post)
> + error = ctx->iv_gen_ops->post(ctx, rctx, subreq, iv);
> +
> + mempool_free(subreq, ctx->subreq_pool);
> +
> + /* req_pending needs to be checked before req->base.complete is called
> + * as we need 'req_pending' to be equal to 1 to ensure all subrequests
> + * are processed.
> + */
> + if (atomic_dec_and_test(&rctx->req_pending)) {
> + /* Call the parent cipher's completion function */
> + if (!rctx->is_aead_request)
> + skcipher_request_complete(req, error);
> + else
> + aead_request_complete(req_aead, error);
> +
> + }
> +}
> +
> +static unsigned int geniv_get_sectors(struct scatterlist *sg1,
> + struct scatterlist *sg2,
> + unsigned int segments)
> +{
> + unsigned int i, n1, n2;
> +
> + n1 = n2 = 0;
> + for (i = 0; i < segments ; i++) {
> + n1 += sg1[i].length >> SECTOR_SHIFT;
> + n1 += (sg1[i].length & SECTOR_MASK) ? 1 : 0;
> + }
> +
> + for (i = 0; i < segments ; i++) {
> + n2 += sg2[i].length >> SECTOR_SHIFT;
> + n2 += (sg2[i].length & SECTOR_MASK) ? 1 : 0;
> + }
> +
> + return n1 > n2 ? n1 : n2;
> +}
> +
> +/* Iterate scatterlist of segments to retrieve the 512-byte sectors so that
> + * unique IVs could be generated for each 512-byte sector. This split may not
> + * be necessary e.g. when these ciphers are modelled in hardware, where it can
> + * make use of the hardware's IV generation capabilities.
> + */
> +static int geniv_iter_block(void *req_in,
> + struct geniv_ctx *ctx, struct geniv_req_ctx *rctx)
> +
> +{
> + unsigned int rem;
> + struct scatterlist *src_org, *dst_org;
> + struct scatterlist *src1, *dst1;
> + struct scatterlist_iter *iter = &rctx->iter;
> + struct skcipher_request *req;
> + struct aead_request *req_aead;
> +
> + if (unlikely(iter->seg_no >= rctx->nents))
> + return 0;
> +
> + if (geniv_integrity_aead(ctx)) {
> + req_aead = (struct aead_request *)req_in;
> + src_org = &req_aead->src[0];
> + dst_org = &req_aead->dst[0];
> + } else {
> + req = (struct skcipher_request *)req_in;
> + src_org = &req->src[0];
> + dst_org = &req->dst[0];
> + }
> +
> + src1 = &src_org[iter->seg_no];
> + dst1 = &dst_org[iter->seg_no];
> + iter->done += iter->len;
> +
> + if (iter->done >= src1->length) {
> + iter->seg_no++;
> +
> + if (iter->seg_no >= rctx->nents)
> + return 0;
> +
> + src1 = &src_org[iter->seg_no];
> + dst1 = &dst_org[iter->seg_no];
> + iter->done = 0;
> + }
> +
> + rem = src1->length - iter->done;
> +
> + iter->len = rem > ctx->sector_size ? ctx->sector_size : rem;
> +
> + DMDEBUG("segment:(%d/%u), done:%d, rem:%d\n",
> + iter->seg_no, rctx->nents, iter->done, rem);
> +
> + return iter->len;
> +}
> +
> +static u8 *org_iv_of_subreq(struct geniv_ctx *ctx, struct geniv_subreq *subreq)
> +{
> + return iv_of_subreq(ctx, subreq) + ctx->iv_size;
> +}
> +
> +static uint64_t *org_sector_of_subreq(struct geniv_ctx *ctx, struct geniv_subreq *subreq)
> +{
> + u8 *ptr = iv_of_subreq(ctx, subreq) + ctx->iv_size + ctx->iv_size;
> +
> + return (uint64_t *) ptr;
> +}
> +
> +static unsigned int *org_tag_of_subreq(struct geniv_ctx *ctx, struct geniv_subreq *subreq)
> +{
> + u8 *ptr = iv_of_subreq(ctx, subreq) + ctx->iv_size +
> + ctx->iv_size + sizeof(uint64_t);
> +
> + return (unsigned int *)ptr;
> +}
> +
> +static void *tag_from_subreq(struct geniv_ctx *ctx, struct geniv_subreq *subreq)
> +{
> + return &subreq->rctx->integrity_metadata[*org_tag_of_subreq(ctx, subreq) *
> + ctx->on_disk_tag_size];
> +}
> +
> +static void *iv_tag_from_subreq(struct geniv_ctx *ctx, struct geniv_subreq *subreq)
> +{
> + return tag_from_subreq(ctx, subreq) + ctx->integrity_tag_size;
> +}
> +
> +static int geniv_convert_block_aead(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq,
> + unsigned int tag_offset)
> +{
> + struct scatterlist *sg_in, *sg_out;
> + u8 *iv, *org_iv, *tag_iv, *tag;
> + uint64_t *sector;
> + int r = 0;
> + struct scatterlist_iter *iter = &rctx->iter;
> + struct aead_request *req_aead;
> + struct aead_request *parent_req = rctx->r.req_aead;
> +
> + BUG_ON(ctx->integrity_iv_size && ctx->integrity_iv_size != ctx->iv_size);
> +
> + /* Reject unexpected unaligned bio. */
> + if (unlikely(iter->len & (ctx->sector_size - 1)))
> + return -EIO;
> +
> + subreq->iv_sector = rctx->cc_sector;
> + if (test_bit(CRYPT_IV_LARGE_SECTORS, &ctx->cipher_flags))
> + subreq->iv_sector >>= ctx->sector_shift;
> +
> + *org_tag_of_subreq(ctx, subreq) = tag_offset;
> +
> + sector = org_sector_of_subreq(ctx, subreq);
> + *sector = cpu_to_le64(rctx->cc_sector - ctx->iv_offset);
> +
> + iv = iv_of_subreq(ctx, subreq);
> + org_iv = org_iv_of_subreq(ctx, subreq);
> + tag = tag_from_subreq(ctx, subreq);
> + tag_iv = iv_tag_from_subreq(ctx, subreq);
> +
> + sg_in = subreq->sg_in;
> + sg_out = subreq->sg_out;
> +
> + /* AEAD request:
> + * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
> + * | (authenticated) | (auth+encryption) | |
> + * | sector_LE | IV | sector in/out | tag in/out |
> + */
> + sg_init_table(sg_in, 4);
> + sg_set_buf(&sg_in[0], sector, sizeof(uint64_t));
> + sg_set_buf(&sg_in[1], org_iv, ctx->iv_size);
> + sg_set_page(&sg_in[2], sg_page(&parent_req->src[iter->seg_no]),
> + iter->len, parent_req->src[iter->seg_no].offset + iter->done);
> + sg_set_buf(&sg_in[3], tag, ctx->integrity_tag_size);
> +
> + sg_init_table(sg_out, 4);
> + sg_set_buf(&sg_out[0], sector, sizeof(uint64_t));
> + sg_set_buf(&sg_out[1], org_iv, ctx->iv_size);
> + sg_set_page(&sg_out[2], sg_page(&parent_req->dst[iter->seg_no]),
> + iter->len, parent_req->dst[iter->seg_no].offset + iter->done);
> + sg_set_buf(&sg_out[3], tag, ctx->integrity_tag_size);
> +
> + if (ctx->iv_gen_ops) {
> + /* For READs use IV stored in integrity metadata */
> + if (ctx->integrity_iv_size && !rctx->is_write) {
> + memcpy(org_iv, tag_iv, ctx->iv_size);
> + } else {
> + r = ctx->iv_gen_ops->generator(ctx, rctx, subreq, org_iv);
> + if (r < 0)
> + return r;
> + /* Store generated IV in integrity metadata */
> + if (ctx->integrity_iv_size)
> + memcpy(tag_iv, org_iv, ctx->iv_size);
> + }
> + /* Working copy of IV, to be modified in crypto API */
> + memcpy(iv, org_iv, ctx->iv_size);
> + }
> +
> + req_aead = &subreq->r.req_aead;
> + aead_request_set_ad(req_aead, sizeof(uint64_t) + ctx->iv_size);
> + if (rctx->is_write) {
> + aead_request_set_crypt(req_aead, subreq->sg_in, subreq->sg_out,
> + ctx->sector_size, iv);
> + r = crypto_aead_encrypt(req_aead);
> + if (ctx->integrity_tag_size + ctx->integrity_iv_size != ctx->on_disk_tag_size)
> + memset(tag + ctx->integrity_tag_size + ctx->integrity_iv_size, 0,
> + ctx->on_disk_tag_size - (ctx->integrity_tag_size + ctx->integrity_iv_size));
> + } else {
> + aead_request_set_crypt(req_aead, subreq->sg_in, subreq->sg_out,
> + ctx->sector_size + ctx->integrity_tag_size, iv);
> + r = crypto_aead_decrypt(req_aead);
> + }
> +
> + if (r == -EBADMSG)
> + DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
> + (unsigned long long)le64_to_cpu(*sector));
> +
> + if (!r && ctx->iv_gen_ops && ctx->iv_gen_ops->post)
> + r = ctx->iv_gen_ops->post(ctx, rctx, subreq, org_iv);
> +
> + return r;
> +}
> +
> +static int geniv_convert_block_skcipher(struct geniv_ctx *ctx,
> + struct geniv_req_ctx *rctx,
> + struct geniv_subreq *subreq,
> + unsigned int tag_offset)
> +{
> + struct scatterlist *sg_in, *sg_out;
> + u8 *iv, *org_iv, *tag_iv;
> + uint64_t *sector;
> + int r = 0;
> + struct scatterlist_iter *iter = &rctx->iter;
> + struct skcipher_request *req;
> + struct skcipher_request *parent_req = rctx->r.req;
> +
> + /* Reject unexpected unaligned bio. */
> + if (unlikely(iter->len & (ctx->sector_size - 1)))
> + return -EIO;
> +
> + subreq->iv_sector = rctx->cc_sector;
> + if (test_bit(CRYPT_IV_LARGE_SECTORS, &ctx->cipher_flags))
> + subreq->iv_sector >>= ctx->sector_shift;
> +
> + *org_tag_of_subreq(ctx, subreq) = tag_offset;
> +
> + iv = iv_of_subreq(ctx, subreq);
> + org_iv = org_iv_of_subreq(ctx, subreq);
> + tag_iv = iv_tag_from_subreq(ctx, subreq);
> +
> + sector = org_sector_of_subreq(ctx, subreq);
> + *sector = cpu_to_le64(rctx->cc_sector - ctx->iv_offset);
> +
> + /* For skcipher we use only the first sg item */
> + sg_in = subreq->sg_in;
> + sg_out = subreq->sg_out;
> +
> + sg_init_table(sg_in, 1);
> + sg_set_page(sg_in, sg_page(&parent_req->src[iter->seg_no]),
> + iter->len, parent_req->src[iter->seg_no].offset + iter->done);
> +
> + sg_init_table(sg_out, 1);
> + sg_set_page(sg_out, sg_page(&parent_req->dst[iter->seg_no]),
> + iter->len, parent_req->dst[iter->seg_no].offset + iter->done);
> +
> + if (ctx->iv_gen_ops) {
> + /* For READs use IV stored in integrity metadata */
> + if (ctx->integrity_iv_size && !rctx->is_write) {
> + memcpy(org_iv, tag_iv, ctx->integrity_iv_size);
> + } else {
> + r = ctx->iv_gen_ops->generator(ctx, rctx, subreq, org_iv);
> + if (r < 0)
> + return r;
> + /* Store generated IV in integrity metadata */
> + if (ctx->integrity_iv_size)
> + memcpy(tag_iv, org_iv, ctx->integrity_iv_size);
> + }
> + /* Working copy of IV, to be modified in crypto API */
> + memcpy(iv, org_iv, ctx->iv_size);
> + }
> +
> + req = &subreq->r.req;
> + skcipher_request_set_crypt(req, sg_in, sg_out, ctx->sector_size, iv);
> +
> + if (rctx->is_write)
> + r = crypto_skcipher_encrypt(req);
> + else
> + r = crypto_skcipher_decrypt(req);
> +
> + if (!r && ctx->iv_gen_ops && ctx->iv_gen_ops->post)
> + r = ctx->iv_gen_ops->post(ctx, rctx, subreq, org_iv);
> +
> + return r;
> +}
> +
> +/* Common encryt/decrypt function for geniv template cipher. Before the crypto
> + * operation, it splits the memory segments (in the scatterlist) into 512 byte
> + * sectors. The initialization vector(IV) used is based on a unique sector
> + * number which is generated here.
> + */
> +static int geniv_crypt(struct geniv_ctx *ctx, void *parent_req, bool is_encrypt)
> +{
> + struct skcipher_request *req = NULL;
> + struct aead_request *req_aead = NULL;
> + struct geniv_req_ctx *rctx;
> + struct geniv_req_info *rinfo;
> + int i, bytes, cryptlen, ret = 0;
> + unsigned int sectors;
> + unsigned int tag_offset = 0;
> + unsigned int sector_step = ctx->sector_size >> SECTOR_SHIFT;
> + char *str __maybe_unused = is_encrypt ? "encrypt" : "decrypt";
> +
> + if (geniv_integrity_aead(ctx)) {
> + req_aead = (struct aead_request *)parent_req;
> + rctx = geniv_aead_req_ctx(req_aead);
> + rctx->r.req_aead = req_aead;
> + rinfo = (struct geniv_req_info *)req_aead->iv;
> + } else {
> + req = (struct skcipher_request *)parent_req;
> + rctx = geniv_skcipher_req_ctx(req);
> + rctx->r.req = req;
> + rinfo = (struct geniv_req_info *)req->iv;
> + }
> +
> + /* Instance of 'struct geniv_req_info' is stored in IV ptr */
> + rctx->is_write = is_encrypt;
> + rctx->is_aead_request = geniv_integrity_aead(ctx);
> + rctx->cc_sector = rinfo->cc_sector;
> + rctx->nents = rinfo->nents;
> + rctx->integrity_metadata = rinfo->integrity_metadata;
> + rctx->subreq = NULL;
> + cryptlen = req->cryptlen;
> +
> + rctx->iter.seg_no = 0;
> + rctx->iter.done = 0;
> + rctx->iter.len = 0;
> +
> + DMDEBUG("geniv:%s: starting sector=%d, #segments=%u\n", str,
> + (unsigned int)rctx->cc_sector, rctx->nents);
> +
> + if (geniv_integrity_aead(ctx))
> + sectors = geniv_get_sectors(req_aead->src, req_aead->dst, rctx->nents);
> + else
> + sectors = geniv_get_sectors(req->src, req->dst, rctx->nents);
> +
> + init_completion(&rctx->restart);
> + atomic_set(&rctx->req_pending, 1);
> +
> + for (i = 0; i < sectors; i++) {
> + struct geniv_subreq *subreq;
> +
> + if (geniv_integrity_aead(ctx))
> + ret = geniv_alloc_subreq_aead(ctx, rctx, req_aead->base.flags);
> + else
> + ret = geniv_alloc_subreq_skcipher(ctx, rctx, req->base.flags);
> + if (ret)
> + return -ENOMEM;
> +
> + subreq = rctx->subreq;
> +
> + atomic_inc(&rctx->req_pending);
> +
> + if (geniv_integrity_aead(ctx))
> + bytes = geniv_iter_block(req_aead, ctx, rctx);
> + else
> + bytes = geniv_iter_block(req, ctx, rctx);
> +
> + if (bytes == 0)
> + break;
> +
> + cryptlen -= bytes;
> +
> + if (geniv_integrity_aead(ctx))
> + ret = geniv_convert_block_aead(ctx, rctx, subreq, tag_offset);
> + else
> + ret = geniv_convert_block_skcipher(ctx, rctx, subreq, tag_offset);
> +
> + switch (ret) {
> + /*
> + * The request was queued by a crypto driver
> + * but the driver request queue is full, let's wait.
> + */
> + case -EBUSY:
> + wait_for_completion(&rctx->restart);
> + reinit_completion(&rctx->restart);
> + /* fall through */
> + /*
> + * The request is queued and processed asynchronously,
> + * completion function geniv_async_done() is called.
> + */
> + case -EINPROGRESS:
> + /* Marking this NULL lets the creation of a new sub-
> + * request when 'geniv_alloc_subreq' is called.
> + */
> + rctx->subreq = NULL;
> + rctx->cc_sector += sector_step;
> + tag_offset++;
> + cond_resched();
> + break;
> + /*
> + * The request was already processed (synchronously).
> + */
> + case 0:
> + atomic_dec(&rctx->req_pending);
> + rctx->cc_sector += sector_step;
> + tag_offset++;
> + cond_resched();
> + continue;
> +
> + /* There was an error while processing the request. */
> + default:
> + atomic_dec(&rctx->req_pending);
> + mempool_free(rctx->subreq, ctx->subreq_pool);
> + atomic_dec(&rctx->req_pending);
> + return ret;
> + }
> + }
> +
> + if (rctx->subreq)
> + mempool_free(rctx->subreq, ctx->subreq_pool);
> +
> + if (atomic_dec_and_test(&rctx->req_pending))
> + return 0;
> + else
> + return -EINPROGRESS;
> +}
> +
> +static int geniv_skcipher_encrypt(struct skcipher_request *req)
> +{
> + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
> + struct geniv_ctx *ctx = crypto_skcipher_ctx(tfm);
> +
> + return geniv_crypt(ctx, req, true);
> +}
> +
> +static int geniv_skcipher_decrypt(struct skcipher_request *req)
> +{
> + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
> + struct geniv_ctx *ctx = crypto_skcipher_ctx(tfm);
> +
> + return geniv_crypt(ctx, req, false);
> +}
> +
> +static int geniv_aead_encrypt(struct aead_request *req)
> +{
> + struct crypto_aead *tfm = crypto_aead_reqtfm(req);
> + struct geniv_ctx *ctx = crypto_aead_ctx(tfm);
> +
> + return geniv_crypt(ctx, req, true);
> +}
> +
> +static int geniv_aead_decrypt(struct aead_request *req)
> +{
> + struct crypto_aead *tfm = crypto_aead_reqtfm(req);
> + struct geniv_ctx *ctx = crypto_aead_ctx(tfm);
> +
> + return geniv_crypt(ctx, req, false);
> +}
> +
> +/*
> + * Workaround to parse cipher algorithm from crypto API spec.
> + * The ctx->cipher is currently used only in ESSIV.
> + * This should be probably done by crypto-api calls (once available...)
> + */
> +static int geniv_blkdev_cipher(struct geniv_ctx *ctx, bool is_crypto_aead)
> +{
> + const char *alg_name = NULL;
> + char *start, *end;
> +
> + alg_name = ctx->ciphermode;
> + if (!alg_name)
> + return -EINVAL;
> +
> + if (is_crypto_aead) {
> + alg_name = strchr(alg_name, ',');
> + if (!alg_name)
> + alg_name = ctx->ciphermode;
> + alg_name++;
> + }
> +
> + start = strchr(alg_name, '(');
> + end = strchr(alg_name, ')');
> +
> + if (!start && !end) {
> + ctx->cipher = kstrdup(alg_name, GFP_KERNEL);
> + return ctx->cipher ? 0 : -ENOMEM;
> + }
> +
> + if (!start || !end || ++start >= end)
> + return -EINVAL;
> +
> + ctx->cipher = kzalloc(end - start + 1, GFP_KERNEL);
> + if (!ctx->cipher)
> + return -ENOMEM;
> +
> + strncpy(ctx->cipher, start, end - start);
> +
> + return 0;
> +}
> +
> +static int geniv_init_tfm(void *tfm_tmp, bool is_crypto_aead)
> +{
> + struct geniv_ctx *ctx;
> + struct crypto_skcipher *tfm;
> + struct crypto_aead *tfm_aead;
> + unsigned int reqsize;
> + size_t iv_size_padding;
> + char *algname;
> + int psize, ret;
> +
> + if (is_crypto_aead) {
> + tfm_aead = (struct crypto_aead *)tfm_tmp;
> + ctx = crypto_aead_ctx(tfm_aead);
> + algname = (char *) crypto_tfm_alg_name(crypto_aead_tfm(tfm_aead));
> + } else {
> + tfm = (struct crypto_skcipher *)tfm_tmp;
> + ctx = crypto_skcipher_ctx(tfm);
> + algname = (char *) crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
> + }
> +
> + ctx->ciphermode = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
> + if (!ctx->ciphermode)
> + return -ENOMEM;
> +
> + ctx->algname = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
> + if (!ctx->algname) {
> + ret = -ENOMEM;
> + goto free_ciphermode;
> + }
> +
> + strlcpy(ctx->algname, algname, CRYPTO_MAX_ALG_NAME);
> + algname = ctx->algname;
> +
> + /* Parse the algorithm name 'ivmode(ciphermode)' */
> + ctx->ivmode = strsep(&algname, "(");
> + strlcpy(ctx->ciphermode, algname, CRYPTO_MAX_ALG_NAME);
> + ctx->ciphermode[strlen(algname) - 1] = '\0';
> +
> + DMDEBUG("ciphermode=%s, ivmode=%s\n", ctx->ciphermode, ctx->ivmode);
> +
> + /*
> + * Usually the underlying cipher instances are spawned here, but since
> + * the value of tfms_count (which is equal to the key_count) is not
> + * known yet, create only one instance and delay the creation of the
> + * rest of the instances of the underlying cipher 'cbc(aes)' until
> + * the setkey operation is invoked.
> + * The first instance created i.e. ctx->child will later be assigned as
> + * the 1st element in the array ctx->tfms. Creation of atleast one
> + * instance of the cipher is necessary to be created here to uncover
> + * any errors earlier than during the setkey operation later where the
> + * remaining instances are created.
> + */
> + if (is_crypto_aead)
> + ctx->tfm_child.tfm_aead = crypto_alloc_aead(ctx->ciphermode, 0, 0);
> + else
> + ctx->tfm_child.tfm = crypto_alloc_skcipher(ctx->ciphermode, 0, 0);
> + if (IS_ERR(ctx->tfm_child.tfm)) {
> + ret = PTR_ERR(ctx->tfm_child.tfm);
> + DMERR("Failed to create cipher %s. err %d\n",
> + ctx->ciphermode, ret);
> + goto free_algname;
> + }
> +
> + /* Setup the current cipher's request structure */
> + if (is_crypto_aead) {
> + reqsize = sizeof(struct geniv_req_ctx) + __alignof__(struct geniv_req_ctx);
> + crypto_aead_set_reqsize(tfm_aead, reqsize);
> +
> + ctx->iv_start = sizeof(struct geniv_subreq);
> + ctx->iv_start += crypto_aead_reqsize(ctx->tfm_child.tfm_aead);
> +
> + ctx->iv_size = crypto_aead_ivsize(tfm_aead);
> + } else {
> + reqsize = sizeof(struct geniv_req_ctx) + __alignof__(struct geniv_req_ctx);
> + crypto_skcipher_set_reqsize(tfm, reqsize);
> +
> + ctx->iv_start = sizeof(struct geniv_subreq);
> + ctx->iv_start += crypto_skcipher_reqsize(ctx->tfm_child.tfm);
> +
> + ctx->iv_size = crypto_skcipher_ivsize(tfm);
> + }
> + /* at least a 64 bit sector number should fit in our buffer */
> + if (ctx->iv_size)
> + ctx->iv_size = max(ctx->iv_size,
> + (unsigned int)(sizeof(u64) / sizeof(u8)));
> +
> + if (is_crypto_aead) {
> + if (crypto_aead_alignmask(tfm_aead) < CRYPTO_MINALIGN) {
> + /* Allocate the padding exactly */
> + iv_size_padding = -ctx->iv_start
> + & crypto_aead_alignmask(ctx->tfm_child.tfm_aead);
> + } else {
> + /*
> + * If the cipher requires greater alignment than kmalloc
> + * alignment, we don't know the exact position of the
> + * initialization vector. We must assume worst case.
> + */
> + iv_size_padding = crypto_aead_alignmask(ctx->tfm_child.tfm_aead);
> + }
> + } else {
> + if (crypto_skcipher_alignmask(tfm) < CRYPTO_MINALIGN) {
> + iv_size_padding = -ctx->iv_start
> + & crypto_skcipher_alignmask(ctx->tfm_child.tfm);
> + } else {
> + iv_size_padding = crypto_skcipher_alignmask(ctx->tfm_child.tfm);
> + }
> + }
> +
> + /* create memory pool for sub-request structure
> + * ...| IV + padding | original IV | original sec. number | bio tag offset |
> + */
> + psize = ctx->iv_start + iv_size_padding + ctx->iv_size + ctx->iv_size +
> + sizeof(uint64_t) + sizeof(unsigned int);
> +
> + ctx->subreq_pool = mempool_create_kmalloc_pool(MIN_IOS, psize);
> + if (!ctx->subreq_pool) {
> + ret = -ENOMEM;
> + DMERR("Could not allocate crypt sub-request mempool\n");
> + goto free_tfm;
> + }
> +
> + ret = geniv_blkdev_cipher(ctx, is_crypto_aead);
> + if (ret < 0) {
> + ret = -ENOMEM;
> + DMERR("Cannot allocate cipher string\n");
> + goto free_tfm;
> + }
> +
> + return 0;
> +
> +free_tfm:
> + if (is_crypto_aead)
> + crypto_free_aead(ctx->tfm_child.tfm_aead);
> + else
> + crypto_free_skcipher(ctx->tfm_child.tfm);
> +free_algname:
> + kfree(ctx->algname);
> +free_ciphermode:
> + kfree(ctx->ciphermode);
> + return ret;
> +}
> +
> +static int geniv_skcipher_init_tfm(struct crypto_skcipher *tfm)
> +{
> + return geniv_init_tfm(tfm, 0);
> +}
> +
> +static int geniv_aead_init_tfm(struct crypto_aead *tfm)
> +{
> + return geniv_init_tfm(tfm, 1);
> +}
> +
> +static void geniv_exit_tfm(struct geniv_ctx *ctx)
> +{
> + if (ctx->iv_gen_ops && ctx->iv_gen_ops->dtr)
> + ctx->iv_gen_ops->dtr(ctx);
> +
> + mempool_destroy(ctx->subreq_pool);
> + geniv_free_tfms(ctx);
> + kzfree(ctx->ciphermode);
> + kzfree(ctx->algname);
> + kzfree(ctx->cipher);
> +}
> +
> +static void geniv_skcipher_exit_tfm(struct crypto_skcipher *tfm)
> +{
> + struct geniv_ctx *ctx = crypto_skcipher_ctx(tfm);
> +
> + geniv_exit_tfm(ctx);
> +}
> +
> +static void geniv_aead_exit_tfm(struct crypto_aead *tfm)
> +{
> + struct geniv_ctx *ctx = crypto_aead_ctx(tfm);
> +
> + geniv_exit_tfm(ctx);
> +}
> +
> +static void geniv_skcipher_free(struct skcipher_instance *inst)
> +{
> + struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
> +
> + crypto_drop_skcipher(spawn);
> + kfree(inst);
> +}
> +
> +static void geniv_aead_free(struct aead_instance *inst)
> +{
> + struct crypto_aead_spawn *spawn = aead_instance_ctx(inst);
> +
> + crypto_drop_aead(spawn);
> + kfree(inst);
> +}
> +
> +static int geniv_skcipher_create(struct crypto_template *tmpl,
> + struct rtattr **tb, char *algname)
> +{
> + struct crypto_attr_type *algt;
> + struct skcipher_instance *inst;
> + struct skcipher_alg *alg;
> + struct crypto_skcipher_spawn *spawn;
> + const char *cipher_name;
> + int err;
> +
> + algt = crypto_get_attr_type(tb);
> +
> + cipher_name = crypto_attr_alg_name(tb[1]);
> +
> + if (IS_ERR(cipher_name))
> + return PTR_ERR(cipher_name);
> +
> + inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
> + if (!inst)
> + return -ENOMEM;
> +
> + spawn = skcipher_instance_ctx(inst);
> +
> + crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
> + err = crypto_grab_skcipher(spawn, cipher_name, 0,
> + crypto_requires_sync(algt->type,
> + algt->mask));
> +
> + if (err)
> + goto err_free_inst;
> +
> + alg = crypto_spawn_skcipher_alg(spawn);
> +
> + err = -EINVAL;
> +
> + /* Only support blocks of size which is of a power of 2 */
> + if (!is_power_of_2(alg->base.cra_blocksize))
> + goto err_drop_spawn;
> +
> + /* algname: essiv, base.cra_name: cbc(aes) */
> + err = -ENAMETOOLONG;
> + if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
> + algname, alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME)
> + goto err_drop_spawn;
> + if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
> + "%s(%s)", algname, alg->base.cra_driver_name) >=
> + CRYPTO_MAX_ALG_NAME)
> + goto err_drop_spawn;
> +
> + inst->alg.base.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
> + inst->alg.base.cra_priority = alg->base.cra_priority;
> + inst->alg.base.cra_blocksize = alg->base.cra_blocksize;
> + inst->alg.base.cra_alignmask = alg->base.cra_alignmask;
> + inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
> + inst->alg.ivsize = alg->base.cra_blocksize;
> + inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
> + inst->alg.min_keysize = sizeof(struct geniv_key_info);
> + inst->alg.max_keysize = sizeof(struct geniv_key_info);
> +
> + inst->alg.setkey = geniv_skcipher_setkey;
> + inst->alg.encrypt = geniv_skcipher_encrypt;
> + inst->alg.decrypt = geniv_skcipher_decrypt;
> +
> + inst->alg.base.cra_ctxsize = sizeof(struct geniv_ctx);
> +
> + inst->alg.init = geniv_skcipher_init_tfm;
> + inst->alg.exit = geniv_skcipher_exit_tfm;
> +
> + inst->free = geniv_skcipher_free;
> +
> + err = skcipher_register_instance(tmpl, inst);
> + if (err)
> + goto err_drop_spawn;
> +
> +out:
> + return err;
> +
> +err_drop_spawn:
> + crypto_drop_skcipher(spawn);
> +err_free_inst:
> + kfree(inst);
> + goto out;
> +}
> +
> +
> +static int geniv_aead_create(struct crypto_template *tmpl,
> + struct rtattr **tb, char *algname)
> +{
> + struct crypto_attr_type *algt;
> + struct aead_instance *inst;
> + struct aead_alg *alg;
> + struct crypto_aead_spawn *spawn;
> + const char *cipher_name;
> + int err;
> +
> + algt = crypto_get_attr_type(tb);
> +
> + cipher_name = crypto_attr_alg_name(tb[1]);
> + if (IS_ERR(cipher_name))
> + return PTR_ERR(cipher_name);
> +
> + inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
> + if (!inst)
> + return -ENOMEM;
> +
> + spawn = aead_instance_ctx(inst);
> +
> + crypto_set_aead_spawn(spawn, aead_crypto_instance(inst));
> + err = crypto_grab_aead(spawn, cipher_name, 0,
> + crypto_requires_sync(algt->type,
> + algt->mask));
> + if (err)
> + goto err_free_inst;
> +
> + alg = crypto_spawn_aead_alg(spawn);
> +
> + /* Only support blocks of size which is of a power of 2 */
> + if (!is_power_of_2(alg->base.cra_blocksize)) {
> + err = -EINVAL;
> + goto err_drop_spawn;
> + }
> +
> + /* algname: essiv, base.cra_name: cbc(aes) */
> + if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
> + algname, alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME) {
> + err = -ENAMETOOLONG;
> + goto err_drop_spawn;
> + }
> +
> + if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
> + "%s(%s)", algname, alg->base.cra_driver_name) >=
> + CRYPTO_MAX_ALG_NAME) {
> + err = -ENAMETOOLONG;
> + goto err_drop_spawn;
> + }
> +
> + inst->alg.base.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
> + inst->alg.base.cra_priority = alg->base.cra_priority;
> + inst->alg.base.cra_blocksize = alg->base.cra_blocksize;
> + inst->alg.base.cra_alignmask = alg->base.cra_alignmask;
> + inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
> + inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
> + inst->alg.chunksize = crypto_aead_alg_chunksize(alg);
> + inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
> +
> + inst->alg.setkey = geniv_aead_setkey;
> + inst->alg.encrypt = geniv_aead_encrypt;
> + inst->alg.decrypt = geniv_aead_decrypt;
> +
> + inst->alg.base.cra_ctxsize = sizeof(struct geniv_ctx);
> +
> + inst->alg.init = geniv_aead_init_tfm;
> + inst->alg.exit = geniv_aead_exit_tfm;
> +
> + inst->free = geniv_aead_free;
> +
> + err = aead_register_instance(tmpl, inst);
> + if (err)
> + goto err_drop_spawn;
> +
> + return 0;
> +
> +err_drop_spawn:
> + crypto_drop_aead(spawn);
> +err_free_inst:
> + kfree(inst);
> + return err;
> +}
> +
> +static int geniv_create(struct crypto_template *tmpl,
> + struct rtattr **tb, char *algname)
> +{
> + if (!crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER))
> + return geniv_skcipher_create(tmpl, tb, algname);
> + else if (!crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AEAD))
> + return geniv_aead_create(tmpl, tb, algname);
> + else
> + return -EINVAL;
> +}
> +
> +static int geniv_template_create(struct crypto_template *tmpl,
> + struct rtattr **tb)
> +{
> + return geniv_create(tmpl, tb, tmpl->name);
> +}
> +
> +#define DEFINE_CRYPTO_TEMPLATE(type) \
> + { .name = type, \
> + .create = geniv_template_create, \
> + .module = THIS_MODULE, },
> +
> +static struct crypto_template geniv_tmpl[IV_TYPE_NUM] = {
> + DEFINE_CRYPTO_TEMPLATE("plain")
> + DEFINE_CRYPTO_TEMPLATE("plain64")
> + DEFINE_CRYPTO_TEMPLATE("essiv")
> + DEFINE_CRYPTO_TEMPLATE("benbi")
> + DEFINE_CRYPTO_TEMPLATE("null")
> + DEFINE_CRYPTO_TEMPLATE("lmk")
> + DEFINE_CRYPTO_TEMPLATE("tcw")
> + DEFINE_CRYPTO_TEMPLATE("random")
> +};
> +
> +static int __init geniv_init(void)
> +{
> + return crypto_register_template_array(geniv_tmpl, IV_TYPE_NUM);
> +}
> +
> +static void __exit geniv_exit(void)
> +{
> + crypto_unregister_template_array(geniv_tmpl, IV_TYPE_NUM);
> +}
> +
> +module_init(geniv_init);
> +module_exit(geniv_exit);
> +
> +MODULE_AUTHOR("Xiongfeng Wang <xiongfeng.wang@...aro.org>");
> +MODULE_DESCRIPTION(DM_NAME " IV Generation Template ");
> +MODULE_LICENSE("GPL");
> diff --git a/include/crypto/geniv.h b/include/crypto/geniv.h
> new file mode 100644
> index 0000000..d8084fc
> --- /dev/null
> +++ b/include/crypto/geniv.h
> @@ -0,0 +1,47 @@
> +/* SPDX-License-Identifier: GPL-2.0 */
> +/*
> + * geniv.h: common interface for IV generation algorithms
> + *
> + * Copyright (C) 2018, Linaro
> + *
> + * This file define the data structure the user should pass to the template.
> + */
> +
> +#ifndef _CRYPTO_GENIV_H
> +#define _CRYPTO_GENIV_H
> +
> +#include <linux/types.h>
> +
> +enum cipher_flags {
> + CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */
> + CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
> +};
> +
> +enum setkey_op {
> + SETKEY_OP_INIT,
> + SETKEY_OP_SET,
> + SETKEY_OP_WIPE,
> +};
> +
> +struct geniv_key_info {
> + enum setkey_op keyop;
> + unsigned int tfms_count;
> + u8 *key;
> + char *ivopts;
> + sector_t iv_offset;
> + unsigned long cipher_flags;
> +
> + unsigned short int sector_size;
> + unsigned int key_size;
> + unsigned int key_parts;
> + unsigned int key_mac_size;
> + unsigned int on_disk_tag_size;
> +};
> +
> +struct geniv_req_info {
> + sector_t cc_sector;
> + unsigned int nents;
> + u8 *integrity_metadata;
> +};
> +
> +#endif
>
Powered by blists - more mailing lists