lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Mon, 7 Jan 2019 09:42:15 -0800
From:   Dave Hansen <dave.hansen@...el.com>
To:     Pingfan Liu <kernelfans@...il.com>, x86@...nel.org,
        linux-acpi@...r.kernel.org
Cc:     Thomas Gleixner <tglx@...utronix.de>,
        Ingo Molnar <mingo@...hat.com>, Borislav Petkov <bp@...en8.de>,
        "H. Peter Anvin" <hpa@...or.com>,
        Dave Hansen <dave.hansen@...ux.intel.com>,
        Andy Lutomirski <luto@...nel.org>,
        Peter Zijlstra <peterz@...radead.org>,
        "Rafael J. Wysocki" <rjw@...ysocki.net>,
        Len Brown <lenb@...nel.org>, linux-kernel@...r.kernel.org
Subject: Re: [RFC PATCH 4/4] x86/mm: remove bottom-up allocation style for
 x86_64

On 1/7/19 12:24 AM, Pingfan Liu wrote:
> There are two acheivements by this patch.
> -1st. keep the subtree of pgtable away from movable node.
> Background about the defect of the current bottom-up allocation style, take
> the following scenario:
>   |  unmovable node |     movable node                           |
>      | kaslr-kernel |subtree of pgtable for phy<->virt |



> Although kaslr-kernel can avoid to stain the movable node. [1] But the
> pgtable can still stain the movable node. That is a probability problem,
> with low probability, but still exist. This patch tries to eliminate the
> probability. With the previous patch, at the point of init_mem_mapping(),
> memblock allocator can work with the knowledge of acpi memory hotmovable
> info, and avoid to stain the movable node. As a result,
> memory_map_bottom_up() is not needed any more.
> 
> -2nd. simplify the logic of memory_map_top_down()
> Thanks to the help of early_make_pgtable(), x86_64 can directly set up the
> subtree of pgtable at any place, hence the careful iteration in
> memory_map_top_down() can be discard.

>  void __init init_mem_mapping(void)
>  {
>  	unsigned long end;
> @@ -663,6 +540,7 @@ void __init init_mem_mapping(void)
>  
>  #ifdef CONFIG_X86_64
>  	end = max_pfn << PAGE_SHIFT;
> +	set_alloc_range(0x100000, end);
>  #else

Why is this 0x100000 open-coded?  Why is this needed *now*?


>  	/*
>  	 * If the allocation is in bottom-up direction, we setup direct mapping
>  	 * in bottom-up, otherwise we setup direct mapping in top-down.
> @@ -692,13 +577,6 @@ void __init init_mem_mapping(void)
>  	} else {
>  		memory_map_top_down(ISA_END_ADDRESS, end);
>  	}
> -
> -#ifdef CONFIG_X86_64
> -	if (max_pfn > max_low_pfn) {
> -		/* can we preseve max_low_pfn ?*/
> -		max_low_pfn = max_pfn;
> -	}
> -#else
>  	early_ioremap_page_table_range_init();
>  #endif
>  
> diff --git a/arch/x86/mm/init_32.c b/arch/x86/mm/init_32.c
> index 85c94f9..ecf7243 100644
> --- a/arch/x86/mm/init_32.c
> +++ b/arch/x86/mm/init_32.c
> @@ -58,6 +58,8 @@ unsigned long highstart_pfn, highend_pfn;
>  
>  bool __read_mostly __vmalloc_start_set = false;
>  
> +static unsigned long min_pfn_mapped;
> +
>  /*
>   * Creates a middle page table and puts a pointer to it in the
>   * given global directory entry. This only returns the gd entry
> @@ -516,6 +518,127 @@ void __init native_pagetable_init(void)
>  	paging_init();
>  }
>  
> +static unsigned long __init get_new_step_size(unsigned long step_size)
> +{
> +	/*
> +	 * Initial mapped size is PMD_SIZE (2M).
> +	 * We can not set step_size to be PUD_SIZE (1G) yet.
> +	 * In worse case, when we cross the 1G boundary, and
> +	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
> +	 * to map 1G range with PTE. Hence we use one less than the
> +	 * difference of page table level shifts.
> +	 *
> +	 * Don't need to worry about overflow in the top-down case, on 32bit,
> +	 * when step_size is 0, round_down() returns 0 for start, and that
> +	 * turns it into 0x100000000ULL.
> +	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
> +	 * needs to be taken into consideration by the code below.
> +	 */
> +	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
> +}
> +
> +/**
> + * memory_map_top_down - Map [map_start, map_end) top down
> + * @map_start: start address of the target memory range
> + * @map_end: end address of the target memory range
> + *
> + * This function will setup direct mapping for memory range
> + * [map_start, map_end) in top-down. That said, the page tables
> + * will be allocated at the end of the memory, and we map the
> + * memory in top-down.
> + */
> +void __init memory_map_top_down(unsigned long map_start,
> +				       unsigned long map_end)
> +{
> +	unsigned long real_end, start, last_start;
> +	unsigned long step_size;
> +	unsigned long addr;
> +	unsigned long mapped_ram_size = 0;
> +
> +	/* xen has big range in reserved near end of ram, skip it at first.*/
> +	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
> +	real_end = addr + PMD_SIZE;
> +
> +	/* step_size need to be small so pgt_buf from BRK could cover it */
> +	step_size = PMD_SIZE;
> +	max_pfn_mapped = 0; /* will get exact value next */
> +	min_pfn_mapped = real_end >> PAGE_SHIFT;
> +	last_start = start = real_end;
> +
> +	/*
> +	 * We start from the top (end of memory) and go to the bottom.
> +	 * The memblock_find_in_range() gets us a block of RAM from the
> +	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
> +	 * for page table.
> +	 */
> +	while (last_start > map_start) {
> +		if (last_start > step_size) {
> +			start = round_down(last_start - 1, step_size);
> +			if (start < map_start)
> +				start = map_start;
> +		} else
> +			start = map_start;
> +		mapped_ram_size += init_range_memory_mapping(start,
> +							last_start);
> +		set_alloc_range(min_pfn_mapped, max_pfn_mapped);
> +		last_start = start;
> +		min_pfn_mapped = last_start >> PAGE_SHIFT;
> +		if (mapped_ram_size >= step_size)
> +			step_size = get_new_step_size(step_size);
> +	}
> +
> +	if (real_end < map_end) {
> +		init_range_memory_mapping(real_end, map_end);
> +		set_alloc_range(min_pfn_mapped, max_pfn_mapped);
> +	}
> +}
> +
> +/**
> + * memory_map_bottom_up - Map [map_start, map_end) bottom up
> + * @map_start: start address of the target memory range
> + * @map_end: end address of the target memory range
> + *
> + * This function will setup direct mapping for memory range
> + * [map_start, map_end) in bottom-up. Since we have limited the
> + * bottom-up allocation above the kernel, the page tables will
> + * be allocated just above the kernel and we map the memory
> + * in [map_start, map_end) in bottom-up.
> + */
> +void __init memory_map_bottom_up(unsigned long map_start,
> +					unsigned long map_end)
> +{
> +	unsigned long next, start;
> +	unsigned long mapped_ram_size = 0;
> +	/* step_size need to be small so pgt_buf from BRK could cover it */
> +	unsigned long step_size = PMD_SIZE;
> +
> +	start = map_start;
> +	min_pfn_mapped = start >> PAGE_SHIFT;
> +
> +	/*
> +	 * We start from the bottom (@map_start) and go to the top (@map_end).
> +	 * The memblock_find_in_range() gets us a block of RAM from the
> +	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
> +	 * for page table.
> +	 */
> +	while (start < map_end) {
> +		if (step_size && map_end - start > step_size) {
> +			next = round_up(start + 1, step_size);
> +			if (next > map_end)
> +				next = map_end;
> +		} else {
> +			next = map_end;
> +		}
> +
> +		mapped_ram_size += init_range_memory_mapping(start, next);
> +		set_alloc_range(min_pfn_mapped, max_pfn_mapped);
> +		start = next;
> +
> +		if (mapped_ram_size >= step_size)
> +			step_size = get_new_step_size(step_size);
> +	}
> +}

One more suggestion:  Can you *move* the code in a separate patch?
Un-use it in this patch, but wait for one more patch to actually move it.

>  /*
>   * Build a proper pagetable for the kernel mappings.  Up until this
>   * point, we've been running on some set of pagetables constructed by
> diff --git a/arch/x86/mm/mm_internal.h b/arch/x86/mm/mm_internal.h
> index 319bde3..28006de 100644
> --- a/arch/x86/mm/mm_internal.h
> +++ b/arch/x86/mm/mm_internal.h
> @@ -8,6 +8,13 @@ static inline void *alloc_low_page(void)
>  	return alloc_low_pages(1);
>  }
>  
> +unsigned long __init init_range_memory_mapping(unsigned long r_start,
> +	unsigned long r_end);
> +void set_alloc_range(unsigned long low, unsigned long high);
> +void __init memory_map_top_down(unsigned long map_start,
> +				       unsigned long map_end);
> +void __init memory_map_bottom_up(unsigned long map_start,
> +					unsigned long map_end);

Is there a reason we can't just move all these calls into init_32.c?

Seems like we probably just want one, new function, like:

	init_mem_mapping_x86_32(end);

And then we just export *that* instead of exporting all of these helpers
that only get used on x86_32.  It also makes init_mem_mapping() more
readable since the #ifdef's are shorter.

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ