lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite for Android: free password hash cracker in your pocket
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <05a2cf74573fb6a818ff938296464b35655fca78.1610622251.git.viresh.kumar@linaro.org>
Date:   Thu, 14 Jan 2021 17:05:24 +0530
From:   Viresh Kumar <viresh.kumar@...aro.org>
To:     Linus Torvalds <torvalds@...ux-foundation.org>,
        Robert Richter <rric@...nel.org>,
        Michael Ellerman <mpe@...erman.id.au>,
        Benjamin Herrenschmidt <benh@...nel.crashing.org>,
        Paul Mackerras <paulus@...ba.org>
Cc:     Viresh Kumar <viresh.kumar@...aro.org>,
        Vincent Guittot <vincent.guittot@...aro.org>,
        Arnd Bergmann <arnd@...nel.org>, oprofile-list@...ts.sf.net,
        William Cohen <wcohen@...hat.com>,
        Alexander Viro <viro@...iv.linux.org.uk>,
        anmar.oueja@...aro.org, Christoph Hellwig <hch@...radead.org>,
        linuxppc-dev@...ts.ozlabs.org, linux-kernel@...r.kernel.org
Subject: [PATCH 11/18] arch: powerpc: Remove oprofile

The previous commit already disabled building oprofile, lets remove the
oprofile directory now.

Suggested-by: Christoph Hellwig <hch@...radead.org>
Suggested-by: Linus Torvalds <torvalds@...ux-foundation.org>
Signed-off-by: Viresh Kumar <viresh.kumar@...aro.org>
---
 arch/powerpc/oprofile/Makefile             |   19 -
 arch/powerpc/oprofile/backtrace.c          |  120 --
 arch/powerpc/oprofile/cell/pr_util.h       |  110 --
 arch/powerpc/oprofile/cell/spu_profiler.c  |  248 ---
 arch/powerpc/oprofile/cell/spu_task_sync.c |  657 --------
 arch/powerpc/oprofile/cell/vma_map.c       |  279 ----
 arch/powerpc/oprofile/common.c             |  243 ---
 arch/powerpc/oprofile/op_model_7450.c      |  207 ---
 arch/powerpc/oprofile/op_model_cell.c      | 1709 --------------------
 arch/powerpc/oprofile/op_model_fsl_emb.c   |  380 -----
 arch/powerpc/oprofile/op_model_pa6t.c      |  227 ---
 arch/powerpc/oprofile/op_model_power4.c    |  438 -----
 12 files changed, 4637 deletions(-)
 delete mode 100644 arch/powerpc/oprofile/Makefile
 delete mode 100644 arch/powerpc/oprofile/backtrace.c
 delete mode 100644 arch/powerpc/oprofile/cell/pr_util.h
 delete mode 100644 arch/powerpc/oprofile/cell/spu_profiler.c
 delete mode 100644 arch/powerpc/oprofile/cell/spu_task_sync.c
 delete mode 100644 arch/powerpc/oprofile/cell/vma_map.c
 delete mode 100644 arch/powerpc/oprofile/common.c
 delete mode 100644 arch/powerpc/oprofile/op_model_7450.c
 delete mode 100644 arch/powerpc/oprofile/op_model_cell.c
 delete mode 100644 arch/powerpc/oprofile/op_model_fsl_emb.c
 delete mode 100644 arch/powerpc/oprofile/op_model_pa6t.c
 delete mode 100644 arch/powerpc/oprofile/op_model_power4.c

diff --git a/arch/powerpc/oprofile/Makefile b/arch/powerpc/oprofile/Makefile
deleted file mode 100644
index bb2d94c8cbe6..000000000000
--- a/arch/powerpc/oprofile/Makefile
+++ /dev/null
@@ -1,19 +0,0 @@
-# SPDX-License-Identifier: GPL-2.0
-
-ccflags-$(CONFIG_PPC64)	:= $(NO_MINIMAL_TOC)
-
-obj-$(CONFIG_OPROFILE) += oprofile.o
-
-DRIVER_OBJS := $(addprefix ../../../drivers/oprofile/, \
-		oprof.o cpu_buffer.o buffer_sync.o \
-		event_buffer.o oprofile_files.o \
-		oprofilefs.o oprofile_stats.o \
-		timer_int.o )
-
-oprofile-y := $(DRIVER_OBJS) common.o backtrace.o
-oprofile-$(CONFIG_OPROFILE_CELL) += op_model_cell.o \
-		cell/spu_profiler.o cell/vma_map.o \
-		cell/spu_task_sync.o
-oprofile-$(CONFIG_PPC_BOOK3S_64) += op_model_power4.o op_model_pa6t.o
-oprofile-$(CONFIG_FSL_EMB_PERFMON) += op_model_fsl_emb.o
-oprofile-$(CONFIG_PPC_BOOK3S_32) += op_model_7450.o
diff --git a/arch/powerpc/oprofile/backtrace.c b/arch/powerpc/oprofile/backtrace.c
deleted file mode 100644
index 9db7ada79d10..000000000000
--- a/arch/powerpc/oprofile/backtrace.c
+++ /dev/null
@@ -1,120 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/**
- * Copyright (C) 2005 Brian Rogan <bcr6@...nell.edu>, IBM
- *
-**/
-
-#include <linux/time.h>
-#include <linux/oprofile.h>
-#include <linux/sched.h>
-#include <asm/processor.h>
-#include <linux/uaccess.h>
-#include <linux/compat.h>
-#include <asm/oprofile_impl.h>
-
-#define STACK_SP(STACK)		*(STACK)
-
-#define STACK_LR64(STACK)	*((unsigned long *)(STACK) + 2)
-#define STACK_LR32(STACK)	*((unsigned int *)(STACK) + 1)
-
-#ifdef CONFIG_PPC64
-#define STACK_LR(STACK)		STACK_LR64(STACK)
-#else
-#define STACK_LR(STACK)		STACK_LR32(STACK)
-#endif
-
-static unsigned int user_getsp32(unsigned int sp, int is_first)
-{
-	unsigned int stack_frame[2];
-	void __user *p = compat_ptr(sp);
-
-	/*
-	 * The most likely reason for this is that we returned -EFAULT,
-	 * which means that we've done all that we can do from
-	 * interrupt context.
-	 */
-	if (copy_from_user_nofault(stack_frame, (void __user *)p,
-			sizeof(stack_frame)))
-		return 0;
-
-	if (!is_first)
-		oprofile_add_trace(STACK_LR32(stack_frame));
-
-	/*
-	 * We do not enforce increasing stack addresses here because
-	 * we may transition to a different stack, eg a signal handler.
-	 */
-	return STACK_SP(stack_frame);
-}
-
-#ifdef CONFIG_PPC64
-static unsigned long user_getsp64(unsigned long sp, int is_first)
-{
-	unsigned long stack_frame[3];
-
-	if (copy_from_user_nofault(stack_frame, (void __user *)sp,
-			sizeof(stack_frame)))
-		return 0;
-
-	if (!is_first)
-		oprofile_add_trace(STACK_LR64(stack_frame));
-
-	return STACK_SP(stack_frame);
-}
-#endif
-
-static unsigned long kernel_getsp(unsigned long sp, int is_first)
-{
-	unsigned long *stack_frame = (unsigned long *)sp;
-
-	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
-		return 0;
-
-	if (!is_first)
-		oprofile_add_trace(STACK_LR(stack_frame));
-
-	/*
-	 * We do not enforce increasing stack addresses here because
-	 * we might be transitioning from an interrupt stack to a kernel
-	 * stack. validate_sp() is designed to understand this, so just
-	 * use it.
-	 */
-	return STACK_SP(stack_frame);
-}
-
-void op_powerpc_backtrace(struct pt_regs * const regs, unsigned int depth)
-{
-	unsigned long sp = regs->gpr[1];
-	int first_frame = 1;
-
-	/* We ditch the top stackframe so need to loop through an extra time */
-	depth += 1;
-
-	if (!user_mode(regs)) {
-		while (depth--) {
-			sp = kernel_getsp(sp, first_frame);
-			if (!sp)
-				break;
-			first_frame = 0;
-		}
-	} else {
-#ifdef CONFIG_PPC64
-		if (!is_32bit_task()) {
-			while (depth--) {
-				sp = user_getsp64(sp, first_frame);
-				if (!sp)
-					break;
-				first_frame = 0;
-			}
-			return;
-		}
-#endif
-
-		while (depth--) {
-			sp = user_getsp32(sp, first_frame);
-			if (!sp)
-				break;
-			first_frame = 0;
-		}
-	}
-}
diff --git a/arch/powerpc/oprofile/cell/pr_util.h b/arch/powerpc/oprofile/cell/pr_util.h
deleted file mode 100644
index e198efa9113a..000000000000
--- a/arch/powerpc/oprofile/cell/pr_util.h
+++ /dev/null
@@ -1,110 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0-or-later */
- /*
- * Cell Broadband Engine OProfile Support
- *
- * (C) Copyright IBM Corporation 2006
- *
- * Author: Maynard Johnson <maynardj@...ibm.com>
- */
-
-#ifndef PR_UTIL_H
-#define PR_UTIL_H
-
-#include <linux/cpumask.h>
-#include <linux/oprofile.h>
-#include <asm/cell-pmu.h>
-#include <asm/cell-regs.h>
-#include <asm/spu.h>
-
-/* Defines used for sync_start */
-#define SKIP_GENERIC_SYNC 0
-#define SYNC_START_ERROR -1
-#define DO_GENERIC_SYNC 1
-#define SPUS_PER_NODE   8
-#define DEFAULT_TIMER_EXPIRE  (HZ / 10)
-
-extern struct delayed_work spu_work;
-extern int spu_prof_running;
-
-#define TRACE_ARRAY_SIZE 1024
-
-extern spinlock_t oprof_spu_smpl_arry_lck;
-
-struct spu_overlay_info {	/* map of sections within an SPU overlay */
-	unsigned int vma;	/* SPU virtual memory address from elf */
-	unsigned int size;	/* size of section from elf */
-	unsigned int offset;	/* offset of section into elf file */
-	unsigned int buf;
-};
-
-struct vma_to_fileoffset_map {	/* map of sections within an SPU program */
-	struct vma_to_fileoffset_map *next;	/* list pointer */
-	unsigned int vma;	/* SPU virtual memory address from elf */
-	unsigned int size;	/* size of section from elf */
-	unsigned int offset;	/* offset of section into elf file */
-	unsigned int guard_ptr;
-	unsigned int guard_val;
-        /*
-	 * The guard pointer is an entry in the _ovly_buf_table,
-	 * computed using ovly.buf as the index into the table.  Since
-	 * ovly.buf values begin at '1' to reference the first (or 0th)
-	 * entry in the _ovly_buf_table, the computation subtracts 1
-	 * from ovly.buf.
-	 * The guard value is stored in the _ovly_buf_table entry and
-	 * is an index (starting at 1) back to the _ovly_table entry
-	 * that is pointing at this _ovly_buf_table entry.  So, for
-	 * example, for an overlay scenario with one overlay segment
-	 * and two overlay sections:
-	 *      - Section 1 points to the first entry of the
-	 *        _ovly_buf_table, which contains a guard value
-	 *        of '1', referencing the first (index=0) entry of
-	 *        _ovly_table.
-	 *      - Section 2 points to the second entry of the
-	 *        _ovly_buf_table, which contains a guard value
-	 *        of '2', referencing the second (index=1) entry of
-	 *        _ovly_table.
-	 */
-
-};
-
-struct spu_buffer {
-	int last_guard_val;
-	int ctx_sw_seen;
-	unsigned long *buff;
-	unsigned int head, tail;
-};
-
-
-/* The three functions below are for maintaining and accessing
- * the vma-to-fileoffset map.
- */
-struct vma_to_fileoffset_map *create_vma_map(const struct spu *spu,
-					     unsigned long objectid);
-unsigned int vma_map_lookup(struct vma_to_fileoffset_map *map,
-			    unsigned int vma, const struct spu *aSpu,
-			    int *grd_val);
-void vma_map_free(struct vma_to_fileoffset_map *map);
-
-/*
- * Entry point for SPU profiling.
- * cycles_reset is the SPU_CYCLES count value specified by the user.
- */
-int start_spu_profiling_cycles(unsigned int cycles_reset);
-void start_spu_profiling_events(void);
-
-void stop_spu_profiling_cycles(void);
-void stop_spu_profiling_events(void);
-
-/* add the necessary profiling hooks */
-int spu_sync_start(void);
-
-/* remove the hooks */
-int spu_sync_stop(void);
-
-/* Record SPU program counter samples to the oprofile event buffer. */
-void spu_sync_buffer(int spu_num, unsigned int *samples,
-		     int num_samples);
-
-void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset);
-
-#endif	  /* PR_UTIL_H */
diff --git a/arch/powerpc/oprofile/cell/spu_profiler.c b/arch/powerpc/oprofile/cell/spu_profiler.c
deleted file mode 100644
index cdf883445a9f..000000000000
--- a/arch/powerpc/oprofile/cell/spu_profiler.c
+++ /dev/null
@@ -1,248 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Cell Broadband Engine OProfile Support
- *
- * (C) Copyright IBM Corporation 2006
- *
- * Authors: Maynard Johnson <maynardj@...ibm.com>
- *	    Carl Love <carll@...ibm.com>
- */
-
-#include <linux/hrtimer.h>
-#include <linux/smp.h>
-#include <linux/slab.h>
-#include <asm/cell-pmu.h>
-#include <asm/time.h>
-#include "pr_util.h"
-
-#define SCALE_SHIFT 14
-
-static u32 *samples;
-
-/* spu_prof_running is a flag used to indicate if spu profiling is enabled
- * or not.  It is set by the routines start_spu_profiling_cycles() and
- * start_spu_profiling_events().  The flag is cleared by the routines
- * stop_spu_profiling_cycles() and stop_spu_profiling_events().  These
- * routines are called via global_start() and global_stop() which are called in
- * op_powerpc_start() and op_powerpc_stop().  These routines are called once
- * per system as a result of the user starting/stopping oprofile.  Hence, only
- * one CPU per user at a time will be changing  the value of spu_prof_running.
- * In general, OProfile does not protect against multiple users trying to run
- * OProfile at a time.
- */
-int spu_prof_running;
-static unsigned int profiling_interval;
-
-#define NUM_SPU_BITS_TRBUF 16
-#define SPUS_PER_TB_ENTRY   4
-
-#define SPU_PC_MASK	     0xFFFF
-
-DEFINE_SPINLOCK(oprof_spu_smpl_arry_lck);
-static unsigned long oprof_spu_smpl_arry_lck_flags;
-
-void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset)
-{
-	unsigned long ns_per_cyc;
-
-	if (!freq_khz)
-		freq_khz = ppc_proc_freq/1000;
-
-	/* To calculate a timeout in nanoseconds, the basic
-	 * formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency).
-	 * To avoid floating point math, we use the scale math
-	 * technique as described in linux/jiffies.h.  We use
-	 * a scale factor of SCALE_SHIFT, which provides 4 decimal places
-	 * of precision.  This is close enough for the purpose at hand.
-	 *
-	 * The value of the timeout should be small enough that the hw
-	 * trace buffer will not get more than about 1/3 full for the
-	 * maximum user specified (the LFSR value) hw sampling frequency.
-	 * This is to ensure the trace buffer will never fill even if the
-	 * kernel thread scheduling varies under a heavy system load.
-	 */
-
-	ns_per_cyc = (USEC_PER_SEC << SCALE_SHIFT)/freq_khz;
-	profiling_interval = (ns_per_cyc * cycles_reset) >> SCALE_SHIFT;
-
-}
-
-/*
- * Extract SPU PC from trace buffer entry
- */
-static void spu_pc_extract(int cpu, int entry)
-{
-	/* the trace buffer is 128 bits */
-	u64 trace_buffer[2];
-	u64 spu_mask;
-	int spu;
-
-	spu_mask = SPU_PC_MASK;
-
-	/* Each SPU PC is 16 bits; hence, four spus in each of
-	 * the two 64-bit buffer entries that make up the
-	 * 128-bit trace_buffer entry.	Process two 64-bit values
-	 * simultaneously.
-	 * trace[0] SPU PC contents are: 0 1 2 3
-	 * trace[1] SPU PC contents are: 4 5 6 7
-	 */
-
-	cbe_read_trace_buffer(cpu, trace_buffer);
-
-	for (spu = SPUS_PER_TB_ENTRY-1; spu >= 0; spu--) {
-		/* spu PC trace entry is upper 16 bits of the
-		 * 18 bit SPU program counter
-		 */
-		samples[spu * TRACE_ARRAY_SIZE + entry]
-			= (spu_mask & trace_buffer[0]) << 2;
-		samples[(spu + SPUS_PER_TB_ENTRY) * TRACE_ARRAY_SIZE + entry]
-			= (spu_mask & trace_buffer[1]) << 2;
-
-		trace_buffer[0] = trace_buffer[0] >> NUM_SPU_BITS_TRBUF;
-		trace_buffer[1] = trace_buffer[1] >> NUM_SPU_BITS_TRBUF;
-	}
-}
-
-static int cell_spu_pc_collection(int cpu)
-{
-	u32 trace_addr;
-	int entry;
-
-	/* process the collected SPU PC for the node */
-
-	entry = 0;
-
-	trace_addr = cbe_read_pm(cpu, trace_address);
-	while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
-		/* there is data in the trace buffer to process */
-		spu_pc_extract(cpu, entry);
-
-		entry++;
-
-		if (entry >= TRACE_ARRAY_SIZE)
-			/* spu_samples is full */
-			break;
-
-		trace_addr = cbe_read_pm(cpu, trace_address);
-	}
-
-	return entry;
-}
-
-
-static enum hrtimer_restart profile_spus(struct hrtimer *timer)
-{
-	ktime_t kt;
-	int cpu, node, k, num_samples, spu_num;
-
-	if (!spu_prof_running)
-		goto stop;
-
-	for_each_online_cpu(cpu) {
-		if (cbe_get_hw_thread_id(cpu))
-			continue;
-
-		node = cbe_cpu_to_node(cpu);
-
-		/* There should only be one kernel thread at a time processing
-		 * the samples.	 In the very unlikely case that the processing
-		 * is taking a very long time and multiple kernel threads are
-		 * started to process the samples.  Make sure only one kernel
-		 * thread is working on the samples array at a time.  The
-		 * sample array must be loaded and then processed for a given
-		 * cpu.	 The sample array is not per cpu.
-		 */
-		spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
-				  oprof_spu_smpl_arry_lck_flags);
-		num_samples = cell_spu_pc_collection(cpu);
-
-		if (num_samples == 0) {
-			spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
-					       oprof_spu_smpl_arry_lck_flags);
-			continue;
-		}
-
-		for (k = 0; k < SPUS_PER_NODE; k++) {
-			spu_num = k + (node * SPUS_PER_NODE);
-			spu_sync_buffer(spu_num,
-					samples + (k * TRACE_ARRAY_SIZE),
-					num_samples);
-		}
-
-		spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
-				       oprof_spu_smpl_arry_lck_flags);
-
-	}
-	smp_wmb();	/* insure spu event buffer updates are written */
-			/* don't want events intermingled... */
-
-	kt = profiling_interval;
-	if (!spu_prof_running)
-		goto stop;
-	hrtimer_forward(timer, timer->base->get_time(), kt);
-	return HRTIMER_RESTART;
-
- stop:
-	printk(KERN_INFO "SPU_PROF: spu-prof timer ending\n");
-	return HRTIMER_NORESTART;
-}
-
-static struct hrtimer timer;
-/*
- * Entry point for SPU cycle profiling.
- * NOTE:  SPU profiling is done system-wide, not per-CPU.
- *
- * cycles_reset is the count value specified by the user when
- * setting up OProfile to count SPU_CYCLES.
- */
-int start_spu_profiling_cycles(unsigned int cycles_reset)
-{
-	ktime_t kt;
-
-	pr_debug("timer resolution: %lu\n", TICK_NSEC);
-	kt = profiling_interval;
-	hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
-	hrtimer_set_expires(&timer, kt);
-	timer.function = profile_spus;
-
-	/* Allocate arrays for collecting SPU PC samples */
-	samples = kcalloc(SPUS_PER_NODE * TRACE_ARRAY_SIZE, sizeof(u32),
-			  GFP_KERNEL);
-
-	if (!samples)
-		return -ENOMEM;
-
-	spu_prof_running = 1;
-	hrtimer_start(&timer, kt, HRTIMER_MODE_REL);
-	schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
-
-	return 0;
-}
-
-/*
- * Entry point for SPU event profiling.
- * NOTE:  SPU profiling is done system-wide, not per-CPU.
- *
- * cycles_reset is the count value specified by the user when
- * setting up OProfile to count SPU_CYCLES.
- */
-void start_spu_profiling_events(void)
-{
-	spu_prof_running = 1;
-	schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
-
-	return;
-}
-
-void stop_spu_profiling_cycles(void)
-{
-	spu_prof_running = 0;
-	hrtimer_cancel(&timer);
-	kfree(samples);
-	pr_debug("SPU_PROF: stop_spu_profiling_cycles issued\n");
-}
-
-void stop_spu_profiling_events(void)
-{
-	spu_prof_running = 0;
-}
diff --git a/arch/powerpc/oprofile/cell/spu_task_sync.c b/arch/powerpc/oprofile/cell/spu_task_sync.c
deleted file mode 100644
index 489f993100d5..000000000000
--- a/arch/powerpc/oprofile/cell/spu_task_sync.c
+++ /dev/null
@@ -1,657 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Cell Broadband Engine OProfile Support
- *
- * (C) Copyright IBM Corporation 2006
- *
- * Author: Maynard Johnson <maynardj@...ibm.com>
- */
-
-/* The purpose of this file is to handle SPU event task switching
- * and to record SPU context information into the OProfile
- * event buffer.
- *
- * Additionally, the spu_sync_buffer function is provided as a helper
- * for recoding actual SPU program counter samples to the event buffer.
- */
-#include <linux/dcookies.h>
-#include <linux/kref.h>
-#include <linux/mm.h>
-#include <linux/fs.h>
-#include <linux/file.h>
-#include <linux/module.h>
-#include <linux/notifier.h>
-#include <linux/numa.h>
-#include <linux/oprofile.h>
-#include <linux/slab.h>
-#include <linux/spinlock.h>
-#include "pr_util.h"
-
-#define RELEASE_ALL 9999
-
-static DEFINE_SPINLOCK(buffer_lock);
-static DEFINE_SPINLOCK(cache_lock);
-static int num_spu_nodes;
-static int spu_prof_num_nodes;
-
-struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
-struct delayed_work spu_work;
-static unsigned max_spu_buff;
-
-static void spu_buff_add(unsigned long int value, int spu)
-{
-	/* spu buff is a circular buffer.  Add entries to the
-	 * head.  Head is the index to store the next value.
-	 * The buffer is full when there is one available entry
-	 * in the queue, i.e. head and tail can't be equal.
-	 * That way we can tell the difference between the
-	 * buffer being full versus empty.
-	 *
-	 *  ASSUMPTION: the buffer_lock is held when this function
-	 *             is called to lock the buffer, head and tail.
-	 */
-	int full = 1;
-
-	if (spu_buff[spu].head >= spu_buff[spu].tail) {
-		if ((spu_buff[spu].head - spu_buff[spu].tail)
-		    <  (max_spu_buff - 1))
-			full = 0;
-
-	} else if (spu_buff[spu].tail > spu_buff[spu].head) {
-		if ((spu_buff[spu].tail - spu_buff[spu].head)
-		    > 1)
-			full = 0;
-	}
-
-	if (!full) {
-		spu_buff[spu].buff[spu_buff[spu].head] = value;
-		spu_buff[spu].head++;
-
-		if (spu_buff[spu].head >= max_spu_buff)
-			spu_buff[spu].head = 0;
-	} else {
-		/* From the user's perspective make the SPU buffer
-		 * size management/overflow look like we are using
-		 * per cpu buffers.  The user uses the same
-		 * per cpu parameter to adjust the SPU buffer size.
-		 * Increment the sample_lost_overflow to inform
-		 * the user the buffer size needs to be increased.
-		 */
-		oprofile_cpu_buffer_inc_smpl_lost();
-	}
-}
-
-/* This function copies the per SPU buffers to the
- * OProfile kernel buffer.
- */
-static void sync_spu_buff(void)
-{
-	int spu;
-	unsigned long flags;
-	int curr_head;
-
-	for (spu = 0; spu < num_spu_nodes; spu++) {
-		/* In case there was an issue and the buffer didn't
-		 * get created skip it.
-		 */
-		if (spu_buff[spu].buff == NULL)
-			continue;
-
-		/* Hold the lock to make sure the head/tail
-		 * doesn't change while spu_buff_add() is
-		 * deciding if the buffer is full or not.
-		 * Being a little paranoid.
-		 */
-		spin_lock_irqsave(&buffer_lock, flags);
-		curr_head = spu_buff[spu].head;
-		spin_unlock_irqrestore(&buffer_lock, flags);
-
-		/* Transfer the current contents to the kernel buffer.
-		 * data can still be added to the head of the buffer.
-		 */
-		oprofile_put_buff(spu_buff[spu].buff,
-				  spu_buff[spu].tail,
-				  curr_head, max_spu_buff);
-
-		spin_lock_irqsave(&buffer_lock, flags);
-		spu_buff[spu].tail = curr_head;
-		spin_unlock_irqrestore(&buffer_lock, flags);
-	}
-
-}
-
-static void wq_sync_spu_buff(struct work_struct *work)
-{
-	/* move data from spu buffers to kernel buffer */
-	sync_spu_buff();
-
-	/* only reschedule if profiling is not done */
-	if (spu_prof_running)
-		schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
-}
-
-/* Container for caching information about an active SPU task. */
-struct cached_info {
-	struct vma_to_fileoffset_map *map;
-	struct spu *the_spu;	/* needed to access pointer to local_store */
-	struct kref cache_ref;
-};
-
-static struct cached_info *spu_info[MAX_NUMNODES * 8];
-
-static void destroy_cached_info(struct kref *kref)
-{
-	struct cached_info *info;
-
-	info = container_of(kref, struct cached_info, cache_ref);
-	vma_map_free(info->map);
-	kfree(info);
-	module_put(THIS_MODULE);
-}
-
-/* Return the cached_info for the passed SPU number.
- * ATTENTION:  Callers are responsible for obtaining the
- *	       cache_lock if needed prior to invoking this function.
- */
-static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
-{
-	struct kref *ref;
-	struct cached_info *ret_info;
-
-	if (spu_num >= num_spu_nodes) {
-		printk(KERN_ERR "SPU_PROF: "
-		       "%s, line %d: Invalid index %d into spu info cache\n",
-		       __func__, __LINE__, spu_num);
-		ret_info = NULL;
-		goto out;
-	}
-	if (!spu_info[spu_num] && the_spu) {
-		ref = spu_get_profile_private_kref(the_spu->ctx);
-		if (ref) {
-			spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
-			kref_get(&spu_info[spu_num]->cache_ref);
-		}
-	}
-
-	ret_info = spu_info[spu_num];
- out:
-	return ret_info;
-}
-
-
-/* Looks for cached info for the passed spu.  If not found, the
- * cached info is created for the passed spu.
- * Returns 0 for success; otherwise, -1 for error.
- */
-static int
-prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
-{
-	unsigned long flags;
-	struct vma_to_fileoffset_map *new_map;
-	int retval = 0;
-	struct cached_info *info;
-
-	/* We won't bother getting cache_lock here since
-	 * don't do anything with the cached_info that's returned.
-	 */
-	info = get_cached_info(spu, spu->number);
-
-	if (info) {
-		pr_debug("Found cached SPU info.\n");
-		goto out;
-	}
-
-	/* Create cached_info and set spu_info[spu->number] to point to it.
-	 * spu->number is a system-wide value, not a per-node value.
-	 */
-	info = kzalloc(sizeof(*info), GFP_KERNEL);
-	if (!info) {
-		printk(KERN_ERR "SPU_PROF: "
-		       "%s, line %d: create vma_map failed\n",
-		       __func__, __LINE__);
-		retval = -ENOMEM;
-		goto err_alloc;
-	}
-	new_map = create_vma_map(spu, objectId);
-	if (!new_map) {
-		printk(KERN_ERR "SPU_PROF: "
-		       "%s, line %d: create vma_map failed\n",
-		       __func__, __LINE__);
-		retval = -ENOMEM;
-		goto err_alloc;
-	}
-
-	pr_debug("Created vma_map\n");
-	info->map = new_map;
-	info->the_spu = spu;
-	kref_init(&info->cache_ref);
-	spin_lock_irqsave(&cache_lock, flags);
-	spu_info[spu->number] = info;
-	/* Increment count before passing off ref to SPUFS. */
-	kref_get(&info->cache_ref);
-
-	/* We increment the module refcount here since SPUFS is
-	 * responsible for the final destruction of the cached_info,
-	 * and it must be able to access the destroy_cached_info()
-	 * function defined in the OProfile module.  We decrement
-	 * the module refcount in destroy_cached_info.
-	 */
-	try_module_get(THIS_MODULE);
-	spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
-				destroy_cached_info);
-	spin_unlock_irqrestore(&cache_lock, flags);
-	goto out;
-
-err_alloc:
-	kfree(info);
-out:
-	return retval;
-}
-
-/*
- * NOTE:  The caller is responsible for locking the
- *	  cache_lock prior to calling this function.
- */
-static int release_cached_info(int spu_index)
-{
-	int index, end;
-
-	if (spu_index == RELEASE_ALL) {
-		end = num_spu_nodes;
-		index = 0;
-	} else {
-		if (spu_index >= num_spu_nodes) {
-			printk(KERN_ERR "SPU_PROF: "
-				"%s, line %d: "
-				"Invalid index %d into spu info cache\n",
-				__func__, __LINE__, spu_index);
-			goto out;
-		}
-		end = spu_index + 1;
-		index = spu_index;
-	}
-	for (; index < end; index++) {
-		if (spu_info[index]) {
-			kref_put(&spu_info[index]->cache_ref,
-				 destroy_cached_info);
-			spu_info[index] = NULL;
-		}
-	}
-
-out:
-	return 0;
-}
-
-/* The source code for fast_get_dcookie was "borrowed"
- * from drivers/oprofile/buffer_sync.c.
- */
-
-/* Optimisation. We can manage without taking the dcookie sem
- * because we cannot reach this code without at least one
- * dcookie user still being registered (namely, the reader
- * of the event buffer).
- */
-static inline unsigned long fast_get_dcookie(const struct path *path)
-{
-	unsigned long cookie;
-
-	if (path->dentry->d_flags & DCACHE_COOKIE)
-		return (unsigned long)path->dentry;
-	get_dcookie(path, &cookie);
-	return cookie;
-}
-
-/* Look up the dcookie for the task's mm->exe_file,
- * which corresponds loosely to "application name". Also, determine
- * the offset for the SPU ELF object.  If computed offset is
- * non-zero, it implies an embedded SPU object; otherwise, it's a
- * separate SPU binary, in which case we retrieve it's dcookie.
- * For the embedded case, we must determine if SPU ELF is embedded
- * in the executable application or another file (i.e., shared lib).
- * If embedded in a shared lib, we must get the dcookie and return
- * that to the caller.
- */
-static unsigned long
-get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
-			    unsigned long *spu_bin_dcookie,
-			    unsigned long spu_ref)
-{
-	unsigned long app_cookie = 0;
-	unsigned int my_offset = 0;
-	struct vm_area_struct *vma;
-	struct file *exe_file;
-	struct mm_struct *mm = spu->mm;
-
-	if (!mm)
-		goto out;
-
-	exe_file = get_mm_exe_file(mm);
-	if (exe_file) {
-		app_cookie = fast_get_dcookie(&exe_file->f_path);
-		pr_debug("got dcookie for %pD\n", exe_file);
-		fput(exe_file);
-	}
-
-	mmap_read_lock(mm);
-	for (vma = mm->mmap; vma; vma = vma->vm_next) {
-		if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
-			continue;
-		my_offset = spu_ref - vma->vm_start;
-		if (!vma->vm_file)
-			goto fail_no_image_cookie;
-
-		pr_debug("Found spu ELF at %X(object-id:%lx) for file %pD\n",
-			 my_offset, spu_ref, vma->vm_file);
-		*offsetp = my_offset;
-		break;
-	}
-
-	*spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
-	pr_debug("got dcookie for %pD\n", vma->vm_file);
-
-	mmap_read_unlock(mm);
-
-out:
-	return app_cookie;
-
-fail_no_image_cookie:
-	mmap_read_unlock(mm);
-
-	printk(KERN_ERR "SPU_PROF: "
-		"%s, line %d: Cannot find dcookie for SPU binary\n",
-		__func__, __LINE__);
-	goto out;
-}
-
-
-
-/* This function finds or creates cached context information for the
- * passed SPU and records SPU context information into the OProfile
- * event buffer.
- */
-static int process_context_switch(struct spu *spu, unsigned long objectId)
-{
-	unsigned long flags;
-	int retval;
-	unsigned int offset = 0;
-	unsigned long spu_cookie = 0, app_dcookie;
-
-	retval = prepare_cached_spu_info(spu, objectId);
-	if (retval)
-		goto out;
-
-	/* Get dcookie first because a mutex_lock is taken in that
-	 * code path, so interrupts must not be disabled.
-	 */
-	app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
-	if (!app_dcookie || !spu_cookie) {
-		retval  = -ENOENT;
-		goto out;
-	}
-
-	/* Record context info in event buffer */
-	spin_lock_irqsave(&buffer_lock, flags);
-	spu_buff_add(ESCAPE_CODE, spu->number);
-	spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
-	spu_buff_add(spu->number, spu->number);
-	spu_buff_add(spu->pid, spu->number);
-	spu_buff_add(spu->tgid, spu->number);
-	spu_buff_add(app_dcookie, spu->number);
-	spu_buff_add(spu_cookie, spu->number);
-	spu_buff_add(offset, spu->number);
-
-	/* Set flag to indicate SPU PC data can now be written out.  If
-	 * the SPU program counter data is seen before an SPU context
-	 * record is seen, the postprocessing will fail.
-	 */
-	spu_buff[spu->number].ctx_sw_seen = 1;
-
-	spin_unlock_irqrestore(&buffer_lock, flags);
-	smp_wmb();	/* insure spu event buffer updates are written */
-			/* don't want entries intermingled... */
-out:
-	return retval;
-}
-
-/*
- * This function is invoked on either a bind_context or unbind_context.
- * If called for an unbind_context, the val arg is 0; otherwise,
- * it is the object-id value for the spu context.
- * The data arg is of type 'struct spu *'.
- */
-static int spu_active_notify(struct notifier_block *self, unsigned long val,
-				void *data)
-{
-	int retval;
-	unsigned long flags;
-	struct spu *the_spu = data;
-
-	pr_debug("SPU event notification arrived\n");
-	if (!val) {
-		spin_lock_irqsave(&cache_lock, flags);
-		retval = release_cached_info(the_spu->number);
-		spin_unlock_irqrestore(&cache_lock, flags);
-	} else {
-		retval = process_context_switch(the_spu, val);
-	}
-	return retval;
-}
-
-static struct notifier_block spu_active = {
-	.notifier_call = spu_active_notify,
-};
-
-static int number_of_online_nodes(void)
-{
-        u32 cpu; u32 tmp;
-        int nodes = 0;
-        for_each_online_cpu(cpu) {
-                tmp = cbe_cpu_to_node(cpu) + 1;
-                if (tmp > nodes)
-                        nodes++;
-        }
-        return nodes;
-}
-
-static int oprofile_spu_buff_create(void)
-{
-	int spu;
-
-	max_spu_buff = oprofile_get_cpu_buffer_size();
-
-	for (spu = 0; spu < num_spu_nodes; spu++) {
-		/* create circular buffers to store the data in.
-		 * use locks to manage accessing the buffers
-		 */
-		spu_buff[spu].head = 0;
-		spu_buff[spu].tail = 0;
-
-		/*
-		 * Create a buffer for each SPU.  Can't reliably
-		 * create a single buffer for all spus due to not
-		 * enough contiguous kernel memory.
-		 */
-
-		spu_buff[spu].buff = kzalloc((max_spu_buff
-					      * sizeof(unsigned long)),
-					     GFP_KERNEL);
-
-		if (!spu_buff[spu].buff) {
-			printk(KERN_ERR "SPU_PROF: "
-			       "%s, line %d:  oprofile_spu_buff_create "
-		       "failed to allocate spu buffer %d.\n",
-			       __func__, __LINE__, spu);
-
-			/* release the spu buffers that have been allocated */
-			while (spu >= 0) {
-				kfree(spu_buff[spu].buff);
-				spu_buff[spu].buff = 0;
-				spu--;
-			}
-			return -ENOMEM;
-		}
-	}
-	return 0;
-}
-
-/* The main purpose of this function is to synchronize
- * OProfile with SPUFS by registering to be notified of
- * SPU task switches.
- *
- * NOTE: When profiling SPUs, we must ensure that only
- * spu_sync_start is invoked and not the generic sync_start
- * in drivers/oprofile/oprof.c.	 A return value of
- * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
- * accomplish this.
- */
-int spu_sync_start(void)
-{
-	int spu;
-	int ret = SKIP_GENERIC_SYNC;
-	int register_ret;
-	unsigned long flags = 0;
-
-	spu_prof_num_nodes = number_of_online_nodes();
-	num_spu_nodes = spu_prof_num_nodes * 8;
-	INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
-
-	/* create buffer for storing the SPU data to put in
-	 * the kernel buffer.
-	 */
-	ret = oprofile_spu_buff_create();
-	if (ret)
-		goto out;
-
-	spin_lock_irqsave(&buffer_lock, flags);
-	for (spu = 0; spu < num_spu_nodes; spu++) {
-		spu_buff_add(ESCAPE_CODE, spu);
-		spu_buff_add(SPU_PROFILING_CODE, spu);
-		spu_buff_add(num_spu_nodes, spu);
-	}
-	spin_unlock_irqrestore(&buffer_lock, flags);
-
-	for (spu = 0; spu < num_spu_nodes; spu++) {
-		spu_buff[spu].ctx_sw_seen = 0;
-		spu_buff[spu].last_guard_val = 0;
-	}
-
-	/* Register for SPU events  */
-	register_ret = spu_switch_event_register(&spu_active);
-	if (register_ret) {
-		ret = SYNC_START_ERROR;
-		goto out;
-	}
-
-	pr_debug("spu_sync_start -- running.\n");
-out:
-	return ret;
-}
-
-/* Record SPU program counter samples to the oprofile event buffer. */
-void spu_sync_buffer(int spu_num, unsigned int *samples,
-		     int num_samples)
-{
-	unsigned long long file_offset;
-	unsigned long flags;
-	int i;
-	struct vma_to_fileoffset_map *map;
-	struct spu *the_spu;
-	unsigned long long spu_num_ll = spu_num;
-	unsigned long long spu_num_shifted = spu_num_ll << 32;
-	struct cached_info *c_info;
-
-	/* We need to obtain the cache_lock here because it's
-	 * possible that after getting the cached_info, the SPU job
-	 * corresponding to this cached_info may end, thus resulting
-	 * in the destruction of the cached_info.
-	 */
-	spin_lock_irqsave(&cache_lock, flags);
-	c_info = get_cached_info(NULL, spu_num);
-	if (!c_info) {
-		/* This legitimately happens when the SPU task ends before all
-		 * samples are recorded.
-		 * No big deal -- so we just drop a few samples.
-		 */
-		pr_debug("SPU_PROF: No cached SPU context "
-			  "for SPU #%d. Dropping samples.\n", spu_num);
-		goto out;
-	}
-
-	map = c_info->map;
-	the_spu = c_info->the_spu;
-	spin_lock(&buffer_lock);
-	for (i = 0; i < num_samples; i++) {
-		unsigned int sample = *(samples+i);
-		int grd_val = 0;
-		file_offset = 0;
-		if (sample == 0)
-			continue;
-		file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
-
-		/* If overlays are used by this SPU application, the guard
-		 * value is non-zero, indicating which overlay section is in
-		 * use.	 We need to discard samples taken during the time
-		 * period which an overlay occurs (i.e., guard value changes).
-		 */
-		if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
-			spu_buff[spu_num].last_guard_val = grd_val;
-			/* Drop the rest of the samples. */
-			break;
-		}
-
-		/* We must ensure that the SPU context switch has been written
-		 * out before samples for the SPU.  Otherwise, the SPU context
-		 * information is not available and the postprocessing of the
-		 * SPU PC will fail with no available anonymous map information.
-		 */
-		if (spu_buff[spu_num].ctx_sw_seen)
-			spu_buff_add((file_offset | spu_num_shifted),
-					 spu_num);
-	}
-	spin_unlock(&buffer_lock);
-out:
-	spin_unlock_irqrestore(&cache_lock, flags);
-}
-
-
-int spu_sync_stop(void)
-{
-	unsigned long flags = 0;
-	int ret;
-	int k;
-
-	ret = spu_switch_event_unregister(&spu_active);
-
-	if (ret)
-		printk(KERN_ERR "SPU_PROF: "
-		       "%s, line %d: spu_switch_event_unregister "	\
-		       "returned %d\n",
-		       __func__, __LINE__, ret);
-
-	/* flush any remaining data in the per SPU buffers */
-	sync_spu_buff();
-
-	spin_lock_irqsave(&cache_lock, flags);
-	ret = release_cached_info(RELEASE_ALL);
-	spin_unlock_irqrestore(&cache_lock, flags);
-
-	/* remove scheduled work queue item rather then waiting
-	 * for every queued entry to execute.  Then flush pending
-	 * system wide buffer to event buffer.
-	 */
-	cancel_delayed_work(&spu_work);
-
-	for (k = 0; k < num_spu_nodes; k++) {
-		spu_buff[k].ctx_sw_seen = 0;
-
-		/*
-		 * spu_sys_buff will be null if there was a problem
-		 * allocating the buffer.  Only delete if it exists.
-		 */
-		kfree(spu_buff[k].buff);
-		spu_buff[k].buff = 0;
-	}
-	pr_debug("spu_sync_stop -- done.\n");
-	return ret;
-}
-
diff --git a/arch/powerpc/oprofile/cell/vma_map.c b/arch/powerpc/oprofile/cell/vma_map.c
deleted file mode 100644
index 7c4b19cfde88..000000000000
--- a/arch/powerpc/oprofile/cell/vma_map.c
+++ /dev/null
@@ -1,279 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Cell Broadband Engine OProfile Support
- *
- * (C) Copyright IBM Corporation 2006
- *
- * Author: Maynard Johnson <maynardj@...ibm.com>
- */
-
-/* The code in this source file is responsible for generating
- * vma-to-fileOffset maps for both overlay and non-overlay SPU
- * applications.
- */
-
-#include <linux/mm.h>
-#include <linux/string.h>
-#include <linux/uaccess.h>
-#include <linux/elf.h>
-#include <linux/slab.h>
-#include "pr_util.h"
-
-
-void vma_map_free(struct vma_to_fileoffset_map *map)
-{
-	while (map) {
-		struct vma_to_fileoffset_map *next = map->next;
-		kfree(map);
-		map = next;
-	}
-}
-
-unsigned int
-vma_map_lookup(struct vma_to_fileoffset_map *map, unsigned int vma,
-	       const struct spu *aSpu, int *grd_val)
-{
-	/*
-	 * Default the offset to the physical address + a flag value.
-	 * Addresses of dynamically generated code can't be found in the vma
-	 * map.  For those addresses the flagged value will be sent on to
-	 * the user space tools so they can be reported rather than just
-	 * thrown away.
-	 */
-	u32 offset = 0x10000000 + vma;
-	u32 ovly_grd;
-
-	for (; map; map = map->next) {
-		if (vma < map->vma || vma >= map->vma + map->size)
-			continue;
-
-		if (map->guard_ptr) {
-			ovly_grd = *(u32 *)(aSpu->local_store + map->guard_ptr);
-			if (ovly_grd != map->guard_val)
-				continue;
-			*grd_val = ovly_grd;
-		}
-		offset = vma - map->vma + map->offset;
-		break;
-	}
-
-	return offset;
-}
-
-static struct vma_to_fileoffset_map *
-vma_map_add(struct vma_to_fileoffset_map *map, unsigned int vma,
-	    unsigned int size, unsigned int offset, unsigned int guard_ptr,
-	    unsigned int guard_val)
-{
-	struct vma_to_fileoffset_map *new = kzalloc(sizeof(*new), GFP_KERNEL);
-
-	if (!new) {
-		printk(KERN_ERR "SPU_PROF: %s, line %d: malloc failed\n",
-		       __func__, __LINE__);
-		vma_map_free(map);
-		return NULL;
-	}
-
-	new->next = map;
-	new->vma = vma;
-	new->size = size;
-	new->offset = offset;
-	new->guard_ptr = guard_ptr;
-	new->guard_val = guard_val;
-
-	return new;
-}
-
-
-/* Parse SPE ELF header and generate a list of vma_maps.
- * A pointer to the first vma_map in the generated list
- * of vma_maps is returned.  */
-struct vma_to_fileoffset_map *create_vma_map(const struct spu *aSpu,
-					     unsigned long __spu_elf_start)
-{
-	static const unsigned char expected[EI_PAD] = {
-		[EI_MAG0] = ELFMAG0,
-		[EI_MAG1] = ELFMAG1,
-		[EI_MAG2] = ELFMAG2,
-		[EI_MAG3] = ELFMAG3,
-		[EI_CLASS] = ELFCLASS32,
-		[EI_DATA] = ELFDATA2MSB,
-		[EI_VERSION] = EV_CURRENT,
-		[EI_OSABI] = ELFOSABI_NONE
-	};
-
-	int grd_val;
-	struct vma_to_fileoffset_map *map = NULL;
-	void __user *spu_elf_start = (void __user *)__spu_elf_start;
-	struct spu_overlay_info ovly;
-	unsigned int overlay_tbl_offset = -1;
-	Elf32_Phdr __user *phdr_start;
-	Elf32_Shdr __user *shdr_start;
-	Elf32_Ehdr ehdr;
-	Elf32_Phdr phdr;
-	Elf32_Shdr shdr, shdr_str;
-	Elf32_Sym sym;
-	int i, j;
-	char name[32];
-
-	unsigned int ovly_table_sym = 0;
-	unsigned int ovly_buf_table_sym = 0;
-	unsigned int ovly_table_end_sym = 0;
-	unsigned int ovly_buf_table_end_sym = 0;
-	struct spu_overlay_info __user *ovly_table;
-	unsigned int n_ovlys;
-
-	/* Get and validate ELF header.	 */
-
-	if (copy_from_user(&ehdr, spu_elf_start, sizeof (ehdr)))
-		goto fail;
-
-	if (memcmp(ehdr.e_ident, expected, EI_PAD) != 0) {
-		printk(KERN_ERR "SPU_PROF: "
-		       "%s, line %d: Unexpected e_ident parsing SPU ELF\n",
-		       __func__, __LINE__);
-		goto fail;
-	}
-	if (ehdr.e_machine != EM_SPU) {
-		printk(KERN_ERR "SPU_PROF: "
-		       "%s, line %d: Unexpected e_machine parsing SPU ELF\n",
-		       __func__,  __LINE__);
-		goto fail;
-	}
-	if (ehdr.e_type != ET_EXEC) {
-		printk(KERN_ERR "SPU_PROF: "
-		       "%s, line %d: Unexpected e_type parsing SPU ELF\n",
-		       __func__, __LINE__);
-		goto fail;
-	}
-	phdr_start = spu_elf_start + ehdr.e_phoff;
-	shdr_start = spu_elf_start + ehdr.e_shoff;
-
-	/* Traverse program headers.  */
-	for (i = 0; i < ehdr.e_phnum; i++) {
-		if (copy_from_user(&phdr, phdr_start + i, sizeof(phdr)))
-			goto fail;
-
-		if (phdr.p_type != PT_LOAD)
-			continue;
-		if (phdr.p_flags & (1 << 27))
-			continue;
-
-		map = vma_map_add(map, phdr.p_vaddr, phdr.p_memsz,
-				  phdr.p_offset, 0, 0);
-		if (!map)
-			goto fail;
-	}
-
-	pr_debug("SPU_PROF: Created non-overlay maps\n");
-	/* Traverse section table and search for overlay-related symbols.  */
-	for (i = 0; i < ehdr.e_shnum; i++) {
-		if (copy_from_user(&shdr, shdr_start + i, sizeof(shdr)))
-			goto fail;
-
-		if (shdr.sh_type != SHT_SYMTAB)
-			continue;
-		if (shdr.sh_entsize != sizeof (sym))
-			continue;
-
-		if (copy_from_user(&shdr_str,
-				   shdr_start + shdr.sh_link,
-				   sizeof(shdr)))
-			goto fail;
-
-		if (shdr_str.sh_type != SHT_STRTAB)
-			goto fail;
-
-		for (j = 0; j < shdr.sh_size / sizeof (sym); j++) {
-			if (copy_from_user(&sym, spu_elf_start +
-						 shdr.sh_offset +
-						 j * sizeof (sym),
-					   sizeof (sym)))
-				goto fail;
-
-			if (copy_from_user(name, 
-					   spu_elf_start + shdr_str.sh_offset +
-					   sym.st_name,
-					   20))
-				goto fail;
-
-			if (memcmp(name, "_ovly_table", 12) == 0)
-				ovly_table_sym = sym.st_value;
-			if (memcmp(name, "_ovly_buf_table", 16) == 0)
-				ovly_buf_table_sym = sym.st_value;
-			if (memcmp(name, "_ovly_table_end", 16) == 0)
-				ovly_table_end_sym = sym.st_value;
-			if (memcmp(name, "_ovly_buf_table_end", 20) == 0)
-				ovly_buf_table_end_sym = sym.st_value;
-		}
-	}
-
-	/* If we don't have overlays, we're done.  */
-	if (ovly_table_sym == 0 || ovly_buf_table_sym == 0
-	    || ovly_table_end_sym == 0 || ovly_buf_table_end_sym == 0) {
-		pr_debug("SPU_PROF: No overlay table found\n");
-		goto out;
-	} else {
-		pr_debug("SPU_PROF: Overlay table found\n");
-	}
-
-	/* The _ovly_table symbol represents a table with one entry
-	 * per overlay section.	 The _ovly_buf_table symbol represents
-	 * a table with one entry per overlay region.
-	 * The struct spu_overlay_info gives the structure of the _ovly_table
-	 * entries.  The structure of _ovly_table_buf is simply one
-	 * u32 word per entry.
-	 */
-	overlay_tbl_offset = vma_map_lookup(map, ovly_table_sym,
-					    aSpu, &grd_val);
-	if (overlay_tbl_offset > 0x10000000) {
-		printk(KERN_ERR "SPU_PROF: "
-		       "%s, line %d: Error finding SPU overlay table\n",
-		       __func__, __LINE__);
-		goto fail;
-	}
-	ovly_table = spu_elf_start + overlay_tbl_offset;
-
-	n_ovlys = (ovly_table_end_sym -
-		   ovly_table_sym) / sizeof (ovly);
-
-	/* Traverse overlay table.  */
-	for (i = 0; i < n_ovlys; i++) {
-		if (copy_from_user(&ovly, ovly_table + i, sizeof (ovly)))
-			goto fail;
-
-		/* The ovly.vma/size/offset arguments are analogous to the same
-		 * arguments used above for non-overlay maps.  The final two
-		 * args are referred to as the guard pointer and the guard
-		 * value.
-		 * The guard pointer is an entry in the _ovly_buf_table,
-		 * computed using ovly.buf as the index into the table.	 Since
-		 * ovly.buf values begin at '1' to reference the first (or 0th)
-		 * entry in the _ovly_buf_table, the computation subtracts 1
-		 * from ovly.buf.
-		 * The guard value is stored in the _ovly_buf_table entry and
-		 * is an index (starting at 1) back to the _ovly_table entry
-		 * that is pointing at this _ovly_buf_table entry.  So, for
-		 * example, for an overlay scenario with one overlay segment
-		 * and two overlay sections:
-		 *	- Section 1 points to the first entry of the
-		 *	  _ovly_buf_table, which contains a guard value
-		 *	  of '1', referencing the first (index=0) entry of
-		 *	  _ovly_table.
-		 *	- Section 2 points to the second entry of the
-		 *	  _ovly_buf_table, which contains a guard value
-		 *	  of '2', referencing the second (index=1) entry of
-		 *	  _ovly_table.
-		 */
-		map = vma_map_add(map, ovly.vma, ovly.size, ovly.offset,
-				  ovly_buf_table_sym + (ovly.buf-1) * 4, i+1);
-		if (!map)
-			goto fail;
-	}
-	goto out;
-
- fail:
-	map = NULL;
- out:
-	return map;
-}
diff --git a/arch/powerpc/oprofile/common.c b/arch/powerpc/oprofile/common.c
deleted file mode 100644
index 0fb528c2b3a1..000000000000
--- a/arch/powerpc/oprofile/common.c
+++ /dev/null
@@ -1,243 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * PPC 64 oprofile support:
- * Copyright (C) 2004 Anton Blanchard <anton@...ibm.com>, IBM
- * PPC 32 oprofile support: (based on PPC 64 support)
- * Copyright (C) Freescale Semiconductor, Inc 2004
- *	Author: Andy Fleming
- *
- * Based on alpha version.
- */
-
-#include <linux/oprofile.h>
-#include <linux/init.h>
-#include <linux/smp.h>
-#include <linux/errno.h>
-#include <asm/ptrace.h>
-#include <asm/pmc.h>
-#include <asm/cputable.h>
-#include <asm/oprofile_impl.h>
-#include <asm/firmware.h>
-
-static struct op_powerpc_model *model;
-
-static struct op_counter_config ctr[OP_MAX_COUNTER];
-static struct op_system_config sys;
-
-static int op_per_cpu_rc;
-
-static void op_handle_interrupt(struct pt_regs *regs)
-{
-	model->handle_interrupt(regs, ctr);
-}
-
-static void op_powerpc_cpu_setup(void *dummy)
-{
-	int ret;
-
-	ret = model->cpu_setup(ctr);
-
-	if (ret != 0)
-		op_per_cpu_rc = ret;
-}
-
-static int op_powerpc_setup(void)
-{
-	int err;
-
-	op_per_cpu_rc = 0;
-
-	/* Grab the hardware */
-	err = reserve_pmc_hardware(op_handle_interrupt);
-	if (err)
-		return err;
-
-	/* Pre-compute the values to stuff in the hardware registers.  */
-	op_per_cpu_rc = model->reg_setup(ctr, &sys, model->num_counters);
-
-	if (op_per_cpu_rc)
-		goto out;
-
-	/* Configure the registers on all cpus.	 If an error occurs on one
-	 * of the cpus, op_per_cpu_rc will be set to the error */
-	on_each_cpu(op_powerpc_cpu_setup, NULL, 1);
-
-out:	if (op_per_cpu_rc) {
-		/* error on setup release the performance counter hardware */
-		release_pmc_hardware();
-	}
-
-	return op_per_cpu_rc;
-}
-
-static void op_powerpc_shutdown(void)
-{
-	release_pmc_hardware();
-}
-
-static void op_powerpc_cpu_start(void *dummy)
-{
-	/* If any of the cpus have return an error, set the
-	 * global flag to the error so it can be returned
-	 * to the generic OProfile caller.
-	 */
-	int ret;
-
-	ret = model->start(ctr);
-	if (ret != 0)
-		op_per_cpu_rc = ret;
-}
-
-static int op_powerpc_start(void)
-{
-	op_per_cpu_rc = 0;
-
-	if (model->global_start)
-		return model->global_start(ctr);
-	if (model->start) {
-		on_each_cpu(op_powerpc_cpu_start, NULL, 1);
-		return op_per_cpu_rc;
-	}
-	return -EIO; /* No start function is defined for this
-			power architecture */
-}
-
-static inline void op_powerpc_cpu_stop(void *dummy)
-{
-	model->stop();
-}
-
-static void op_powerpc_stop(void)
-{
-	if (model->stop)
-		on_each_cpu(op_powerpc_cpu_stop, NULL, 1);
-        if (model->global_stop)
-                model->global_stop();
-}
-
-static int op_powerpc_create_files(struct dentry *root)
-{
-	int i;
-
-#ifdef CONFIG_PPC64
-	/*
-	 * There is one mmcr0, mmcr1 and mmcra for setting the events for
-	 * all of the counters.
-	 */
-	oprofilefs_create_ulong(root, "mmcr0", &sys.mmcr0);
-	oprofilefs_create_ulong(root, "mmcr1", &sys.mmcr1);
-	oprofilefs_create_ulong(root, "mmcra", &sys.mmcra);
-#ifdef CONFIG_OPROFILE_CELL
-	/* create a file the user tool can check to see what level of profiling
-	 * support exits with this kernel. Initialize bit mask to indicate
-	 * what support the kernel has:
-	 * bit 0      -  Supports SPU event profiling in addition to PPU
-	 *               event and cycles; and SPU cycle profiling
-	 * bits 1-31  -  Currently unused.
-	 *
-	 * If the file does not exist, then the kernel only supports SPU
-	 * cycle profiling, PPU event and cycle profiling.
-	 */
-	oprofilefs_create_ulong(root, "cell_support", &sys.cell_support);
-	sys.cell_support = 0x1; /* Note, the user OProfile tool must check
-				 * that this bit is set before attempting to
-				 * user SPU event profiling.  Older kernels
-				 * will not have this file, hence the user
-				 * tool is not allowed to do SPU event
-				 * profiling on older kernels.  Older kernels
-				 * will accept SPU events but collected data
-				 * is garbage.
-				 */
-#endif
-#endif
-
-	for (i = 0; i < model->num_counters; ++i) {
-		struct dentry *dir;
-		char buf[4];
-
-		snprintf(buf, sizeof buf, "%d", i);
-		dir = oprofilefs_mkdir(root, buf);
-
-		oprofilefs_create_ulong(dir, "enabled", &ctr[i].enabled);
-		oprofilefs_create_ulong(dir, "event", &ctr[i].event);
-		oprofilefs_create_ulong(dir, "count", &ctr[i].count);
-
-		/*
-		 * Classic PowerPC doesn't support per-counter
-		 * control like this, but the options are
-		 * expected, so they remain.  For Freescale
-		 * Book-E style performance monitors, we do
-		 * support them.
-		 */
-		oprofilefs_create_ulong(dir, "kernel", &ctr[i].kernel);
-		oprofilefs_create_ulong(dir, "user", &ctr[i].user);
-
-		oprofilefs_create_ulong(dir, "unit_mask", &ctr[i].unit_mask);
-	}
-
-	oprofilefs_create_ulong(root, "enable_kernel", &sys.enable_kernel);
-	oprofilefs_create_ulong(root, "enable_user", &sys.enable_user);
-
-	/* Default to tracing both kernel and user */
-	sys.enable_kernel = 1;
-	sys.enable_user = 1;
-
-	return 0;
-}
-
-int __init oprofile_arch_init(struct oprofile_operations *ops)
-{
-	if (!cur_cpu_spec->oprofile_cpu_type)
-		return -ENODEV;
-
-	switch (cur_cpu_spec->oprofile_type) {
-#ifdef CONFIG_PPC_BOOK3S_64
-#ifdef CONFIG_OPROFILE_CELL
-		case PPC_OPROFILE_CELL:
-			if (firmware_has_feature(FW_FEATURE_LPAR))
-				return -ENODEV;
-			model = &op_model_cell;
-			ops->sync_start = model->sync_start;
-			ops->sync_stop = model->sync_stop;
-			break;
-#endif
-		case PPC_OPROFILE_POWER4:
-			model = &op_model_power4;
-			break;
-		case PPC_OPROFILE_PA6T:
-			model = &op_model_pa6t;
-			break;
-#endif
-#ifdef CONFIG_PPC_BOOK3S_32
-		case PPC_OPROFILE_G4:
-			model = &op_model_7450;
-			break;
-#endif
-#if defined(CONFIG_FSL_EMB_PERFMON)
-		case PPC_OPROFILE_FSL_EMB:
-			model = &op_model_fsl_emb;
-			break;
-#endif
-		default:
-			return -ENODEV;
-	}
-
-	model->num_counters = cur_cpu_spec->num_pmcs;
-
-	ops->cpu_type = cur_cpu_spec->oprofile_cpu_type;
-	ops->create_files = op_powerpc_create_files;
-	ops->setup = op_powerpc_setup;
-	ops->shutdown = op_powerpc_shutdown;
-	ops->start = op_powerpc_start;
-	ops->stop = op_powerpc_stop;
-	ops->backtrace = op_powerpc_backtrace;
-
-	printk(KERN_DEBUG "oprofile: using %s performance monitoring.\n",
-	       ops->cpu_type);
-
-	return 0;
-}
-
-void oprofile_arch_exit(void)
-{
-}
diff --git a/arch/powerpc/oprofile/op_model_7450.c b/arch/powerpc/oprofile/op_model_7450.c
deleted file mode 100644
index 5ebc25188a72..000000000000
--- a/arch/powerpc/oprofile/op_model_7450.c
+++ /dev/null
@@ -1,207 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * arch/powerpc/oprofile/op_model_7450.c
- *
- * Freescale 745x/744x oprofile support, based on fsl_booke support
- * Copyright (C) 2004 Anton Blanchard <anton@...ibm.com>, IBM
- *
- * Copyright (c) 2004 Freescale Semiconductor, Inc
- *
- * Author: Andy Fleming
- * Maintainer: Kumar Gala <galak@...nel.crashing.org>
- */
-
-#include <linux/oprofile.h>
-#include <linux/smp.h>
-#include <asm/ptrace.h>
-#include <asm/processor.h>
-#include <asm/cputable.h>
-#include <asm/page.h>
-#include <asm/pmc.h>
-#include <asm/oprofile_impl.h>
-
-static unsigned long reset_value[OP_MAX_COUNTER];
-
-static int oprofile_running;
-static u32 mmcr0_val, mmcr1_val, mmcr2_val, num_pmcs;
-
-#define MMCR0_PMC1_SHIFT	6
-#define MMCR0_PMC2_SHIFT	0
-#define MMCR1_PMC3_SHIFT	27
-#define MMCR1_PMC4_SHIFT	22
-#define MMCR1_PMC5_SHIFT	17
-#define MMCR1_PMC6_SHIFT	11
-
-#define mmcr0_event1(event) \
-	((event << MMCR0_PMC1_SHIFT) & MMCR0_PMC1SEL)
-#define mmcr0_event2(event) \
-	((event << MMCR0_PMC2_SHIFT) & MMCR0_PMC2SEL)
-
-#define mmcr1_event3(event) \
-	((event << MMCR1_PMC3_SHIFT) & MMCR1_PMC3SEL)
-#define mmcr1_event4(event) \
-	((event << MMCR1_PMC4_SHIFT) & MMCR1_PMC4SEL)
-#define mmcr1_event5(event) \
-	((event << MMCR1_PMC5_SHIFT) & MMCR1_PMC5SEL)
-#define mmcr1_event6(event) \
-	((event << MMCR1_PMC6_SHIFT) & MMCR1_PMC6SEL)
-
-#define MMCR0_INIT (MMCR0_FC | MMCR0_FCS | MMCR0_FCP | MMCR0_FCM1 | MMCR0_FCM0)
-
-/* Unfreezes the counters on this CPU, enables the interrupt,
- * enables the counters to trigger the interrupt, and sets the
- * counters to only count when the mark bit is not set.
- */
-static void pmc_start_ctrs(void)
-{
-	u32 mmcr0 = mfspr(SPRN_MMCR0);
-
-	mmcr0 &= ~(MMCR0_FC | MMCR0_FCM0);
-	mmcr0 |= (MMCR0_FCECE | MMCR0_PMC1CE | MMCR0_PMCnCE | MMCR0_PMXE);
-
-	mtspr(SPRN_MMCR0, mmcr0);
-}
-
-/* Disables the counters on this CPU, and freezes them */
-static void pmc_stop_ctrs(void)
-{
-	u32 mmcr0 = mfspr(SPRN_MMCR0);
-
-	mmcr0 |= MMCR0_FC;
-	mmcr0 &= ~(MMCR0_FCECE | MMCR0_PMC1CE | MMCR0_PMCnCE | MMCR0_PMXE);
-
-	mtspr(SPRN_MMCR0, mmcr0);
-}
-
-/* Configures the counters on this CPU based on the global
- * settings */
-static int fsl7450_cpu_setup(struct op_counter_config *ctr)
-{
-	/* freeze all counters */
-	pmc_stop_ctrs();
-
-	mtspr(SPRN_MMCR0, mmcr0_val);
-	mtspr(SPRN_MMCR1, mmcr1_val);
-	if (num_pmcs > 4)
-		mtspr(SPRN_MMCR2, mmcr2_val);
-
-	return 0;
-}
-
-/* Configures the global settings for the countes on all CPUs. */
-static int fsl7450_reg_setup(struct op_counter_config *ctr,
-			     struct op_system_config *sys,
-			     int num_ctrs)
-{
-	int i;
-
-	num_pmcs = num_ctrs;
-	/* Our counters count up, and "count" refers to
-	 * how much before the next interrupt, and we interrupt
-	 * on overflow.  So we calculate the starting value
-	 * which will give us "count" until overflow.
-	 * Then we set the events on the enabled counters */
-	for (i = 0; i < num_ctrs; ++i)
-		reset_value[i] = 0x80000000UL - ctr[i].count;
-
-	/* Set events for Counters 1 & 2 */
-	mmcr0_val = MMCR0_INIT | mmcr0_event1(ctr[0].event)
-		| mmcr0_event2(ctr[1].event);
-
-	/* Setup user/kernel bits */
-	if (sys->enable_kernel)
-		mmcr0_val &= ~(MMCR0_FCS);
-
-	if (sys->enable_user)
-		mmcr0_val &= ~(MMCR0_FCP);
-
-	/* Set events for Counters 3-6 */
-	mmcr1_val = mmcr1_event3(ctr[2].event)
-		| mmcr1_event4(ctr[3].event);
-	if (num_ctrs > 4)
-		mmcr1_val |= mmcr1_event5(ctr[4].event)
-			| mmcr1_event6(ctr[5].event);
-
-	mmcr2_val = 0;
-
-	return 0;
-}
-
-/* Sets the counters on this CPU to the chosen values, and starts them */
-static int fsl7450_start(struct op_counter_config *ctr)
-{
-	int i;
-
-	mtmsr(mfmsr() | MSR_PMM);
-
-	for (i = 0; i < num_pmcs; ++i) {
-		if (ctr[i].enabled)
-			classic_ctr_write(i, reset_value[i]);
-		else
-			classic_ctr_write(i, 0);
-	}
-
-	/* Clear the freeze bit, and enable the interrupt.
-	 * The counters won't actually start until the rfi clears
-	 * the PMM bit */
-	pmc_start_ctrs();
-
-	oprofile_running = 1;
-
-	return 0;
-}
-
-/* Stop the counters on this CPU */
-static void fsl7450_stop(void)
-{
-	/* freeze counters */
-	pmc_stop_ctrs();
-
-	oprofile_running = 0;
-
-	mb();
-}
-
-
-/* Handle the interrupt on this CPU, and log a sample for each
- * event that triggered the interrupt */
-static void fsl7450_handle_interrupt(struct pt_regs *regs,
-				    struct op_counter_config *ctr)
-{
-	unsigned long pc;
-	int is_kernel;
-	int val;
-	int i;
-
-	/* set the PMM bit (see comment below) */
-	mtmsr(mfmsr() | MSR_PMM);
-
-	pc = mfspr(SPRN_SIAR);
-	is_kernel = is_kernel_addr(pc);
-
-	for (i = 0; i < num_pmcs; ++i) {
-		val = classic_ctr_read(i);
-		if (val < 0) {
-			if (oprofile_running && ctr[i].enabled) {
-				oprofile_add_ext_sample(pc, regs, i, is_kernel);
-				classic_ctr_write(i, reset_value[i]);
-			} else {
-				classic_ctr_write(i, 0);
-			}
-		}
-	}
-
-	/* The freeze bit was set by the interrupt. */
-	/* Clear the freeze bit, and reenable the interrupt.
-	 * The counters won't actually start until the rfi clears
-	 * the PM/M bit */
-	pmc_start_ctrs();
-}
-
-struct op_powerpc_model op_model_7450= {
-	.reg_setup		= fsl7450_reg_setup,
-	.cpu_setup		= fsl7450_cpu_setup,
-	.start			= fsl7450_start,
-	.stop			= fsl7450_stop,
-	.handle_interrupt	= fsl7450_handle_interrupt,
-};
diff --git a/arch/powerpc/oprofile/op_model_cell.c b/arch/powerpc/oprofile/op_model_cell.c
deleted file mode 100644
index 7eb73070b7be..000000000000
--- a/arch/powerpc/oprofile/op_model_cell.c
+++ /dev/null
@@ -1,1709 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Cell Broadband Engine OProfile Support
- *
- * (C) Copyright IBM Corporation 2006
- *
- * Author: David Erb (djerb@...ibm.com)
- * Modifications:
- *	   Carl Love <carll@...ibm.com>
- *	   Maynard Johnson <maynardj@...ibm.com>
- */
-
-#include <linux/cpufreq.h>
-#include <linux/delay.h>
-#include <linux/jiffies.h>
-#include <linux/kthread.h>
-#include <linux/oprofile.h>
-#include <linux/percpu.h>
-#include <linux/smp.h>
-#include <linux/spinlock.h>
-#include <linux/timer.h>
-#include <asm/cell-pmu.h>
-#include <asm/cputable.h>
-#include <asm/firmware.h>
-#include <asm/io.h>
-#include <asm/oprofile_impl.h>
-#include <asm/processor.h>
-#include <asm/prom.h>
-#include <asm/ptrace.h>
-#include <asm/reg.h>
-#include <asm/rtas.h>
-#include <asm/cell-regs.h>
-
-#include "../platforms/cell/interrupt.h"
-#include "cell/pr_util.h"
-
-#define PPU_PROFILING            0
-#define SPU_PROFILING_CYCLES     1
-#define SPU_PROFILING_EVENTS     2
-
-#define SPU_EVENT_NUM_START      4100
-#define SPU_EVENT_NUM_STOP       4399
-#define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
-#define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
-#define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
-
-#define NUM_SPUS_PER_NODE    8
-#define SPU_CYCLES_EVENT_NUM 2	/*  event number for SPU_CYCLES */
-
-#define PPU_CYCLES_EVENT_NUM 1	/*  event number for CYCLES */
-#define PPU_CYCLES_GRP_NUM   1	/* special group number for identifying
-				 * PPU_CYCLES event
-				 */
-#define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
-
-#define NUM_THREADS 2         /* number of physical threads in
-			       * physical processor
-			       */
-#define NUM_DEBUG_BUS_WORDS 4
-#define NUM_INPUT_BUS_WORDS 2
-
-#define MAX_SPU_COUNT 0xFFFFFF	/* maximum 24 bit LFSR value */
-
-/* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
- * To configure counter to send value every N cycles set counter to
- * 2^32 - 1 - N.
- */
-#define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
-
-/*
- * spu_cycle_reset is the number of cycles between samples.
- * This variable is used for SPU profiling and should ONLY be set
- * at the beginning of cell_reg_setup; otherwise, it's read-only.
- */
-static unsigned int spu_cycle_reset;
-static unsigned int profiling_mode;
-static int spu_evnt_phys_spu_indx;
-
-struct pmc_cntrl_data {
-	unsigned long vcntr;
-	unsigned long evnts;
-	unsigned long masks;
-	unsigned long enabled;
-};
-
-/*
- * ibm,cbe-perftools rtas parameters
- */
-struct pm_signal {
-	u16 cpu;		/* Processor to modify */
-	u16 sub_unit;		/* hw subunit this applies to (if applicable)*/
-	short int signal_group; /* Signal Group to Enable/Disable */
-	u8 bus_word;		/* Enable/Disable on this Trace/Trigger/Event
-				 * Bus Word(s) (bitmask)
-				 */
-	u8 bit;			/* Trigger/Event bit (if applicable) */
-};
-
-/*
- * rtas call arguments
- */
-enum {
-	SUBFUNC_RESET = 1,
-	SUBFUNC_ACTIVATE = 2,
-	SUBFUNC_DEACTIVATE = 3,
-
-	PASSTHRU_IGNORE = 0,
-	PASSTHRU_ENABLE = 1,
-	PASSTHRU_DISABLE = 2,
-};
-
-struct pm_cntrl {
-	u16 enable;
-	u16 stop_at_max;
-	u16 trace_mode;
-	u16 freeze;
-	u16 count_mode;
-	u16 spu_addr_trace;
-	u8  trace_buf_ovflw;
-};
-
-static struct {
-	u32 group_control;
-	u32 debug_bus_control;
-	struct pm_cntrl pm_cntrl;
-	u32 pm07_cntrl[NR_PHYS_CTRS];
-} pm_regs;
-
-#define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
-#define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
-#define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
-#define GET_POLARITY(x) ((x & 0x00000002) >> 1)
-#define GET_COUNT_CYCLES(x) (x & 0x00000001)
-#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
-
-static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
-static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
-static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
-
-/*
- * The CELL profiling code makes rtas calls to setup the debug bus to
- * route the performance signals.  Additionally, SPU profiling requires
- * a second rtas call to setup the hardware to capture the SPU PCs.
- * The EIO error value is returned if the token lookups or the rtas
- * call fail.  The EIO error number is the best choice of the existing
- * error numbers.  The probability of rtas related error is very low.  But
- * by returning EIO and printing additional information to dmsg the user
- * will know that OProfile did not start and dmesg will tell them why.
- * OProfile does not support returning errors on Stop.	Not a huge issue
- * since failure to reset the debug bus or stop the SPU PC collection is
- * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
- * either.
- */
-
-/*
- * Interpetation of hdw_thread:
- * 0 - even virtual cpus 0, 2, 4,...
- * 1 - odd virtual cpus 1, 3, 5, ...
- *
- * FIXME: this is strictly wrong, we need to clean this up in a number
- * of places. It works for now. -arnd
- */
-static u32 hdw_thread;
-
-static u32 virt_cntr_inter_mask;
-static struct timer_list timer_virt_cntr;
-static struct timer_list timer_spu_event_swap;
-
-/*
- * pm_signal needs to be global since it is initialized in
- * cell_reg_setup at the time when the necessary information
- * is available.
- */
-static struct pm_signal pm_signal[NR_PHYS_CTRS];
-static int pm_rtas_token;    /* token for debug bus setup call */
-static int spu_rtas_token;   /* token for SPU cycle profiling */
-
-static u32 reset_value[NR_PHYS_CTRS];
-static int num_counters;
-static int oprofile_running;
-static DEFINE_SPINLOCK(cntr_lock);
-
-static u32 ctr_enabled;
-
-static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
-
-/*
- * Firmware interface functions
- */
-static int
-rtas_ibm_cbe_perftools(int subfunc, int passthru,
-		       void *address, unsigned long length)
-{
-	u64 paddr = __pa(address);
-
-	return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
-			 passthru, paddr >> 32, paddr & 0xffffffff, length);
-}
-
-static void pm_rtas_reset_signals(u32 node)
-{
-	int ret;
-	struct pm_signal pm_signal_local;
-
-	/*
-	 * The debug bus is being set to the passthru disable state.
-	 * However, the FW still expects at least one legal signal routing
-	 * entry or it will return an error on the arguments.	If we don't
-	 * supply a valid entry, we must ignore all return values.  Ignoring
-	 * all return values means we might miss an error we should be
-	 * concerned about.
-	 */
-
-	/*  fw expects physical cpu #. */
-	pm_signal_local.cpu = node;
-	pm_signal_local.signal_group = 21;
-	pm_signal_local.bus_word = 1;
-	pm_signal_local.sub_unit = 0;
-	pm_signal_local.bit = 0;
-
-	ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
-				     &pm_signal_local,
-				     sizeof(struct pm_signal));
-
-	if (unlikely(ret))
-		/*
-		 * Not a fatal error. For Oprofile stop, the oprofile
-		 * functions do not support returning an error for
-		 * failure to stop OProfile.
-		 */
-		printk(KERN_WARNING "%s: rtas returned: %d\n",
-		       __func__, ret);
-}
-
-static int pm_rtas_activate_signals(u32 node, u32 count)
-{
-	int ret;
-	int i, j;
-	struct pm_signal pm_signal_local[NR_PHYS_CTRS];
-
-	/*
-	 * There is no debug setup required for the cycles event.
-	 * Note that only events in the same group can be used.
-	 * Otherwise, there will be conflicts in correctly routing
-	 * the signals on the debug bus.  It is the responsibility
-	 * of the OProfile user tool to check the events are in
-	 * the same group.
-	 */
-	i = 0;
-	for (j = 0; j < count; j++) {
-		if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
-
-			/* fw expects physical cpu # */
-			pm_signal_local[i].cpu = node;
-			pm_signal_local[i].signal_group
-				= pm_signal[j].signal_group;
-			pm_signal_local[i].bus_word = pm_signal[j].bus_word;
-			pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
-			pm_signal_local[i].bit = pm_signal[j].bit;
-			i++;
-		}
-	}
-
-	if (i != 0) {
-		ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
-					     pm_signal_local,
-					     i * sizeof(struct pm_signal));
-
-		if (unlikely(ret)) {
-			printk(KERN_WARNING "%s: rtas returned: %d\n",
-			       __func__, ret);
-			return -EIO;
-		}
-	}
-
-	return 0;
-}
-
-/*
- * PM Signal functions
- */
-static void set_pm_event(u32 ctr, int event, u32 unit_mask)
-{
-	struct pm_signal *p;
-	u32 signal_bit;
-	u32 bus_word, bus_type, count_cycles, polarity, input_control;
-	int j, i;
-
-	if (event == PPU_CYCLES_EVENT_NUM) {
-		/* Special Event: Count all cpu cycles */
-		pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
-		p = &(pm_signal[ctr]);
-		p->signal_group = PPU_CYCLES_GRP_NUM;
-		p->bus_word = 1;
-		p->sub_unit = 0;
-		p->bit = 0;
-		goto out;
-	} else {
-		pm_regs.pm07_cntrl[ctr] = 0;
-	}
-
-	bus_word = GET_BUS_WORD(unit_mask);
-	bus_type = GET_BUS_TYPE(unit_mask);
-	count_cycles = GET_COUNT_CYCLES(unit_mask);
-	polarity = GET_POLARITY(unit_mask);
-	input_control = GET_INPUT_CONTROL(unit_mask);
-	signal_bit = (event % 100);
-
-	p = &(pm_signal[ctr]);
-
-	p->signal_group = event / 100;
-	p->bus_word = bus_word;
-	p->sub_unit = GET_SUB_UNIT(unit_mask);
-
-	pm_regs.pm07_cntrl[ctr] = 0;
-	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
-	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
-	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
-
-	/*
-	 * Some of the islands signal selection is based on 64 bit words.
-	 * The debug bus words are 32 bits, the input words to the performance
-	 * counters are defined as 32 bits.  Need to convert the 64 bit island
-	 * specification to the appropriate 32 input bit and bus word for the
-	 * performance counter event selection.	 See the CELL Performance
-	 * monitoring signals manual and the Perf cntr hardware descriptions
-	 * for the details.
-	 */
-	if (input_control == 0) {
-		if (signal_bit > 31) {
-			signal_bit -= 32;
-			if (bus_word == 0x3)
-				bus_word = 0x2;
-			else if (bus_word == 0xc)
-				bus_word = 0x8;
-		}
-
-		if ((bus_type == 0) && p->signal_group >= 60)
-			bus_type = 2;
-		if ((bus_type == 1) && p->signal_group >= 50)
-			bus_type = 0;
-
-		pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
-	} else {
-		pm_regs.pm07_cntrl[ctr] = 0;
-		p->bit = signal_bit;
-	}
-
-	for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
-		if (bus_word & (1 << i)) {
-			pm_regs.debug_bus_control |=
-				(bus_type << (30 - (2 * i)));
-
-			for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
-				if (input_bus[j] == 0xff) {
-					input_bus[j] = i;
-					pm_regs.group_control |=
-						(i << (30 - (2 * j)));
-
-					break;
-				}
-			}
-		}
-	}
-out:
-	;
-}
-
-static void write_pm_cntrl(int cpu)
-{
-	/*
-	 * Oprofile will use 32 bit counters, set bits 7:10 to 0
-	 * pmregs.pm_cntrl is a global
-	 */
-
-	u32 val = 0;
-	if (pm_regs.pm_cntrl.enable == 1)
-		val |= CBE_PM_ENABLE_PERF_MON;
-
-	if (pm_regs.pm_cntrl.stop_at_max == 1)
-		val |= CBE_PM_STOP_AT_MAX;
-
-	if (pm_regs.pm_cntrl.trace_mode != 0)
-		val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
-
-	if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
-		val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
-	if (pm_regs.pm_cntrl.freeze == 1)
-		val |= CBE_PM_FREEZE_ALL_CTRS;
-
-	val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
-
-	/*
-	 * Routine set_count_mode must be called previously to set
-	 * the count mode based on the user selection of user and kernel.
-	 */
-	val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
-	cbe_write_pm(cpu, pm_control, val);
-}
-
-static inline void
-set_count_mode(u32 kernel, u32 user)
-{
-	/*
-	 * The user must specify user and kernel if they want them. If
-	 *  neither is specified, OProfile will count in hypervisor mode.
-	 *  pm_regs.pm_cntrl is a global
-	 */
-	if (kernel) {
-		if (user)
-			pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
-		else
-			pm_regs.pm_cntrl.count_mode =
-				CBE_COUNT_SUPERVISOR_MODE;
-	} else {
-		if (user)
-			pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
-		else
-			pm_regs.pm_cntrl.count_mode =
-				CBE_COUNT_HYPERVISOR_MODE;
-	}
-}
-
-static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
-{
-
-	pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
-	cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
-}
-
-/*
- * Oprofile is expected to collect data on all CPUs simultaneously.
- * However, there is one set of performance counters per node.	There are
- * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
- * multiplex in time the performance counter collection on the two virtual
- * CPUs.  The multiplexing of the performance counters is done by this
- * virtual counter routine.
- *
- * The pmc_values used below is defined as 'per-cpu' but its use is
- * more akin to 'per-node'.  We need to store two sets of counter
- * values per node -- one for the previous run and one for the next.
- * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
- * pair of per-cpu arrays is used for storing the previous and next
- * pmc values for a given node.
- * NOTE: We use the per-cpu variable to improve cache performance.
- *
- * This routine will alternate loading the virtual counters for
- * virtual CPUs
- */
-static void cell_virtual_cntr(struct timer_list *unused)
-{
-	int i, prev_hdw_thread, next_hdw_thread;
-	u32 cpu;
-	unsigned long flags;
-
-	/*
-	 * Make sure that the interrupt_hander and the virt counter are
-	 * not both playing with the counters on the same node.
-	 */
-
-	spin_lock_irqsave(&cntr_lock, flags);
-
-	prev_hdw_thread = hdw_thread;
-
-	/* switch the cpu handling the interrupts */
-	hdw_thread = 1 ^ hdw_thread;
-	next_hdw_thread = hdw_thread;
-
-	pm_regs.group_control = 0;
-	pm_regs.debug_bus_control = 0;
-
-	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
-		input_bus[i] = 0xff;
-
-	/*
-	 * There are some per thread events.  Must do the
-	 * set event, for the thread that is being started
-	 */
-	for (i = 0; i < num_counters; i++)
-		set_pm_event(i,
-			pmc_cntrl[next_hdw_thread][i].evnts,
-			pmc_cntrl[next_hdw_thread][i].masks);
-
-	/*
-	 * The following is done only once per each node, but
-	 * we need cpu #, not node #, to pass to the cbe_xxx functions.
-	 */
-	for_each_online_cpu(cpu) {
-		if (cbe_get_hw_thread_id(cpu))
-			continue;
-
-		/*
-		 * stop counters, save counter values, restore counts
-		 * for previous thread
-		 */
-		cbe_disable_pm(cpu);
-		cbe_disable_pm_interrupts(cpu);
-		for (i = 0; i < num_counters; i++) {
-			per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
-				= cbe_read_ctr(cpu, i);
-
-			if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
-			    == 0xFFFFFFFF)
-				/* If the cntr value is 0xffffffff, we must
-				 * reset that to 0xfffffff0 when the current
-				 * thread is restarted.	 This will generate a
-				 * new interrupt and make sure that we never
-				 * restore the counters to the max value.  If
-				 * the counters were restored to the max value,
-				 * they do not increment and no interrupts are
-				 * generated.  Hence no more samples will be
-				 * collected on that cpu.
-				 */
-				cbe_write_ctr(cpu, i, 0xFFFFFFF0);
-			else
-				cbe_write_ctr(cpu, i,
-					      per_cpu(pmc_values,
-						      cpu +
-						      next_hdw_thread)[i]);
-		}
-
-		/*
-		 * Switch to the other thread. Change the interrupt
-		 * and control regs to be scheduled on the CPU
-		 * corresponding to the thread to execute.
-		 */
-		for (i = 0; i < num_counters; i++) {
-			if (pmc_cntrl[next_hdw_thread][i].enabled) {
-				/*
-				 * There are some per thread events.
-				 * Must do the set event, enable_cntr
-				 * for each cpu.
-				 */
-				enable_ctr(cpu, i,
-					   pm_regs.pm07_cntrl);
-			} else {
-				cbe_write_pm07_control(cpu, i, 0);
-			}
-		}
-
-		/* Enable interrupts on the CPU thread that is starting */
-		cbe_enable_pm_interrupts(cpu, next_hdw_thread,
-					 virt_cntr_inter_mask);
-		cbe_enable_pm(cpu);
-	}
-
-	spin_unlock_irqrestore(&cntr_lock, flags);
-
-	mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
-}
-
-static void start_virt_cntrs(void)
-{
-	timer_setup(&timer_virt_cntr, cell_virtual_cntr, 0);
-	timer_virt_cntr.expires = jiffies + HZ / 10;
-	add_timer(&timer_virt_cntr);
-}
-
-static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
-			struct op_system_config *sys, int num_ctrs)
-{
-	spu_cycle_reset = ctr[0].count;
-
-	/*
-	 * Each node will need to make the rtas call to start
-	 * and stop SPU profiling.  Get the token once and store it.
-	 */
-	spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
-
-	if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
-		printk(KERN_ERR
-		       "%s: rtas token ibm,cbe-spu-perftools unknown\n",
-		       __func__);
-		return -EIO;
-	}
-	return 0;
-}
-
-/* Unfortunately, the hardware will only support event profiling
- * on one SPU per node at a time.  Therefore, we must time slice
- * the profiling across all SPUs in the node.  Note, we do this
- * in parallel for each node.  The following routine is called
- * periodically based on kernel timer to switch which SPU is
- * being monitored in a round robbin fashion.
- */
-static void spu_evnt_swap(struct timer_list *unused)
-{
-	int node;
-	int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
-	unsigned long flags;
-	int cpu;
-	int ret;
-	u32 interrupt_mask;
-
-
-	/* enable interrupts on cntr 0 */
-	interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
-
-	hdw_thread = 0;
-
-	/* Make sure spu event interrupt handler and spu event swap
-	 * don't access the counters simultaneously.
-	 */
-	spin_lock_irqsave(&cntr_lock, flags);
-
-	cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
-
-	if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
-		spu_evnt_phys_spu_indx = 0;
-
-	pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
-	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
-	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
-
-	/* switch the SPU being profiled on each node */
-	for_each_online_cpu(cpu) {
-		if (cbe_get_hw_thread_id(cpu))
-			continue;
-
-		node = cbe_cpu_to_node(cpu);
-		cur_phys_spu = (node * NUM_SPUS_PER_NODE)
-			+ cur_spu_evnt_phys_spu_indx;
-		nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
-			+ spu_evnt_phys_spu_indx;
-
-		/*
-		 * stop counters, save counter values, restore counts
-		 * for previous physical SPU
-		 */
-		cbe_disable_pm(cpu);
-		cbe_disable_pm_interrupts(cpu);
-
-		spu_pm_cnt[cur_phys_spu]
-			= cbe_read_ctr(cpu, 0);
-
-		/* restore previous count for the next spu to sample */
-		/* NOTE, hardware issue, counter will not start if the
-		 * counter value is at max (0xFFFFFFFF).
-		 */
-		if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
-			cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
-		 else
-			 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
-
-		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
-
-		/* setup the debug bus measure the one event and
-		 * the two events to route the next SPU's PC on
-		 * the debug bus
-		 */
-		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
-		if (ret)
-			printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
-			       "SPU event swap\n", __func__);
-
-		/* clear the trace buffer, don't want to take PC for
-		 * previous SPU*/
-		cbe_write_pm(cpu, trace_address, 0);
-
-		enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
-
-		/* Enable interrupts on the CPU thread that is starting */
-		cbe_enable_pm_interrupts(cpu, hdw_thread,
-					 interrupt_mask);
-		cbe_enable_pm(cpu);
-	}
-
-	spin_unlock_irqrestore(&cntr_lock, flags);
-
-	/* swap approximately every 0.1 seconds */
-	mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
-}
-
-static void start_spu_event_swap(void)
-{
-	timer_setup(&timer_spu_event_swap, spu_evnt_swap, 0);
-	timer_spu_event_swap.expires = jiffies + HZ / 25;
-	add_timer(&timer_spu_event_swap);
-}
-
-static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
-			struct op_system_config *sys, int num_ctrs)
-{
-	int i;
-
-	/* routine is called once for all nodes */
-
-	spu_evnt_phys_spu_indx = 0;
-	/*
-	 * For all events except PPU CYCLEs, each node will need to make
-	 * the rtas cbe-perftools call to setup and reset the debug bus.
-	 * Make the token lookup call once and store it in the global
-	 * variable pm_rtas_token.
-	 */
-	pm_rtas_token = rtas_token("ibm,cbe-perftools");
-
-	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
-		printk(KERN_ERR
-		       "%s: rtas token ibm,cbe-perftools unknown\n",
-		       __func__);
-		return -EIO;
-	}
-
-	/* setup the pm_control register settings,
-	 * settings will be written per node by the
-	 * cell_cpu_setup() function.
-	 */
-	pm_regs.pm_cntrl.trace_buf_ovflw = 1;
-
-	/* Use the occurrence trace mode to have SPU PC saved
-	 * to the trace buffer.  Occurrence data in trace buffer
-	 * is not used.  Bit 2 must be set to store SPU addresses.
-	 */
-	pm_regs.pm_cntrl.trace_mode = 2;
-
-	pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
-						   event 2 & 3 */
-
-	/* setup the debug bus event array with the SPU PC routing events.
-	*  Note, pm_signal[0] will be filled in by set_pm_event() call below.
-	*/
-	pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
-	pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
-	pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
-	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
-
-	pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
-	pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
-	pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
-	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
-
-	/* Set the user selected spu event to profile on,
-	 * note, only one SPU profiling event is supported
-	 */
-	num_counters = 1;  /* Only support one SPU event at a time */
-	set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
-
-	reset_value[0] = 0xFFFFFFFF - ctr[0].count;
-
-	/* global, used by cell_cpu_setup */
-	ctr_enabled |= 1;
-
-	/* Initialize the count for each SPU to the reset value */
-	for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
-		spu_pm_cnt[i] = reset_value[0];
-
-	return 0;
-}
-
-static int cell_reg_setup_ppu(struct op_counter_config *ctr,
-			struct op_system_config *sys, int num_ctrs)
-{
-	/* routine is called once for all nodes */
-	int i, j, cpu;
-
-	num_counters = num_ctrs;
-
-	if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
-		printk(KERN_ERR
-		       "%s: Oprofile, number of specified events " \
-		       "exceeds number of physical counters\n",
-		       __func__);
-		return -EIO;
-	}
-
-	set_count_mode(sys->enable_kernel, sys->enable_user);
-
-	/* Setup the thread 0 events */
-	for (i = 0; i < num_ctrs; ++i) {
-
-		pmc_cntrl[0][i].evnts = ctr[i].event;
-		pmc_cntrl[0][i].masks = ctr[i].unit_mask;
-		pmc_cntrl[0][i].enabled = ctr[i].enabled;
-		pmc_cntrl[0][i].vcntr = i;
-
-		for_each_possible_cpu(j)
-			per_cpu(pmc_values, j)[i] = 0;
-	}
-
-	/*
-	 * Setup the thread 1 events, map the thread 0 event to the
-	 * equivalent thread 1 event.
-	 */
-	for (i = 0; i < num_ctrs; ++i) {
-		if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
-			pmc_cntrl[1][i].evnts = ctr[i].event + 19;
-		else if (ctr[i].event == 2203)
-			pmc_cntrl[1][i].evnts = ctr[i].event;
-		else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
-			pmc_cntrl[1][i].evnts = ctr[i].event + 16;
-		else
-			pmc_cntrl[1][i].evnts = ctr[i].event;
-
-		pmc_cntrl[1][i].masks = ctr[i].unit_mask;
-		pmc_cntrl[1][i].enabled = ctr[i].enabled;
-		pmc_cntrl[1][i].vcntr = i;
-	}
-
-	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
-		input_bus[i] = 0xff;
-
-	/*
-	 * Our counters count up, and "count" refers to
-	 * how much before the next interrupt, and we interrupt
-	 * on overflow.	 So we calculate the starting value
-	 * which will give us "count" until overflow.
-	 * Then we set the events on the enabled counters.
-	 */
-	for (i = 0; i < num_counters; ++i) {
-		/* start with virtual counter set 0 */
-		if (pmc_cntrl[0][i].enabled) {
-			/* Using 32bit counters, reset max - count */
-			reset_value[i] = 0xFFFFFFFF - ctr[i].count;
-			set_pm_event(i,
-				     pmc_cntrl[0][i].evnts,
-				     pmc_cntrl[0][i].masks);
-
-			/* global, used by cell_cpu_setup */
-			ctr_enabled |= (1 << i);
-		}
-	}
-
-	/* initialize the previous counts for the virtual cntrs */
-	for_each_online_cpu(cpu)
-		for (i = 0; i < num_counters; ++i) {
-			per_cpu(pmc_values, cpu)[i] = reset_value[i];
-		}
-
-	return 0;
-}
-
-
-/* This function is called once for all cpus combined */
-static int cell_reg_setup(struct op_counter_config *ctr,
-			struct op_system_config *sys, int num_ctrs)
-{
-	int ret=0;
-	spu_cycle_reset = 0;
-
-	/* initialize the spu_arr_trace value, will be reset if
-	 * doing spu event profiling.
-	 */
-	pm_regs.group_control = 0;
-	pm_regs.debug_bus_control = 0;
-	pm_regs.pm_cntrl.stop_at_max = 1;
-	pm_regs.pm_cntrl.trace_mode = 0;
-	pm_regs.pm_cntrl.freeze = 1;
-	pm_regs.pm_cntrl.trace_buf_ovflw = 0;
-	pm_regs.pm_cntrl.spu_addr_trace = 0;
-
-	/*
-	 * For all events except PPU CYCLEs, each node will need to make
-	 * the rtas cbe-perftools call to setup and reset the debug bus.
-	 * Make the token lookup call once and store it in the global
-	 * variable pm_rtas_token.
-	 */
-	pm_rtas_token = rtas_token("ibm,cbe-perftools");
-
-	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
-		printk(KERN_ERR
-		       "%s: rtas token ibm,cbe-perftools unknown\n",
-		       __func__);
-		return -EIO;
-	}
-
-	if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
-		profiling_mode = SPU_PROFILING_CYCLES;
-		ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
-	} else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
-		   (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
-		profiling_mode = SPU_PROFILING_EVENTS;
-		spu_cycle_reset = ctr[0].count;
-
-		/* for SPU event profiling, need to setup the
-		 * pm_signal array with the events to route the
-		 * SPU PC before making the FW call.  Note, only
-		 * one SPU event for profiling can be specified
-		 * at a time.
-		 */
-		cell_reg_setup_spu_events(ctr, sys, num_ctrs);
-	} else {
-		profiling_mode = PPU_PROFILING;
-		ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
-	}
-
-	return ret;
-}
-
-
-
-/* This function is called once for each cpu */
-static int cell_cpu_setup(struct op_counter_config *cntr)
-{
-	u32 cpu = smp_processor_id();
-	u32 num_enabled = 0;
-	int i;
-	int ret;
-
-	/* Cycle based SPU profiling does not use the performance
-	 * counters.  The trace array is configured to collect
-	 * the data.
-	 */
-	if (profiling_mode == SPU_PROFILING_CYCLES)
-		return 0;
-
-	/* There is one performance monitor per processor chip (i.e. node),
-	 * so we only need to perform this function once per node.
-	 */
-	if (cbe_get_hw_thread_id(cpu))
-		return 0;
-
-	/* Stop all counters */
-	cbe_disable_pm(cpu);
-	cbe_disable_pm_interrupts(cpu);
-
-	cbe_write_pm(cpu, pm_start_stop, 0);
-	cbe_write_pm(cpu, group_control, pm_regs.group_control);
-	cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
-	write_pm_cntrl(cpu);
-
-	for (i = 0; i < num_counters; ++i) {
-		if (ctr_enabled & (1 << i)) {
-			pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
-			num_enabled++;
-		}
-	}
-
-	/*
-	 * The pm_rtas_activate_signals will return -EIO if the FW
-	 * call failed.
-	 */
-	if (profiling_mode == SPU_PROFILING_EVENTS) {
-		/* For SPU event profiling also need to setup the
-		 * pm interval timer
-		 */
-		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
-					       num_enabled+2);
-		/* store PC from debug bus to Trace buffer as often
-		 * as possible (every 10 cycles)
-		 */
-		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
-		return ret;
-	} else
-		return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
-						num_enabled);
-}
-
-#define ENTRIES	 303
-#define MAXLFSR	 0xFFFFFF
-
-/* precomputed table of 24 bit LFSR values */
-static int initial_lfsr[] = {
- 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
- 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
- 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
- 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
- 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
- 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
- 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
- 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
- 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
- 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
- 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
- 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
- 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
- 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
- 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
- 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
- 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
- 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
- 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
- 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
- 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
- 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
- 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
- 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
- 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
- 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
- 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
- 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
- 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
- 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
- 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
- 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
- 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
- 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
- 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
- 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
- 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
- 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
-};
-
-/*
- * The hardware uses an LFSR counting sequence to determine when to capture
- * the SPU PCs.	 An LFSR sequence is like a puesdo random number sequence
- * where each number occurs once in the sequence but the sequence is not in
- * numerical order. The SPU PC capture is done when the LFSR sequence reaches
- * the last value in the sequence.  Hence the user specified value N
- * corresponds to the LFSR number that is N from the end of the sequence.
- *
- * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
- * LFSR sequence is broken into four ranges.  The spacing of the precomputed
- * values is adjusted in each range so the error between the user specified
- * number (N) of events between samples and the actual number of events based
- * on the precomputed value will be les then about 6.2%.  Note, if the user
- * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
- * This is to prevent the loss of samples because the trace buffer is full.
- *
- *	   User specified N		     Step between	   Index in
- *					 precomputed values	 precomputed
- *								    table
- * 0		    to	2^16-1			----		      0
- * 2^16	    to	2^16+2^19-1		2^12		    1 to 128
- * 2^16+2^19	    to	2^16+2^19+2^22-1	2^15		  129 to 256
- * 2^16+2^19+2^22  to	2^24-1			2^18		  257 to 302
- *
- *
- * For example, the LFSR values in the second range are computed for 2^16,
- * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
- * 1, 2,..., 127, 128.
- *
- * The 24 bit LFSR value for the nth number in the sequence can be
- * calculated using the following code:
- *
- * #define size 24
- * int calculate_lfsr(int n)
- * {
- *	int i;
- *	unsigned int newlfsr0;
- *	unsigned int lfsr = 0xFFFFFF;
- *	unsigned int howmany = n;
- *
- *	for (i = 2; i < howmany + 2; i++) {
- *		newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
- *		((lfsr >> (size - 1 - 1)) & 1) ^
- *		(((lfsr >> (size - 1 - 6)) & 1) ^
- *		((lfsr >> (size - 1 - 23)) & 1)));
- *
- *		lfsr >>= 1;
- *		lfsr = lfsr | (newlfsr0 << (size - 1));
- *	}
- *	return lfsr;
- * }
- */
-
-#define V2_16  (0x1 << 16)
-#define V2_19  (0x1 << 19)
-#define V2_22  (0x1 << 22)
-
-static int calculate_lfsr(int n)
-{
-	/*
-	 * The ranges and steps are in powers of 2 so the calculations
-	 * can be done using shifts rather then divide.
-	 */
-	int index;
-
-	if ((n >> 16) == 0)
-		index = 0;
-	else if (((n - V2_16) >> 19) == 0)
-		index = ((n - V2_16) >> 12) + 1;
-	else if (((n - V2_16 - V2_19) >> 22) == 0)
-		index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
-	else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
-		index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
-	else
-		index = ENTRIES-1;
-
-	/* make sure index is valid */
-	if ((index >= ENTRIES) || (index < 0))
-		index = ENTRIES-1;
-
-	return initial_lfsr[index];
-}
-
-static int pm_rtas_activate_spu_profiling(u32 node)
-{
-	int ret, i;
-	struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
-
-	/*
-	 * Set up the rtas call to configure the debug bus to
-	 * route the SPU PCs.  Setup the pm_signal for each SPU
-	 */
-	for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
-		pm_signal_local[i].cpu = node;
-		pm_signal_local[i].signal_group = 41;
-		/* spu i on word (i/2) */
-		pm_signal_local[i].bus_word = 1 << i / 2;
-		/* spu i */
-		pm_signal_local[i].sub_unit = i;
-		pm_signal_local[i].bit = 63;
-	}
-
-	ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
-				     PASSTHRU_ENABLE, pm_signal_local,
-				     (ARRAY_SIZE(pm_signal_local)
-				      * sizeof(struct pm_signal)));
-
-	if (unlikely(ret)) {
-		printk(KERN_WARNING "%s: rtas returned: %d\n",
-		       __func__, ret);
-		return -EIO;
-	}
-
-	return 0;
-}
-
-#ifdef CONFIG_CPU_FREQ
-static int
-oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
-{
-	int ret = 0;
-	struct cpufreq_freqs *frq = data;
-	if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
-	    (val == CPUFREQ_POSTCHANGE && frq->old > frq->new))
-		set_spu_profiling_frequency(frq->new, spu_cycle_reset);
-	return ret;
-}
-
-static struct notifier_block cpu_freq_notifier_block = {
-	.notifier_call	= oprof_cpufreq_notify
-};
-#endif
-
-/*
- * Note the generic OProfile stop calls do not support returning
- * an error on stop.  Hence, will not return an error if the FW
- * calls fail on stop.	Failure to reset the debug bus is not an issue.
- * Failure to disable the SPU profiling is not an issue.  The FW calls
- * to enable the performance counters and debug bus will work even if
- * the hardware was not cleanly reset.
- */
-static void cell_global_stop_spu_cycles(void)
-{
-	int subfunc, rtn_value;
-	unsigned int lfsr_value;
-	int cpu;
-
-	oprofile_running = 0;
-	smp_wmb();
-
-#ifdef CONFIG_CPU_FREQ
-	cpufreq_unregister_notifier(&cpu_freq_notifier_block,
-				    CPUFREQ_TRANSITION_NOTIFIER);
-#endif
-
-	for_each_online_cpu(cpu) {
-		if (cbe_get_hw_thread_id(cpu))
-			continue;
-
-		subfunc = 3;	/*
-				 * 2 - activate SPU tracing,
-				 * 3 - deactivate
-				 */
-		lfsr_value = 0x8f100000;
-
-		rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
-				      subfunc, cbe_cpu_to_node(cpu),
-				      lfsr_value);
-
-		if (unlikely(rtn_value != 0)) {
-			printk(KERN_ERR
-			       "%s: rtas call ibm,cbe-spu-perftools " \
-			       "failed, return = %d\n",
-			       __func__, rtn_value);
-		}
-
-		/* Deactivate the signals */
-		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
-	}
-
-	stop_spu_profiling_cycles();
-}
-
-static void cell_global_stop_spu_events(void)
-{
-	int cpu;
-	oprofile_running = 0;
-
-	stop_spu_profiling_events();
-	smp_wmb();
-
-	for_each_online_cpu(cpu) {
-		if (cbe_get_hw_thread_id(cpu))
-			continue;
-
-		cbe_sync_irq(cbe_cpu_to_node(cpu));
-		/* Stop the counters */
-		cbe_disable_pm(cpu);
-		cbe_write_pm07_control(cpu, 0, 0);
-
-		/* Deactivate the signals */
-		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
-
-		/* Deactivate interrupts */
-		cbe_disable_pm_interrupts(cpu);
-	}
-	del_timer_sync(&timer_spu_event_swap);
-}
-
-static void cell_global_stop_ppu(void)
-{
-	int cpu;
-
-	/*
-	 * This routine will be called once for the system.
-	 * There is one performance monitor per node, so we
-	 * only need to perform this function once per node.
-	 */
-	del_timer_sync(&timer_virt_cntr);
-	oprofile_running = 0;
-	smp_wmb();
-
-	for_each_online_cpu(cpu) {
-		if (cbe_get_hw_thread_id(cpu))
-			continue;
-
-		cbe_sync_irq(cbe_cpu_to_node(cpu));
-		/* Stop the counters */
-		cbe_disable_pm(cpu);
-
-		/* Deactivate the signals */
-		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
-
-		/* Deactivate interrupts */
-		cbe_disable_pm_interrupts(cpu);
-	}
-}
-
-static void cell_global_stop(void)
-{
-	if (profiling_mode == PPU_PROFILING)
-		cell_global_stop_ppu();
-	else if (profiling_mode == SPU_PROFILING_EVENTS)
-		cell_global_stop_spu_events();
-	else
-		cell_global_stop_spu_cycles();
-}
-
-static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
-{
-	int subfunc;
-	unsigned int lfsr_value;
-	int cpu;
-	int ret;
-	int rtas_error;
-	unsigned int cpu_khzfreq = 0;
-
-	/* The SPU profiling uses time-based profiling based on
-	 * cpu frequency, so if configured with the CPU_FREQ
-	 * option, we should detect frequency changes and react
-	 * accordingly.
-	 */
-#ifdef CONFIG_CPU_FREQ
-	ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
-					CPUFREQ_TRANSITION_NOTIFIER);
-	if (ret < 0)
-		/* this is not a fatal error */
-		printk(KERN_ERR "CPU freq change registration failed: %d\n",
-		       ret);
-
-	else
-		cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
-#endif
-
-	set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
-
-	for_each_online_cpu(cpu) {
-		if (cbe_get_hw_thread_id(cpu))
-			continue;
-
-		/*
-		 * Setup SPU cycle-based profiling.
-		 * Set perf_mon_control bit 0 to a zero before
-		 * enabling spu collection hardware.
-		 */
-		cbe_write_pm(cpu, pm_control, 0);
-
-		if (spu_cycle_reset > MAX_SPU_COUNT)
-			/* use largest possible value */
-			lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
-		else
-			lfsr_value = calculate_lfsr(spu_cycle_reset);
-
-		/* must use a non zero value. Zero disables data collection. */
-		if (lfsr_value == 0)
-			lfsr_value = calculate_lfsr(1);
-
-		lfsr_value = lfsr_value << 8; /* shift lfsr to correct
-						* register location
-						*/
-
-		/* debug bus setup */
-		ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
-
-		if (unlikely(ret)) {
-			rtas_error = ret;
-			goto out;
-		}
-
-
-		subfunc = 2;	/* 2 - activate SPU tracing, 3 - deactivate */
-
-		/* start profiling */
-		ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
-				cbe_cpu_to_node(cpu), lfsr_value);
-
-		if (unlikely(ret != 0)) {
-			printk(KERN_ERR
-			       "%s: rtas call ibm,cbe-spu-perftools failed, " \
-			       "return = %d\n", __func__, ret);
-			rtas_error = -EIO;
-			goto out;
-		}
-	}
-
-	rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
-	if (rtas_error)
-		goto out_stop;
-
-	oprofile_running = 1;
-	return 0;
-
-out_stop:
-	cell_global_stop_spu_cycles();	/* clean up the PMU/debug bus */
-out:
-	return rtas_error;
-}
-
-static int cell_global_start_spu_events(struct op_counter_config *ctr)
-{
-	int cpu;
-	u32 interrupt_mask = 0;
-	int rtn = 0;
-
-	hdw_thread = 0;
-
-	/* spu event profiling, uses the performance counters to generate
-	 * an interrupt.  The hardware is setup to store the SPU program
-	 * counter into the trace array.  The occurrence mode is used to
-	 * enable storing data to the trace buffer.  The bits are set
-	 * to send/store the SPU address in the trace buffer.  The debug
-	 * bus must be setup to route the SPU program counter onto the
-	 * debug bus.  The occurrence data in the trace buffer is not used.
-	 */
-
-	/* This routine gets called once for the system.
-	 * There is one performance monitor per node, so we
-	 * only need to perform this function once per node.
-	 */
-
-	for_each_online_cpu(cpu) {
-		if (cbe_get_hw_thread_id(cpu))
-			continue;
-
-		/*
-		 * Setup SPU event-based profiling.
-		 * Set perf_mon_control bit 0 to a zero before
-		 * enabling spu collection hardware.
-		 *
-		 * Only support one SPU event on one SPU per node.
-		 */
-		if (ctr_enabled & 1) {
-			cbe_write_ctr(cpu, 0, reset_value[0]);
-			enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
-			interrupt_mask |=
-				CBE_PM_CTR_OVERFLOW_INTR(0);
-		} else {
-			/* Disable counter */
-			cbe_write_pm07_control(cpu, 0, 0);
-		}
-
-		cbe_get_and_clear_pm_interrupts(cpu);
-		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
-		cbe_enable_pm(cpu);
-
-		/* clear the trace buffer */
-		cbe_write_pm(cpu, trace_address, 0);
-	}
-
-	/* Start the timer to time slice collecting the event profile
-	 * on each of the SPUs.  Note, can collect profile on one SPU
-	 * per node at a time.
-	 */
-	start_spu_event_swap();
-	start_spu_profiling_events();
-	oprofile_running = 1;
-	smp_wmb();
-
-	return rtn;
-}
-
-static int cell_global_start_ppu(struct op_counter_config *ctr)
-{
-	u32 cpu, i;
-	u32 interrupt_mask = 0;
-
-	/* This routine gets called once for the system.
-	 * There is one performance monitor per node, so we
-	 * only need to perform this function once per node.
-	 */
-	for_each_online_cpu(cpu) {
-		if (cbe_get_hw_thread_id(cpu))
-			continue;
-
-		interrupt_mask = 0;
-
-		for (i = 0; i < num_counters; ++i) {
-			if (ctr_enabled & (1 << i)) {
-				cbe_write_ctr(cpu, i, reset_value[i]);
-				enable_ctr(cpu, i, pm_regs.pm07_cntrl);
-				interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
-			} else {
-				/* Disable counter */
-				cbe_write_pm07_control(cpu, i, 0);
-			}
-		}
-
-		cbe_get_and_clear_pm_interrupts(cpu);
-		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
-		cbe_enable_pm(cpu);
-	}
-
-	virt_cntr_inter_mask = interrupt_mask;
-	oprofile_running = 1;
-	smp_wmb();
-
-	/*
-	 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
-	 * executed which manipulates the PMU.	We start the "virtual counter"
-	 * here so that we do not need to synchronize access to the PMU in
-	 * the above for-loop.
-	 */
-	start_virt_cntrs();
-
-	return 0;
-}
-
-static int cell_global_start(struct op_counter_config *ctr)
-{
-	if (profiling_mode == SPU_PROFILING_CYCLES)
-		return cell_global_start_spu_cycles(ctr);
-	else if (profiling_mode == SPU_PROFILING_EVENTS)
-		return cell_global_start_spu_events(ctr);
-	else
-		return cell_global_start_ppu(ctr);
-}
-
-
-/* The SPU interrupt handler
- *
- * SPU event profiling works as follows:
- * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
- * the debug bus using word 0 or 1.  The value of pm_signal[1] and
- * pm_signal[2] contain the necessary events to route the SPU program
- * counter for the selected SPU onto the debug bus using words 2 and 3.
- * The pm_interval register is setup to write the SPU PC value into the
- * trace buffer at the maximum rate possible.  The trace buffer is configured
- * to store the PCs, wrapping when it is full.  The performance counter is
- * initialized to the max hardware count minus the number of events, N, between
- * samples.  Once the N events have occurred, a HW counter overflow occurs
- * causing the generation of a HW counter interrupt which also stops the
- * writing of the SPU PC values to the trace buffer.  Hence the last PC
- * written to the trace buffer is the SPU PC that we want.  Unfortunately,
- * we have to read from the beginning of the trace buffer to get to the
- * last value written.  We just hope the PPU has nothing better to do then
- * service this interrupt. The PC for the specific SPU being profiled is
- * extracted from the trace buffer processed and stored.  The trace buffer
- * is cleared, interrupts are cleared, the counter is reset to max - N.
- * A kernel timer is used to periodically call the routine spu_evnt_swap()
- * to switch to the next physical SPU in the node to profile in round robbin
- * order.  This way data is collected for all SPUs on the node. It does mean
- * that we need to use a relatively small value of N to ensure enough samples
- * on each SPU are collected each SPU is being profiled 1/8 of the time.
- * It may also be necessary to use a longer sample collection period.
- */
-static void cell_handle_interrupt_spu(struct pt_regs *regs,
-				      struct op_counter_config *ctr)
-{
-	u32 cpu, cpu_tmp;
-	u64 trace_entry;
-	u32 interrupt_mask;
-	u64 trace_buffer[2];
-	u64 last_trace_buffer;
-	u32 sample;
-	u32 trace_addr;
-	unsigned long sample_array_lock_flags;
-	int spu_num;
-	unsigned long flags;
-
-	/* Make sure spu event interrupt handler and spu event swap
-	 * don't access the counters simultaneously.
-	 */
-	cpu = smp_processor_id();
-	spin_lock_irqsave(&cntr_lock, flags);
-
-	cpu_tmp = cpu;
-	cbe_disable_pm(cpu);
-
-	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
-
-	sample = 0xABCDEF;
-	trace_entry = 0xfedcba;
-	last_trace_buffer = 0xdeadbeaf;
-
-	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
-		/* disable writes to trace buff */
-		cbe_write_pm(cpu, pm_interval, 0);
-
-		/* only have one perf cntr being used, cntr 0 */
-		if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
-		    && ctr[0].enabled)
-			/* The SPU PC values will be read
-			 * from the trace buffer, reset counter
-			 */
-
-			cbe_write_ctr(cpu, 0, reset_value[0]);
-
-		trace_addr = cbe_read_pm(cpu, trace_address);
-
-		while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
-			/* There is data in the trace buffer to process
-			 * Read the buffer until you get to the last
-			 * entry.  This is the value we want.
-			 */
-
-			cbe_read_trace_buffer(cpu, trace_buffer);
-			trace_addr = cbe_read_pm(cpu, trace_address);
-		}
-
-		/* SPU Address 16 bit count format for 128 bit
-		 * HW trace buffer is used for the SPU PC storage
-		 *    HDR bits          0:15
-		 *    SPU Addr 0 bits   16:31
-		 *    SPU Addr 1 bits   32:47
-		 *    unused bits       48:127
-		 *
-		 * HDR: bit4 = 1 SPU Address 0 valid
-		 * HDR: bit5 = 1 SPU Address 1 valid
-		 *  - unfortunately, the valid bits don't seem to work
-		 *
-		 * Note trace_buffer[0] holds bits 0:63 of the HW
-		 * trace buffer, trace_buffer[1] holds bits 64:127
-		 */
-
-		trace_entry = trace_buffer[0]
-			& 0x00000000FFFF0000;
-
-		/* only top 16 of the 18 bit SPU PC address
-		 * is stored in trace buffer, hence shift right
-		 * by 16 -2 bits */
-		sample = trace_entry >> 14;
-		last_trace_buffer = trace_buffer[0];
-
-		spu_num = spu_evnt_phys_spu_indx
-			+ (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
-
-		/* make sure only one process at a time is calling
-		 * spu_sync_buffer()
-		 */
-		spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
-				  sample_array_lock_flags);
-		spu_sync_buffer(spu_num, &sample, 1);
-		spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
-				       sample_array_lock_flags);
-
-		smp_wmb();    /* insure spu event buffer updates are written
-			       * don't want events intermingled... */
-
-		/* The counters were frozen by the interrupt.
-		 * Reenable the interrupt and restart the counters.
-		 */
-		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
-		cbe_enable_pm_interrupts(cpu, hdw_thread,
-					 virt_cntr_inter_mask);
-
-		/* clear the trace buffer, re-enable writes to trace buff */
-		cbe_write_pm(cpu, trace_address, 0);
-		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
-
-		/* The writes to the various performance counters only writes
-		 * to a latch.  The new values (interrupt setting bits, reset
-		 * counter value etc.) are not copied to the actual registers
-		 * until the performance monitor is enabled.  In order to get
-		 * this to work as desired, the performance monitor needs to
-		 * be disabled while writing to the latches.  This is a
-		 * HW design issue.
-		 */
-		write_pm_cntrl(cpu);
-		cbe_enable_pm(cpu);
-	}
-	spin_unlock_irqrestore(&cntr_lock, flags);
-}
-
-static void cell_handle_interrupt_ppu(struct pt_regs *regs,
-				      struct op_counter_config *ctr)
-{
-	u32 cpu;
-	u64 pc;
-	int is_kernel;
-	unsigned long flags = 0;
-	u32 interrupt_mask;
-	int i;
-
-	cpu = smp_processor_id();
-
-	/*
-	 * Need to make sure the interrupt handler and the virt counter
-	 * routine are not running at the same time. See the
-	 * cell_virtual_cntr() routine for additional comments.
-	 */
-	spin_lock_irqsave(&cntr_lock, flags);
-
-	/*
-	 * Need to disable and reenable the performance counters
-	 * to get the desired behavior from the hardware.  This
-	 * is hardware specific.
-	 */
-
-	cbe_disable_pm(cpu);
-
-	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
-
-	/*
-	 * If the interrupt mask has been cleared, then the virt cntr
-	 * has cleared the interrupt.  When the thread that generated
-	 * the interrupt is restored, the data count will be restored to
-	 * 0xffffff0 to cause the interrupt to be regenerated.
-	 */
-
-	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
-		pc = regs->nip;
-		is_kernel = is_kernel_addr(pc);
-
-		for (i = 0; i < num_counters; ++i) {
-			if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
-			    && ctr[i].enabled) {
-				oprofile_add_ext_sample(pc, regs, i, is_kernel);
-				cbe_write_ctr(cpu, i, reset_value[i]);
-			}
-		}
-
-		/*
-		 * The counters were frozen by the interrupt.
-		 * Reenable the interrupt and restart the counters.
-		 * If there was a race between the interrupt handler and
-		 * the virtual counter routine.	 The virtual counter
-		 * routine may have cleared the interrupts.  Hence must
-		 * use the virt_cntr_inter_mask to re-enable the interrupts.
-		 */
-		cbe_enable_pm_interrupts(cpu, hdw_thread,
-					 virt_cntr_inter_mask);
-
-		/*
-		 * The writes to the various performance counters only writes
-		 * to a latch.	The new values (interrupt setting bits, reset
-		 * counter value etc.) are not copied to the actual registers
-		 * until the performance monitor is enabled.  In order to get
-		 * this to work as desired, the performance monitor needs to
-		 * be disabled while writing to the latches.  This is a
-		 * HW design issue.
-		 */
-		cbe_enable_pm(cpu);
-	}
-	spin_unlock_irqrestore(&cntr_lock, flags);
-}
-
-static void cell_handle_interrupt(struct pt_regs *regs,
-				  struct op_counter_config *ctr)
-{
-	if (profiling_mode == PPU_PROFILING)
-		cell_handle_interrupt_ppu(regs, ctr);
-	else
-		cell_handle_interrupt_spu(regs, ctr);
-}
-
-/*
- * This function is called from the generic OProfile
- * driver.  When profiling PPUs, we need to do the
- * generic sync start; otherwise, do spu_sync_start.
- */
-static int cell_sync_start(void)
-{
-	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
-	    (profiling_mode == SPU_PROFILING_EVENTS))
-		return spu_sync_start();
-	else
-		return DO_GENERIC_SYNC;
-}
-
-static int cell_sync_stop(void)
-{
-	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
-	    (profiling_mode == SPU_PROFILING_EVENTS))
-		return spu_sync_stop();
-	else
-		return 1;
-}
-
-struct op_powerpc_model op_model_cell = {
-	.reg_setup = cell_reg_setup,
-	.cpu_setup = cell_cpu_setup,
-	.global_start = cell_global_start,
-	.global_stop = cell_global_stop,
-	.sync_start = cell_sync_start,
-	.sync_stop = cell_sync_stop,
-	.handle_interrupt = cell_handle_interrupt,
-};
diff --git a/arch/powerpc/oprofile/op_model_fsl_emb.c b/arch/powerpc/oprofile/op_model_fsl_emb.c
deleted file mode 100644
index 25dc6813ecee..000000000000
--- a/arch/powerpc/oprofile/op_model_fsl_emb.c
+++ /dev/null
@@ -1,380 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Freescale Embedded oprofile support, based on ppc64 oprofile support
- * Copyright (C) 2004 Anton Blanchard <anton@...ibm.com>, IBM
- *
- * Copyright (c) 2004, 2010 Freescale Semiconductor, Inc
- *
- * Author: Andy Fleming
- * Maintainer: Kumar Gala <galak@...nel.crashing.org>
- */
-
-#include <linux/oprofile.h>
-#include <linux/smp.h>
-#include <asm/ptrace.h>
-#include <asm/processor.h>
-#include <asm/cputable.h>
-#include <asm/reg_fsl_emb.h>
-#include <asm/page.h>
-#include <asm/pmc.h>
-#include <asm/oprofile_impl.h>
-
-static unsigned long reset_value[OP_MAX_COUNTER];
-
-static int num_counters;
-static int oprofile_running;
-
-static inline u32 get_pmlca(int ctr)
-{
-	u32 pmlca;
-
-	switch (ctr) {
-		case 0:
-			pmlca = mfpmr(PMRN_PMLCA0);
-			break;
-		case 1:
-			pmlca = mfpmr(PMRN_PMLCA1);
-			break;
-		case 2:
-			pmlca = mfpmr(PMRN_PMLCA2);
-			break;
-		case 3:
-			pmlca = mfpmr(PMRN_PMLCA3);
-			break;
-		case 4:
-			pmlca = mfpmr(PMRN_PMLCA4);
-			break;
-		case 5:
-			pmlca = mfpmr(PMRN_PMLCA5);
-			break;
-		default:
-			panic("Bad ctr number\n");
-	}
-
-	return pmlca;
-}
-
-static inline void set_pmlca(int ctr, u32 pmlca)
-{
-	switch (ctr) {
-		case 0:
-			mtpmr(PMRN_PMLCA0, pmlca);
-			break;
-		case 1:
-			mtpmr(PMRN_PMLCA1, pmlca);
-			break;
-		case 2:
-			mtpmr(PMRN_PMLCA2, pmlca);
-			break;
-		case 3:
-			mtpmr(PMRN_PMLCA3, pmlca);
-			break;
-		case 4:
-			mtpmr(PMRN_PMLCA4, pmlca);
-			break;
-		case 5:
-			mtpmr(PMRN_PMLCA5, pmlca);
-			break;
-		default:
-			panic("Bad ctr number\n");
-	}
-}
-
-static inline unsigned int ctr_read(unsigned int i)
-{
-	switch(i) {
-		case 0:
-			return mfpmr(PMRN_PMC0);
-		case 1:
-			return mfpmr(PMRN_PMC1);
-		case 2:
-			return mfpmr(PMRN_PMC2);
-		case 3:
-			return mfpmr(PMRN_PMC3);
-		case 4:
-			return mfpmr(PMRN_PMC4);
-		case 5:
-			return mfpmr(PMRN_PMC5);
-		default:
-			return 0;
-	}
-}
-
-static inline void ctr_write(unsigned int i, unsigned int val)
-{
-	switch(i) {
-		case 0:
-			mtpmr(PMRN_PMC0, val);
-			break;
-		case 1:
-			mtpmr(PMRN_PMC1, val);
-			break;
-		case 2:
-			mtpmr(PMRN_PMC2, val);
-			break;
-		case 3:
-			mtpmr(PMRN_PMC3, val);
-			break;
-		case 4:
-			mtpmr(PMRN_PMC4, val);
-			break;
-		case 5:
-			mtpmr(PMRN_PMC5, val);
-			break;
-		default:
-			break;
-	}
-}
-
-
-static void init_pmc_stop(int ctr)
-{
-	u32 pmlca = (PMLCA_FC | PMLCA_FCS | PMLCA_FCU |
-			PMLCA_FCM1 | PMLCA_FCM0);
-	u32 pmlcb = 0;
-
-	switch (ctr) {
-		case 0:
-			mtpmr(PMRN_PMLCA0, pmlca);
-			mtpmr(PMRN_PMLCB0, pmlcb);
-			break;
-		case 1:
-			mtpmr(PMRN_PMLCA1, pmlca);
-			mtpmr(PMRN_PMLCB1, pmlcb);
-			break;
-		case 2:
-			mtpmr(PMRN_PMLCA2, pmlca);
-			mtpmr(PMRN_PMLCB2, pmlcb);
-			break;
-		case 3:
-			mtpmr(PMRN_PMLCA3, pmlca);
-			mtpmr(PMRN_PMLCB3, pmlcb);
-			break;
-		case 4:
-			mtpmr(PMRN_PMLCA4, pmlca);
-			mtpmr(PMRN_PMLCB4, pmlcb);
-			break;
-		case 5:
-			mtpmr(PMRN_PMLCA5, pmlca);
-			mtpmr(PMRN_PMLCB5, pmlcb);
-			break;
-		default:
-			panic("Bad ctr number!\n");
-	}
-}
-
-static void set_pmc_event(int ctr, int event)
-{
-	u32 pmlca;
-
-	pmlca = get_pmlca(ctr);
-
-	pmlca = (pmlca & ~PMLCA_EVENT_MASK) |
-		((event << PMLCA_EVENT_SHIFT) &
-		 PMLCA_EVENT_MASK);
-
-	set_pmlca(ctr, pmlca);
-}
-
-static void set_pmc_user_kernel(int ctr, int user, int kernel)
-{
-	u32 pmlca;
-
-	pmlca = get_pmlca(ctr);
-
-	if(user)
-		pmlca &= ~PMLCA_FCU;
-	else
-		pmlca |= PMLCA_FCU;
-
-	if(kernel)
-		pmlca &= ~PMLCA_FCS;
-	else
-		pmlca |= PMLCA_FCS;
-
-	set_pmlca(ctr, pmlca);
-}
-
-static void set_pmc_marked(int ctr, int mark0, int mark1)
-{
-	u32 pmlca = get_pmlca(ctr);
-
-	if(mark0)
-		pmlca &= ~PMLCA_FCM0;
-	else
-		pmlca |= PMLCA_FCM0;
-
-	if(mark1)
-		pmlca &= ~PMLCA_FCM1;
-	else
-		pmlca |= PMLCA_FCM1;
-
-	set_pmlca(ctr, pmlca);
-}
-
-static void pmc_start_ctr(int ctr, int enable)
-{
-	u32 pmlca = get_pmlca(ctr);
-
-	pmlca &= ~PMLCA_FC;
-
-	if (enable)
-		pmlca |= PMLCA_CE;
-	else
-		pmlca &= ~PMLCA_CE;
-
-	set_pmlca(ctr, pmlca);
-}
-
-static void pmc_start_ctrs(int enable)
-{
-	u32 pmgc0 = mfpmr(PMRN_PMGC0);
-
-	pmgc0 &= ~PMGC0_FAC;
-	pmgc0 |= PMGC0_FCECE;
-
-	if (enable)
-		pmgc0 |= PMGC0_PMIE;
-	else
-		pmgc0 &= ~PMGC0_PMIE;
-
-	mtpmr(PMRN_PMGC0, pmgc0);
-}
-
-static void pmc_stop_ctrs(void)
-{
-	u32 pmgc0 = mfpmr(PMRN_PMGC0);
-
-	pmgc0 |= PMGC0_FAC;
-
-	pmgc0 &= ~(PMGC0_PMIE | PMGC0_FCECE);
-
-	mtpmr(PMRN_PMGC0, pmgc0);
-}
-
-static int fsl_emb_cpu_setup(struct op_counter_config *ctr)
-{
-	int i;
-
-	/* freeze all counters */
-	pmc_stop_ctrs();
-
-	for (i = 0;i < num_counters;i++) {
-		init_pmc_stop(i);
-
-		set_pmc_event(i, ctr[i].event);
-
-		set_pmc_user_kernel(i, ctr[i].user, ctr[i].kernel);
-	}
-
-	return 0;
-}
-
-static int fsl_emb_reg_setup(struct op_counter_config *ctr,
-			     struct op_system_config *sys,
-			     int num_ctrs)
-{
-	int i;
-
-	num_counters = num_ctrs;
-
-	/* Our counters count up, and "count" refers to
-	 * how much before the next interrupt, and we interrupt
-	 * on overflow.  So we calculate the starting value
-	 * which will give us "count" until overflow.
-	 * Then we set the events on the enabled counters */
-	for (i = 0; i < num_counters; ++i)
-		reset_value[i] = 0x80000000UL - ctr[i].count;
-
-	return 0;
-}
-
-static int fsl_emb_start(struct op_counter_config *ctr)
-{
-	int i;
-
-	mtmsr(mfmsr() | MSR_PMM);
-
-	for (i = 0; i < num_counters; ++i) {
-		if (ctr[i].enabled) {
-			ctr_write(i, reset_value[i]);
-			/* Set each enabled counter to only
-			 * count when the Mark bit is *not* set */
-			set_pmc_marked(i, 1, 0);
-			pmc_start_ctr(i, 1);
-		} else {
-			ctr_write(i, 0);
-
-			/* Set the ctr to be stopped */
-			pmc_start_ctr(i, 0);
-		}
-	}
-
-	/* Clear the freeze bit, and enable the interrupt.
-	 * The counters won't actually start until the rfi clears
-	 * the PMM bit */
-	pmc_start_ctrs(1);
-
-	oprofile_running = 1;
-
-	pr_debug("start on cpu %d, pmgc0 %x\n", smp_processor_id(),
-			mfpmr(PMRN_PMGC0));
-
-	return 0;
-}
-
-static void fsl_emb_stop(void)
-{
-	/* freeze counters */
-	pmc_stop_ctrs();
-
-	oprofile_running = 0;
-
-	pr_debug("stop on cpu %d, pmgc0 %x\n", smp_processor_id(),
-			mfpmr(PMRN_PMGC0));
-
-	mb();
-}
-
-
-static void fsl_emb_handle_interrupt(struct pt_regs *regs,
-				    struct op_counter_config *ctr)
-{
-	unsigned long pc;
-	int is_kernel;
-	int val;
-	int i;
-
-	pc = regs->nip;
-	is_kernel = is_kernel_addr(pc);
-
-	for (i = 0; i < num_counters; ++i) {
-		val = ctr_read(i);
-		if (val < 0) {
-			if (oprofile_running && ctr[i].enabled) {
-				oprofile_add_ext_sample(pc, regs, i, is_kernel);
-				ctr_write(i, reset_value[i]);
-			} else {
-				ctr_write(i, 0);
-			}
-		}
-	}
-
-	/* The freeze bit was set by the interrupt. */
-	/* Clear the freeze bit, and reenable the interrupt.  The
-	 * counters won't actually start until the rfi clears the PMM
-	 * bit.  The PMM bit should not be set until after the interrupt
-	 * is cleared to avoid it getting lost in some hypervisor
-	 * environments.
-	 */
-	mtmsr(mfmsr() | MSR_PMM);
-	pmc_start_ctrs(1);
-}
-
-struct op_powerpc_model op_model_fsl_emb = {
-	.reg_setup		= fsl_emb_reg_setup,
-	.cpu_setup		= fsl_emb_cpu_setup,
-	.start			= fsl_emb_start,
-	.stop			= fsl_emb_stop,
-	.handle_interrupt	= fsl_emb_handle_interrupt,
-};
diff --git a/arch/powerpc/oprofile/op_model_pa6t.c b/arch/powerpc/oprofile/op_model_pa6t.c
deleted file mode 100644
index d23061cf76bc..000000000000
--- a/arch/powerpc/oprofile/op_model_pa6t.c
+++ /dev/null
@@ -1,227 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * Copyright (C) 2006-2007 PA Semi, Inc
- *
- * Author: Shashi Rao, PA Semi
- *
- * Maintained by: Olof Johansson <olof@...om.net>
- *
- * Based on arch/powerpc/oprofile/op_model_power4.c
- */
-
-#include <linux/oprofile.h>
-#include <linux/smp.h>
-#include <linux/percpu.h>
-#include <asm/processor.h>
-#include <asm/cputable.h>
-#include <asm/oprofile_impl.h>
-#include <asm/reg.h>
-
-static unsigned char oprofile_running;
-
-/* mmcr values are set in pa6t_reg_setup, used in pa6t_cpu_setup */
-static u64 mmcr0_val;
-static u64 mmcr1_val;
-
-/* inited in pa6t_reg_setup */
-static u64 reset_value[OP_MAX_COUNTER];
-
-static inline u64 ctr_read(unsigned int i)
-{
-	switch (i) {
-	case 0:
-		return mfspr(SPRN_PA6T_PMC0);
-	case 1:
-		return mfspr(SPRN_PA6T_PMC1);
-	case 2:
-		return mfspr(SPRN_PA6T_PMC2);
-	case 3:
-		return mfspr(SPRN_PA6T_PMC3);
-	case 4:
-		return mfspr(SPRN_PA6T_PMC4);
-	case 5:
-		return mfspr(SPRN_PA6T_PMC5);
-	default:
-		printk(KERN_ERR "ctr_read called with bad arg %u\n", i);
-		return 0;
-	}
-}
-
-static inline void ctr_write(unsigned int i, u64 val)
-{
-	switch (i) {
-	case 0:
-		mtspr(SPRN_PA6T_PMC0, val);
-		break;
-	case 1:
-		mtspr(SPRN_PA6T_PMC1, val);
-		break;
-	case 2:
-		mtspr(SPRN_PA6T_PMC2, val);
-		break;
-	case 3:
-		mtspr(SPRN_PA6T_PMC3, val);
-		break;
-	case 4:
-		mtspr(SPRN_PA6T_PMC4, val);
-		break;
-	case 5:
-		mtspr(SPRN_PA6T_PMC5, val);
-		break;
-	default:
-		printk(KERN_ERR "ctr_write called with bad arg %u\n", i);
-		break;
-	}
-}
-
-
-/* precompute the values to stuff in the hardware registers */
-static int pa6t_reg_setup(struct op_counter_config *ctr,
-			   struct op_system_config *sys,
-			   int num_ctrs)
-{
-	int pmc;
-
-	/*
-	 * adjust the mmcr0.en[0-5] and mmcr0.inten[0-5] values obtained from the
-	 * event_mappings file by turning off the counters that the user doesn't
-	 * care about
-	 *
-	 * setup user and kernel profiling
-	 */
-	for (pmc = 0; pmc < cur_cpu_spec->num_pmcs; pmc++)
-		if (!ctr[pmc].enabled) {
-			sys->mmcr0 &= ~(0x1UL << pmc);
-			sys->mmcr0 &= ~(0x1UL << (pmc+12));
-			pr_debug("turned off counter %u\n", pmc);
-		}
-
-	if (sys->enable_kernel)
-		sys->mmcr0 |= PA6T_MMCR0_SUPEN | PA6T_MMCR0_HYPEN;
-	else
-		sys->mmcr0 &= ~(PA6T_MMCR0_SUPEN | PA6T_MMCR0_HYPEN);
-
-	if (sys->enable_user)
-		sys->mmcr0 |= PA6T_MMCR0_PREN;
-	else
-		sys->mmcr0 &= ~PA6T_MMCR0_PREN;
-
-	/*
-	 * The performance counter event settings are given in the mmcr0 and
-	 * mmcr1 values passed from the user in the op_system_config
-	 * structure (sys variable).
-	 */
-	mmcr0_val = sys->mmcr0;
-	mmcr1_val = sys->mmcr1;
-	pr_debug("mmcr0_val inited to %016lx\n", sys->mmcr0);
-	pr_debug("mmcr1_val inited to %016lx\n", sys->mmcr1);
-
-	for (pmc = 0; pmc < cur_cpu_spec->num_pmcs; pmc++) {
-		/* counters are 40 bit. Move to cputable at some point? */
-		reset_value[pmc] = (0x1UL << 39) - ctr[pmc].count;
-		pr_debug("reset_value for pmc%u inited to 0x%llx\n",
-				 pmc, reset_value[pmc]);
-	}
-
-	return 0;
-}
-
-/* configure registers on this cpu */
-static int pa6t_cpu_setup(struct op_counter_config *ctr)
-{
-	u64 mmcr0 = mmcr0_val;
-	u64 mmcr1 = mmcr1_val;
-
-	/* Default is all PMCs off */
-	mmcr0 &= ~(0x3FUL);
-	mtspr(SPRN_PA6T_MMCR0, mmcr0);
-
-	/* program selected programmable events in */
-	mtspr(SPRN_PA6T_MMCR1, mmcr1);
-
-	pr_debug("setup on cpu %d, mmcr0 %016lx\n", smp_processor_id(),
-		mfspr(SPRN_PA6T_MMCR0));
-	pr_debug("setup on cpu %d, mmcr1 %016lx\n", smp_processor_id(),
-		mfspr(SPRN_PA6T_MMCR1));
-
-	return 0;
-}
-
-static int pa6t_start(struct op_counter_config *ctr)
-{
-	int i;
-
-	/* Hold off event counting until rfid */
-	u64 mmcr0 = mmcr0_val | PA6T_MMCR0_HANDDIS;
-
-	for (i = 0; i < cur_cpu_spec->num_pmcs; i++)
-		if (ctr[i].enabled)
-			ctr_write(i, reset_value[i]);
-		else
-			ctr_write(i, 0UL);
-
-	mtspr(SPRN_PA6T_MMCR0, mmcr0);
-
-	oprofile_running = 1;
-
-	pr_debug("start on cpu %d, mmcr0 %llx\n", smp_processor_id(), mmcr0);
-
-	return 0;
-}
-
-static void pa6t_stop(void)
-{
-	u64 mmcr0;
-
-	/* freeze counters */
-	mmcr0 = mfspr(SPRN_PA6T_MMCR0);
-	mmcr0 |= PA6T_MMCR0_FCM0;
-	mtspr(SPRN_PA6T_MMCR0, mmcr0);
-
-	oprofile_running = 0;
-
-	pr_debug("stop on cpu %d, mmcr0 %llx\n", smp_processor_id(), mmcr0);
-}
-
-/* handle the perfmon overflow vector */
-static void pa6t_handle_interrupt(struct pt_regs *regs,
-				  struct op_counter_config *ctr)
-{
-	unsigned long pc = mfspr(SPRN_PA6T_SIAR);
-	int is_kernel = is_kernel_addr(pc);
-	u64 val;
-	int i;
-	u64 mmcr0;
-
-	/* disable perfmon counting until rfid */
-	mmcr0 = mfspr(SPRN_PA6T_MMCR0);
-	mtspr(SPRN_PA6T_MMCR0, mmcr0 | PA6T_MMCR0_HANDDIS);
-
-	/* Record samples. We've got one global bit for whether a sample
-	 * was taken, so add it for any counter that triggered overflow.
-	 */
-	for (i = 0; i < cur_cpu_spec->num_pmcs; i++) {
-		val = ctr_read(i);
-		if (val & (0x1UL << 39)) { /* Overflow bit set */
-			if (oprofile_running && ctr[i].enabled) {
-				if (mmcr0 & PA6T_MMCR0_SIARLOG)
-					oprofile_add_ext_sample(pc, regs, i, is_kernel);
-				ctr_write(i, reset_value[i]);
-			} else {
-				ctr_write(i, 0UL);
-			}
-		}
-	}
-
-	/* Restore mmcr0 to a good known value since the PMI changes it */
-	mmcr0 = mmcr0_val | PA6T_MMCR0_HANDDIS;
-	mtspr(SPRN_PA6T_MMCR0, mmcr0);
-}
-
-struct op_powerpc_model op_model_pa6t = {
-	.reg_setup		= pa6t_reg_setup,
-	.cpu_setup		= pa6t_cpu_setup,
-	.start			= pa6t_start,
-	.stop			= pa6t_stop,
-	.handle_interrupt	= pa6t_handle_interrupt,
-};
diff --git a/arch/powerpc/oprofile/op_model_power4.c b/arch/powerpc/oprofile/op_model_power4.c
deleted file mode 100644
index 2ae6b86ff97b..000000000000
--- a/arch/powerpc/oprofile/op_model_power4.c
+++ /dev/null
@@ -1,438 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Copyright (C) 2004 Anton Blanchard <anton@...ibm.com>, IBM
- * Added mmcra[slot] support:
- * Copyright (C) 2006-2007 Will Schmidt <willschm@...ibm.com>, IBM
- */
-
-#include <linux/oprofile.h>
-#include <linux/smp.h>
-#include <asm/firmware.h>
-#include <asm/ptrace.h>
-#include <asm/processor.h>
-#include <asm/cputable.h>
-#include <asm/rtas.h>
-#include <asm/oprofile_impl.h>
-#include <asm/reg.h>
-
-#define dbg(args...)
-#define OPROFILE_PM_PMCSEL_MSK      0xffULL
-#define OPROFILE_PM_UNIT_SHIFT      60
-#define OPROFILE_PM_UNIT_MSK        0xfULL
-#define OPROFILE_MAX_PMC_NUM        3
-#define OPROFILE_PMSEL_FIELD_WIDTH  8
-#define OPROFILE_UNIT_FIELD_WIDTH   4
-#define MMCRA_SIAR_VALID_MASK       0x10000000ULL
-
-static unsigned long reset_value[OP_MAX_COUNTER];
-
-static int oprofile_running;
-static int use_slot_nums;
-
-/* mmcr values are set in power4_reg_setup, used in power4_cpu_setup */
-static u32 mmcr0_val;
-static u64 mmcr1_val;
-static u64 mmcra_val;
-static u32 cntr_marked_events;
-
-static int power7_marked_instr_event(u64 mmcr1)
-{
-	u64 psel, unit;
-	int pmc, cntr_marked_events = 0;
-
-	/* Given the MMCR1 value, look at the field for each counter to
-	 * determine if it is a marked event.  Code based on the function
-	 * power7_marked_instr_event() in file arch/powerpc/perf/power7-pmu.c.
-	 */
-	for (pmc = 0; pmc < 4; pmc++) {
-		psel = mmcr1 & (OPROFILE_PM_PMCSEL_MSK
-				<< (OPROFILE_MAX_PMC_NUM - pmc)
-				* OPROFILE_PMSEL_FIELD_WIDTH);
-		psel = (psel >> ((OPROFILE_MAX_PMC_NUM - pmc)
-				 * OPROFILE_PMSEL_FIELD_WIDTH)) & ~1ULL;
-		unit = mmcr1 & (OPROFILE_PM_UNIT_MSK
-				<< (OPROFILE_PM_UNIT_SHIFT
-				    - (pmc * OPROFILE_PMSEL_FIELD_WIDTH )));
-		unit = unit >> (OPROFILE_PM_UNIT_SHIFT
-				- (pmc * OPROFILE_PMSEL_FIELD_WIDTH));
-
-		switch (psel >> 4) {
-		case 2:
-			cntr_marked_events |= (pmc == 1 || pmc == 3) << pmc;
-			break;
-		case 3:
-			if (psel == 0x3c) {
-				cntr_marked_events |= (pmc == 0) << pmc;
-				break;
-			}
-
-			if (psel == 0x3e) {
-				cntr_marked_events |= (pmc != 1) << pmc;
-				break;
-			}
-
-			cntr_marked_events |= 1 << pmc;
-			break;
-		case 4:
-		case 5:
-			cntr_marked_events |= (unit == 0xd) << pmc;
-			break;
-		case 6:
-			if (psel == 0x64)
-				cntr_marked_events |= (pmc >= 2) << pmc;
-			break;
-		case 8:
-			cntr_marked_events |= (unit == 0xd) << pmc;
-			break;
-		}
-	}
-	return cntr_marked_events;
-}
-
-static int power4_reg_setup(struct op_counter_config *ctr,
-			     struct op_system_config *sys,
-			     int num_ctrs)
-{
-	int i;
-
-	/*
-	 * The performance counter event settings are given in the mmcr0,
-	 * mmcr1 and mmcra values passed from the user in the
-	 * op_system_config structure (sys variable).
-	 */
-	mmcr0_val = sys->mmcr0;
-	mmcr1_val = sys->mmcr1;
-	mmcra_val = sys->mmcra;
-
-	/* Power 7+ and newer architectures:
-	 * Determine which counter events in the group (the group of events is
-	 * specified by the bit settings in the MMCR1 register) are marked
-	 * events for use in the interrupt handler.  Do the calculation once
-	 * before OProfile starts.  Information is used in the interrupt
-	 * handler.  Starting with Power 7+ we only record the sample for
-	 * marked events if the SIAR valid bit is set.  For non marked events
-	 * the sample is always recorded.
-	 */
-	if (pvr_version_is(PVR_POWER7p))
-		cntr_marked_events = power7_marked_instr_event(mmcr1_val);
-	else
-		cntr_marked_events = 0; /* For older processors, set the bit map
-					 * to zero so the sample will always be
-					 * be recorded.
-					 */
-
-	for (i = 0; i < cur_cpu_spec->num_pmcs; ++i)
-		reset_value[i] = 0x80000000UL - ctr[i].count;
-
-	/* setup user and kernel profiling */
-	if (sys->enable_kernel)
-		mmcr0_val &= ~MMCR0_KERNEL_DISABLE;
-	else
-		mmcr0_val |= MMCR0_KERNEL_DISABLE;
-
-	if (sys->enable_user)
-		mmcr0_val &= ~MMCR0_PROBLEM_DISABLE;
-	else
-		mmcr0_val |= MMCR0_PROBLEM_DISABLE;
-
-	if (pvr_version_is(PVR_POWER4) || pvr_version_is(PVR_POWER4p) ||
-	    pvr_version_is(PVR_970) || pvr_version_is(PVR_970FX) ||
-	    pvr_version_is(PVR_970MP) || pvr_version_is(PVR_970GX) ||
-	    pvr_version_is(PVR_POWER5) || pvr_version_is(PVR_POWER5p))
-		use_slot_nums = 1;
-
-	return 0;
-}
-
-extern void ppc_enable_pmcs(void);
-
-/*
- * Older CPUs require the MMCRA sample bit to be always set, but newer 
- * CPUs only want it set for some groups. Eventually we will remove all
- * knowledge of this bit in the kernel, oprofile userspace should be
- * setting it when required.
- *
- * In order to keep current installations working we force the bit for
- * those older CPUs. Once everyone has updated their oprofile userspace we
- * can remove this hack.
- */
-static inline int mmcra_must_set_sample(void)
-{
-	if (pvr_version_is(PVR_POWER4) || pvr_version_is(PVR_POWER4p) ||
-	    pvr_version_is(PVR_970) || pvr_version_is(PVR_970FX) ||
-	    pvr_version_is(PVR_970MP) || pvr_version_is(PVR_970GX))
-		return 1;
-
-	return 0;
-}
-
-static int power4_cpu_setup(struct op_counter_config *ctr)
-{
-	unsigned int mmcr0 = mmcr0_val;
-	unsigned long mmcra = mmcra_val;
-
-	ppc_enable_pmcs();
-
-	/* set the freeze bit */
-	mmcr0 |= MMCR0_FC;
-	mtspr(SPRN_MMCR0, mmcr0);
-
-	mmcr0 |= MMCR0_FCM1|MMCR0_PMXE|MMCR0_FCECE;
-	mmcr0 |= MMCR0_PMC1CE|MMCR0_PMCjCE;
-	mtspr(SPRN_MMCR0, mmcr0);
-
-	mtspr(SPRN_MMCR1, mmcr1_val);
-
-	if (mmcra_must_set_sample())
-		mmcra |= MMCRA_SAMPLE_ENABLE;
-	mtspr(SPRN_MMCRA, mmcra);
-
-	dbg("setup on cpu %d, mmcr0 %lx\n", smp_processor_id(),
-	    mfspr(SPRN_MMCR0));
-	dbg("setup on cpu %d, mmcr1 %lx\n", smp_processor_id(),
-	    mfspr(SPRN_MMCR1));
-	dbg("setup on cpu %d, mmcra %lx\n", smp_processor_id(),
-	    mfspr(SPRN_MMCRA));
-
-	return 0;
-}
-
-static int power4_start(struct op_counter_config *ctr)
-{
-	int i;
-	unsigned int mmcr0;
-
-	/* set the PMM bit (see comment below) */
-	mtmsr(mfmsr() | MSR_PMM);
-
-	for (i = 0; i < cur_cpu_spec->num_pmcs; ++i) {
-		if (ctr[i].enabled) {
-			classic_ctr_write(i, reset_value[i]);
-		} else {
-			classic_ctr_write(i, 0);
-		}
-	}
-
-	mmcr0 = mfspr(SPRN_MMCR0);
-
-	/*
-	 * We must clear the PMAO bit on some (GQ) chips. Just do it
-	 * all the time
-	 */
-	mmcr0 &= ~MMCR0_PMAO;
-
-	/*
-	 * now clear the freeze bit, counting will not start until we
-	 * rfid from this excetion, because only at that point will
-	 * the PMM bit be cleared
-	 */
-	mmcr0 &= ~MMCR0_FC;
-	mtspr(SPRN_MMCR0, mmcr0);
-
-	oprofile_running = 1;
-
-	dbg("start on cpu %d, mmcr0 %x\n", smp_processor_id(), mmcr0);
-	return 0;
-}
-
-static void power4_stop(void)
-{
-	unsigned int mmcr0;
-
-	/* freeze counters */
-	mmcr0 = mfspr(SPRN_MMCR0);
-	mmcr0 |= MMCR0_FC;
-	mtspr(SPRN_MMCR0, mmcr0);
-
-	oprofile_running = 0;
-
-	dbg("stop on cpu %d, mmcr0 %x\n", smp_processor_id(), mmcr0);
-
-	mb();
-}
-
-/* Fake functions used by canonicalize_pc */
-static void __used hypervisor_bucket(void)
-{
-}
-
-static void __used rtas_bucket(void)
-{
-}
-
-static void __used kernel_unknown_bucket(void)
-{
-}
-
-/*
- * On GQ and newer the MMCRA stores the HV and PR bits at the time
- * the SIAR was sampled. We use that to work out if the SIAR was sampled in
- * the hypervisor, our exception vectors or RTAS.
- * If the MMCRA_SAMPLE_ENABLE bit is set, we can use the MMCRA[slot] bits
- * to more accurately identify the address of the sampled instruction. The
- * mmcra[slot] bits represent the slot number of a sampled instruction
- * within an instruction group.  The slot will contain a value between 1
- * and 5 if MMCRA_SAMPLE_ENABLE is set, otherwise 0.
- */
-static unsigned long get_pc(struct pt_regs *regs)
-{
-	unsigned long pc = mfspr(SPRN_SIAR);
-	unsigned long mmcra;
-	unsigned long slot;
-
-	/* Can't do much about it */
-	if (!cur_cpu_spec->oprofile_mmcra_sihv)
-		return pc;
-
-	mmcra = mfspr(SPRN_MMCRA);
-
-	if (use_slot_nums && (mmcra & MMCRA_SAMPLE_ENABLE)) {
-		slot = ((mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT);
-		if (slot > 1)
-			pc += 4 * (slot - 1);
-	}
-
-	/* Were we in the hypervisor? */
-	if (firmware_has_feature(FW_FEATURE_LPAR) &&
-	    (mmcra & cur_cpu_spec->oprofile_mmcra_sihv))
-		/* function descriptor madness */
-		return *((unsigned long *)hypervisor_bucket);
-
-	/* We were in userspace, nothing to do */
-	if (mmcra & cur_cpu_spec->oprofile_mmcra_sipr)
-		return pc;
-
-#ifdef CONFIG_PPC_RTAS
-	/* Were we in RTAS? */
-	if (pc >= rtas.base && pc < (rtas.base + rtas.size))
-		/* function descriptor madness */
-		return *((unsigned long *)rtas_bucket);
-#endif
-
-	/* Were we in our exception vectors or SLB real mode miss handler? */
-	if (pc < 0x1000000UL)
-		return (unsigned long)__va(pc);
-
-	/* Not sure where we were */
-	if (!is_kernel_addr(pc))
-		/* function descriptor madness */
-		return *((unsigned long *)kernel_unknown_bucket);
-
-	return pc;
-}
-
-static int get_kernel(unsigned long pc, unsigned long mmcra)
-{
-	int is_kernel;
-
-	if (!cur_cpu_spec->oprofile_mmcra_sihv) {
-		is_kernel = is_kernel_addr(pc);
-	} else {
-		is_kernel = ((mmcra & cur_cpu_spec->oprofile_mmcra_sipr) == 0);
-	}
-
-	return is_kernel;
-}
-
-static bool pmc_overflow(unsigned long val)
-{
-	if ((int)val < 0)
-		return true;
-
-	/*
-	 * Events on POWER7 can roll back if a speculative event doesn't
-	 * eventually complete. Unfortunately in some rare cases they will
-	 * raise a performance monitor exception. We need to catch this to
-	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
-	 * cycles from overflow.
-	 *
-	 * We only do this if the first pass fails to find any overflowing
-	 * PMCs because a user might set a period of less than 256 and we
-	 * don't want to mistakenly reset them.
-	 */
-	if (pvr_version_is(PVR_POWER7) && ((0x80000000 - val) <= 256))
-		return true;
-
-	return false;
-}
-
-static void power4_handle_interrupt(struct pt_regs *regs,
-				    struct op_counter_config *ctr)
-{
-	unsigned long pc;
-	int is_kernel;
-	int val;
-	int i;
-	unsigned int mmcr0;
-	unsigned long mmcra;
-	bool siar_valid = false;
-
-	mmcra = mfspr(SPRN_MMCRA);
-
-	pc = get_pc(regs);
-	is_kernel = get_kernel(pc, mmcra);
-
-	/* set the PMM bit (see comment below) */
-	mtmsr(mfmsr() | MSR_PMM);
-
-	/* Check that the SIAR  valid bit in MMCRA is set to 1. */
-	if ((mmcra & MMCRA_SIAR_VALID_MASK) == MMCRA_SIAR_VALID_MASK)
-		siar_valid = true;
-
-	for (i = 0; i < cur_cpu_spec->num_pmcs; ++i) {
-		val = classic_ctr_read(i);
-		if (pmc_overflow(val)) {
-			if (oprofile_running && ctr[i].enabled) {
-				/* Power 7+ and newer architectures:
-				 * If the event is a marked event, then only
-				 * save the sample if the SIAR valid bit is
-				 * set.  If the event is not marked, then
-				 * always save the sample.
-				 * Note, the Sample enable bit in the MMCRA
-				 * register must be set to 1 if the group
-				 * contains a marked event.
-				 */
-				if ((siar_valid &&
-				     (cntr_marked_events & (1 << i)))
-				    || !(cntr_marked_events & (1 << i)))
-					oprofile_add_ext_sample(pc, regs, i,
-								is_kernel);
-
-				classic_ctr_write(i, reset_value[i]);
-			} else {
-				classic_ctr_write(i, 0);
-			}
-		}
-	}
-
-	mmcr0 = mfspr(SPRN_MMCR0);
-
-	/* reset the perfmon trigger */
-	mmcr0 |= MMCR0_PMXE;
-
-	/*
-	 * We must clear the PMAO bit on some (GQ) chips. Just do it
-	 * all the time
-	 */
-	mmcr0 &= ~MMCR0_PMAO;
-
-	/* Clear the appropriate bits in the MMCRA */
-	mmcra &= ~cur_cpu_spec->oprofile_mmcra_clear;
-	mtspr(SPRN_MMCRA, mmcra);
-
-	/*
-	 * now clear the freeze bit, counting will not start until we
-	 * rfid from this exception, because only at that point will
-	 * the PMM bit be cleared
-	 */
-	mmcr0 &= ~MMCR0_FC;
-	mtspr(SPRN_MMCR0, mmcr0);
-}
-
-struct op_powerpc_model op_model_power4 = {
-	.reg_setup		= power4_reg_setup,
-	.cpu_setup		= power4_cpu_setup,
-	.start			= power4_start,
-	.stop			= power4_stop,
-	.handle_interrupt	= power4_handle_interrupt,
-};
-- 
2.25.0.rc1.19.g042ed3e048af

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ