lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Sat, 23 Apr 2022 11:22:21 +0800
From:   Aaron Lu <aaron.lu@...el.com>
To:     Yang Shi <shy828301@...il.com>
CC:     "ying.huang@...el.com" <ying.huang@...el.com>,
        Michal Hocko <mhocko@...e.com>,
        Andrew Morton <akpm@...ux-foundation.org>,
        Linux MM <linux-mm@...ck.org>,
        Linux Kernel Mailing List <linux-kernel@...r.kernel.org>
Subject: Re: [PATCH] mm: swap: determine swap device by using page nid

On Fri, Apr 22, 2022 at 10:00:59AM -0700, Yang Shi wrote:
> On Thu, Apr 21, 2022 at 11:24 PM Aaron Lu <aaron.lu@...el.com> wrote:
> >
> > On Thu, Apr 21, 2022 at 04:34:09PM +0800, ying.huang@...el.com wrote:
> > > On Thu, 2022-04-21 at 16:17 +0800, Aaron Lu wrote:
> > > > On Thu, Apr 21, 2022 at 03:49:21PM +0800, ying.huang@...el.com wrote:
> >
> > ... ...
> >
> > > > > For swap-in latency, we can use pmbench, which can output latency
> > > > > information.
> > > > >
> > > >
> > > > OK, I'll give pmbench a run, thanks for the suggestion.
> > >
> > > Better to construct a senario with more swapin than swapout.  For
> > > example, start a memory eater, then kill it later.
> >
> > What about vm-scalability/case-swapin?
> > https://git.kernel.org/pub/scm/linux/kernel/git/wfg/vm-scalability.git/tree/case-swapin
> >
> > I think you are pretty familiar with it but still:
> > 1) it starts $nr_task processes and each mmaps $size/$nr_task area and
> >    then consumes the memory, after this, it waits for a signal;
> > 2) start another process to consume $size memory to push the memory in
> >    step 1) to swap device;
> > 3) kick processes in step 1) to start accessing their memory, thus
> >    trigger swapins. The metric of this testcase is the swapin throughput.
> >
> > I plan to restrict the cgroup's limit to $size.
> >
> > Considering there is only one NVMe drive attached to node 0, I will run
> > the test as described before:
> > 1) bind processes to run on node 0, allocate on node 1 to test the
> >    performance when reclaimer's node id is the same as swap device's.
> > 2) bind processes to run on node 1, allocate on node 0 to test the
> >    performance when page's node id is the same as swap device's.
> >
> > Ying and Yang,
> >
> > Let me know what you think about the case used and the way the test is
> > conducted.
> 
> Looks fine to me. To measure the latency, you could also try the below
> bpftrace script:

Yeah, bpftrace can nicely show us the histogram of the latency.
The hard part is to integrate bpftrace into LKP framework though.

> 
> #! /usr/bin/bpftrace
> 
> kprobe:swap_readpage
> {
>         @start[tid] = nsecs;
> }
> 
> kretprobe:swap_readpage
> /@...rt[tid]/
> {
>         @us[comm] = hist((nsecs - @start[tid]) / 1000);
>         delete(@start[tid]);
> }

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ