lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Mon, 21 Aug 2023 09:59:17 +0100
From:   Mark Rutland <mark.rutland@....com>
To:     Xu Zhao <zhaoxu.35@...edance.com>
Cc:     pbonzini@...hat.com, kvm@...r.kernel.org,
        linux-kernel@...r.kernel.org, zhouyibo@...edance.com,
        zhouliang.001@...edance.com, Marc Zyngier <maz@...nel.org>,
        Oliver Upton <oliver.upton@...ux.dev>, kvmarm@...ts.linux.dev
Subject: Re: [RFC] KVM: arm/arm64: optimize vSGI injection performance

[adding the KVM/arm64 maintainers & list]

Mark.

On Fri, Aug 18, 2023 at 06:47:04PM +0800, Xu Zhao wrote:
> In the worst case scenario, it may iterate over all vCPUs in the vm in order to complete
> injecting an SGI interrupt. However, the ICC_SGI_* register provides affinity routing information,
> and we are interested in exploring the possibility of utilizing this information to reduce iteration
> times from a total of vcpu numbers to 16 (the length of the targetlist), or even 8 times.
> 
> This work is based on v5.4, and here is test data:
> 4 cores with vcpu pinning:
> 	  	 |               ipi benchmark           |	 vgic_v3_dispatch_sgi      |
> 		 |    original  |  with patch  | impoved | original | with patch | impoved |
> | core0 -> core1 | 292610285 ns	| 299856696 ns |  -2.5%	 |  1471 ns |   1508 ns  |  -2.5%  |
> | core0 -> core3 | 333815742 ns	| 327647989 ns |  +1.8%  |  1578 ns |   1532 ns  |  +2.9%  |
> |  core0 -> all  | 439754104 ns | 433987192 ns |  +1.3%  |  2970 ns |   2875 ns  |  +3.2%  |
> 
> 32 cores with vcpu pinning:
>                   |               ipi benchmark                |        vgic_v3_dispatch_sgi      |
>                   |    original    |    with patch  |  impoved | original | with patch | impoved  |
> |  core0 -> core1 |  269153219 ns  |   261636906 ns |  +2.8%   |  1743 ns |   1706 ns  |  +2.1%   |
> | core0 -> core31 |  685199666 ns  |   355250664 ns |  +48.2%  |  4238 ns |   1838 ns  |  +56.6%  |
> |   core0 -> all  |  7281278980 ns |  3403240773 ns |  +53.3%  | 30879 ns |  13843 ns  |  +55.2%  |
> 
> Based on the test results, the performance of vm  with less than 16 cores remains almost the same,
> while significant improvement can be observed with more than 16 cores.
> 
> Signed-off-by: Xu Zhao <zhaoxu.35@...edance.com>
> ---
>  include/linux/kvm_host.h         |   5 ++
>  virt/kvm/arm/vgic/vgic-mmio-v3.c | 136 +++++++++++++++----------------
>  2 files changed, 73 insertions(+), 68 deletions(-)
> 
> diff --git a/include/linux/kvm_host.h b/include/linux/kvm_host.h
> index 027e155daf8c..efc7b96946c1 100644
> --- a/include/linux/kvm_host.h
> +++ b/include/linux/kvm_host.h
> @@ -580,6 +580,11 @@ static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
>  	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
>  	     idx++)
>  
> +#define kvm_for_each_target_vcpus(idx, target_cpus) \
> +	for (idx = target_cpus & 0xff ? 0 : (ICC_SGI1R_AFFINITY_1_SHIFT>>1); \
> +		(1 << idx) <= target_cpus; \
> +		idx++)
> +
>  static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
>  {
>  	struct kvm_vcpu *vcpu = NULL;
> diff --git a/virt/kvm/arm/vgic/vgic-mmio-v3.c b/virt/kvm/arm/vgic/vgic-mmio-v3.c
> index 24011280c4b1..bb64148ab75b 100644
> --- a/virt/kvm/arm/vgic/vgic-mmio-v3.c
> +++ b/virt/kvm/arm/vgic/vgic-mmio-v3.c
> @@ -852,44 +852,60 @@ int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
>  
>  	return 0;
>  }
> +
>  /*
> - * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
> - * generation register ICC_SGI1R_EL1) with a given VCPU.
> - * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
> - * return -1.
> + * Get affinity routing index from ICC_SGI_* register
> + * format:
> + *     aff3       aff2       aff1            aff0
> + * |- 8 bits -|- 8 bits -|- 8 bits -|- 4 bits or 8bits -|
>   */
> -static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
> +static u64 sgi_to_affinity(unsigned long reg)
>  {
> -	unsigned long affinity;
> -	int level0;
> +	u64 aff;
>  
> -	/*
> -	 * Split the current VCPU's MPIDR into affinity level 0 and the
> -	 * rest as this is what we have to compare against.
> -	 */
> -	affinity = kvm_vcpu_get_mpidr_aff(vcpu);
> -	level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
> -	affinity &= ~MPIDR_LEVEL_MASK;
> +	/* aff3 - aff1 */
> +	aff = (((reg) & ICC_SGI1R_AFFINITY_3_MASK) >> ICC_SGI1R_AFFINITY_3_SHIFT) << 16 |
> +		(((reg) & ICC_SGI1R_AFFINITY_2_MASK) >> ICC_SGI1R_AFFINITY_2_SHIFT) << 8 |
> +		(((reg) & ICC_SGI1R_AFFINITY_1_MASK) >> ICC_SGI1R_AFFINITY_1_SHIFT);
>  
> -	/* bail out if the upper three levels don't match */
> -	if (sgi_aff != affinity)
> -		return -1;
> +	/* if use range selector, TargetList[n] represents aff0 value ((RS * 16) + n) */
> +	if ((reg) & ICC_SGI1R_RS_MASK) {
> +		aff <<= 4;
> +		aff |= (reg) & ICC_SGI1R_RS_MASK;
> +	}
>  
> -	/* Is this VCPU's bit set in the mask ? */
> -	if (!(sgi_cpu_mask & BIT(level0)))
> -		return -1;
> +	/* aff0, the length of targetlist in sgi register is 16, which is 4bit  */
> +	aff <<= 4;
>  
> -	return level0;
> +	return aff;
>  }
>  
>  /*
> - * The ICC_SGI* registers encode the affinity differently from the MPIDR,
> - * so provide a wrapper to use the existing defines to isolate a certain
> - * affinity level.
> + * inject a vsgi to vcpu
>   */
> -#define SGI_AFFINITY_LEVEL(reg, level) \
> -	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
> -	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
> +static inline void vgic_v3_inject_sgi(struct kvm_vcpu *vcpu, int sgi, bool allow_group1)
> +{
> +	struct vgic_irq *irq;
> +	unsigned long flags;
> +
> +	irq = vgic_get_irq(vcpu->kvm, vcpu, sgi);
> +
> +	raw_spin_lock_irqsave(&irq->irq_lock, flags);
> +
> +	/*
> +	 * An access targeting Group0 SGIs can only generate
> +	 * those, while an access targeting Group1 SGIs can
> +	 * generate interrupts of either group.
> +	 */
> +	if (!irq->group || allow_group1) {
> +		irq->pending_latch = true;
> +		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
> +	} else {
> +		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
> +	}
> +
> +	vgic_put_irq(vcpu->kvm, irq);
> +}
>  
>  /**
>   * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
> @@ -910,64 +926,48 @@ void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
>  	struct kvm *kvm = vcpu->kvm;
>  	struct kvm_vcpu *c_vcpu;
>  	u16 target_cpus;
> -	u64 mpidr;
>  	int sgi, c;
>  	int vcpu_id = vcpu->vcpu_id;
>  	bool broadcast;
> -	unsigned long flags;
> +	u64 aff_index;
>  
>  	sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
>  	broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
>  	target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
> -	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
> -	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
> -	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
>  
>  	/*
> -	 * We iterate over all VCPUs to find the MPIDRs matching the request.
> -	 * If we have handled one CPU, we clear its bit to detect early
> -	 * if we are already finished. This avoids iterating through all
> -	 * VCPUs when most of the times we just signal a single VCPU.
> +	 * Writing IRM bit is not a frequent behavior, so separate SGI injection into two parts.
> +	 * If it is not broadcast, compute the affinity routing index first,
> +	 * then iterate targetlist to find the target VCPU.
> +	 * Or, inject sgi to all VCPUs but the calling one.
>  	 */
> -	kvm_for_each_vcpu(c, c_vcpu, kvm) {
> -		struct vgic_irq *irq;
> -
> -		/* Exit early if we have dealt with all requested CPUs */
> -		if (!broadcast && target_cpus == 0)
> -			break;
> -
> -		/* Don't signal the calling VCPU */
> -		if (broadcast && c == vcpu_id)
> -			continue;
> +	if (likely(!broadcast)) {
> +		/* compute affinity routing index */
> +		aff_index = sgi_to_affinity(reg);
>  
> -		if (!broadcast) {
> -			int level0;
> +		/* Exit if meet a wrong affinity value */
> +		if (aff_index >= atomic_read(&kvm->online_vcpus))
> +			return;
>  
> -			level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
> -			if (level0 == -1)
> +		/* Iterate target list */
> +		kvm_for_each_target_vcpus(c, target_cpus) {
> +			if (!(target_cpus & (1 << c)))
>  				continue;
>  
> -			/* remove this matching VCPU from the mask */
> -			target_cpus &= ~BIT(level0);
> -		}
> -
> -		irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
> -
> -		raw_spin_lock_irqsave(&irq->irq_lock, flags);
> +			c_vcpu = kvm_get_vcpu_by_id(kvm, aff_index+c);
> +			if (!c_vcpu)
> +				break;
>  
> -		/*
> -		 * An access targetting Group0 SGIs can only generate
> -		 * those, while an access targetting Group1 SGIs can
> -		 * generate interrupts of either group.
> -		 */
> -		if (!irq->group || allow_group1) {
> -			irq->pending_latch = true;
> -			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
> -		} else {
> -			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
> +			vgic_v3_inject_sgi(c_vcpu, sgi, allow_group1);
>  		}
> +	} else {
> +		kvm_for_each_vcpu(c, c_vcpu, kvm) {
> +			/* don't signal the calling vcpu  */
> +			if (c_vcpu->vcpu_id == vcpu_id)
> +				continue;
>  
> -		vgic_put_irq(vcpu->kvm, irq);
> +			vgic_v3_inject_sgi(c_vcpu, sgi, allow_group1);
> +		}
>  	}
>  }
>  
> -- 
> 2.20.1
> 

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ