[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <CAJZ5v0gen0qK41LxTCQtD-6MBSyabi9m3FxNbepsg3oM3JEqGQ@mail.gmail.com>
Date: Wed, 22 Nov 2023 14:49:16 +0100
From: "Rafael J. Wysocki" <rafael@...nel.org>
To: Vincent Guittot <vincent.guittot@...aro.org>
Cc: mingo@...hat.com, peterz@...radead.org, juri.lelli@...hat.com,
dietmar.eggemann@....com, rostedt@...dmis.org, bsegall@...gle.com,
mgorman@...e.de, bristot@...hat.com, vschneid@...hat.com,
rafael@...nel.org, viresh.kumar@...aro.org, qyousef@...alina.io,
linux-kernel@...r.kernel.org, linux-pm@...r.kernel.org,
lukasz.luba@....com, wyes.karny@....com, beata.michalska@....com
Subject: Re: [PATCH v4 1/2] sched/schedutil: Rework performance estimation
On Wed, Nov 22, 2023 at 2:39 PM Vincent Guittot
<vincent.guittot@...aro.org> wrote:
>
> The current method to take into account uclamp hints when estimating the
> target frequency can end into situation where the selected target
> frequency is finally higher than uclamp hints whereas there are no real
> needs. Such cases mainly happen because we are currently mixing the
> traditional scheduler utilization signal with the uclamp performance
> hints. By adding these 2 metrics, we loose an important information when
> it comes to select the target frequency and we have to make some
> assumptions which can't fit all cases.
>
> Rework the interface between the scheduler and schedutil governor in order
> to propagate all information down to the cpufreq governor.
>
> effective_cpu_util() interface changes and now returns the actual
> utilization of the CPU with 2 optional inputs:
> - The minimum performance for this CPU; typically the capacity to handle
> the deadline task and the interrupt pressure. But also uclamp_min
> request when available.
> - The maximum targeting performance for this CPU which reflects the
> maximum level that we would like to not exceed. By default it will be
> the CPU capacity but can be reduced because of some performance hints
> set with uclamp. The value can be lower than actual utilization and/or
> min performance level.
>
> A new sugov_effective_cpu_perf() interface is also available to compute
> the final performance level that is targeted for the CPU after applying
> some cpufreq headroom and taking into account all inputs.
>
> With these 2 functions, schedutil is now able to decide when it must go
> above uclamp hints. It now also have a generic way to get the min
> perfromance level.
>
> The dependency between energy model and cpufreq governor and its headroom
> policy doesn't exist anymore.
>
> eenv_pd_max_util asks schedutil for the targeted performance after
> applying the impact of the waking task.
>
> Signed-off-by: Vincent Guittot <vincent.guittot@...aro.org>
Acked-by: Rafael J. Wysocki <rafael@...nel.org>
> ---
> include/linux/energy_model.h | 1 -
> kernel/sched/core.c | 90 ++++++++++++++------------------
> kernel/sched/cpufreq_schedutil.c | 35 +++++++++----
> kernel/sched/fair.c | 22 ++++++--
> kernel/sched/sched.h | 24 +++------
> 5 files changed, 89 insertions(+), 83 deletions(-)
>
> diff --git a/include/linux/energy_model.h b/include/linux/energy_model.h
> index b9caa01dfac4..adec808b371a 100644
> --- a/include/linux/energy_model.h
> +++ b/include/linux/energy_model.h
> @@ -243,7 +243,6 @@ static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
> scale_cpu = arch_scale_cpu_capacity(cpu);
> ps = &pd->table[pd->nr_perf_states - 1];
>
> - max_util = map_util_perf(max_util);
> max_util = min(max_util, allowed_cpu_cap);
> freq = map_util_freq(max_util, ps->frequency, scale_cpu);
>
> diff --git a/kernel/sched/core.c b/kernel/sched/core.c
> index 2de77a6d5ef8..900b5bacb662 100644
> --- a/kernel/sched/core.c
> +++ b/kernel/sched/core.c
> @@ -7467,18 +7467,13 @@ int sched_core_idle_cpu(int cpu)
> * required to meet deadlines.
> */
> unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
> - enum cpu_util_type type,
> - struct task_struct *p)
> + unsigned long *min,
> + unsigned long *max)
> {
> - unsigned long dl_util, util, irq, max;
> + unsigned long util, irq, scale;
> struct rq *rq = cpu_rq(cpu);
>
> - max = arch_scale_cpu_capacity(cpu);
> -
> - if (!uclamp_is_used() &&
> - type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
> - return max;
> - }
> + scale = arch_scale_cpu_capacity(cpu);
>
> /*
> * Early check to see if IRQ/steal time saturates the CPU, can be
> @@ -7486,45 +7481,49 @@ unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
> * update_irq_load_avg().
> */
> irq = cpu_util_irq(rq);
> - if (unlikely(irq >= max))
> - return max;
> + if (unlikely(irq >= scale)) {
> + if (min)
> + *min = scale;
> + if (max)
> + *max = scale;
> + return scale;
> + }
> +
> + if (min) {
> + /*
> + * The minimum utilization returns the highest level between:
> + * - the computed DL bandwidth needed with the irq pressure which
> + * steals time to the deadline task.
> + * - The minimum performance requirement for CFS and/or RT.
> + */
> + *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
> +
> + /*
> + * When a RT task is runnable and uclamp is not used, we must
> + * ensure that the task will run at maximum compute capacity.
> + */
> + if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
> + *min = max(*min, scale);
> + }
>
> /*
> * Because the time spend on RT/DL tasks is visible as 'lost' time to
> * CFS tasks and we use the same metric to track the effective
> * utilization (PELT windows are synchronized) we can directly add them
> * to obtain the CPU's actual utilization.
> - *
> - * CFS and RT utilization can be boosted or capped, depending on
> - * utilization clamp constraints requested by currently RUNNABLE
> - * tasks.
> - * When there are no CFS RUNNABLE tasks, clamps are released and
> - * frequency will be gracefully reduced with the utilization decay.
> */
> util = util_cfs + cpu_util_rt(rq);
> - if (type == FREQUENCY_UTIL)
> - util = uclamp_rq_util_with(rq, util, p);
> -
> - dl_util = cpu_util_dl(rq);
> + util += cpu_util_dl(rq);
>
> /*
> - * For frequency selection we do not make cpu_util_dl() a permanent part
> - * of this sum because we want to use cpu_bw_dl() later on, but we need
> - * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
> - * that we select f_max when there is no idle time.
> - *
> - * NOTE: numerical errors or stop class might cause us to not quite hit
> - * saturation when we should -- something for later.
> + * The maximum hint is a soft bandwidth requirement which can be lower
> + * than the actual utilization because of uclamp_max requirements
> */
> - if (util + dl_util >= max)
> - return max;
> + if (max)
> + *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
>
> - /*
> - * OTOH, for energy computation we need the estimated running time, so
> - * include util_dl and ignore dl_bw.
> - */
> - if (type == ENERGY_UTIL)
> - util += dl_util;
> + if (util >= scale)
> + return scale;
>
> /*
> * There is still idle time; further improve the number by using the
> @@ -7535,28 +7534,15 @@ unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
> * U' = irq + --------- * U
> * max
> */
> - util = scale_irq_capacity(util, irq, max);
> + util = scale_irq_capacity(util, irq, scale);
> util += irq;
>
> - /*
> - * Bandwidth required by DEADLINE must always be granted while, for
> - * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
> - * to gracefully reduce the frequency when no tasks show up for longer
> - * periods of time.
> - *
> - * Ideally we would like to set bw_dl as min/guaranteed freq and util +
> - * bw_dl as requested freq. However, cpufreq is not yet ready for such
> - * an interface. So, we only do the latter for now.
> - */
> - if (type == FREQUENCY_UTIL)
> - util += cpu_bw_dl(rq);
> -
> - return min(max, util);
> + return min(scale, util);
> }
>
> unsigned long sched_cpu_util(int cpu)
> {
> - return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
> + return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
> }
> #endif /* CONFIG_SMP */
>
> diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
> index 5888176354e2..f3acf2cf26ed 100644
> --- a/kernel/sched/cpufreq_schedutil.c
> +++ b/kernel/sched/cpufreq_schedutil.c
> @@ -47,7 +47,7 @@ struct sugov_cpu {
> u64 last_update;
>
> unsigned long util;
> - unsigned long bw_dl;
> + unsigned long bw_min;
>
> /* The field below is for single-CPU policies only: */
> #ifdef CONFIG_NO_HZ_COMMON
> @@ -143,7 +143,6 @@ static unsigned int get_next_freq(struct sugov_policy *sg_policy,
> unsigned int freq = arch_scale_freq_invariant() ?
> policy->cpuinfo.max_freq : policy->cur;
>
> - util = map_util_perf(util);
> freq = map_util_freq(util, freq, max);
>
> if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
> @@ -153,14 +152,30 @@ static unsigned int get_next_freq(struct sugov_policy *sg_policy,
> return cpufreq_driver_resolve_freq(policy, freq);
> }
>
> +unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
> + unsigned long min,
> + unsigned long max)
> +{
> + /* Add dvfs headroom to actual utilization */
> + actual = map_util_perf(actual);
> + /* Actually we don't need to target the max performance */
> + if (actual < max)
> + max = actual;
> +
> + /*
> + * Ensure at least minimum performance while providing more compute
> + * capacity when possible.
> + */
> + return max(min, max);
> +}
> +
> static void sugov_get_util(struct sugov_cpu *sg_cpu)
> {
> - unsigned long util = cpu_util_cfs_boost(sg_cpu->cpu);
> - struct rq *rq = cpu_rq(sg_cpu->cpu);
> + unsigned long min, max, util = cpu_util_cfs_boost(sg_cpu->cpu);
>
> - sg_cpu->bw_dl = cpu_bw_dl(rq);
> - sg_cpu->util = effective_cpu_util(sg_cpu->cpu, util,
> - FREQUENCY_UTIL, NULL);
> + util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
> + sg_cpu->bw_min = min;
> + sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
> }
>
> /**
> @@ -306,7 +321,7 @@ static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
> */
> static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
> {
> - if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
> + if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
> sg_cpu->sg_policy->limits_changed = true;
> }
>
> @@ -407,8 +422,8 @@ static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
> sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
> sg_cpu->util = prev_util;
>
> - cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
> - map_util_perf(sg_cpu->util), max_cap);
> + cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
> + sg_cpu->util, max_cap);
>
> sg_cpu->sg_policy->last_freq_update_time = time;
> }
> diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
> index 07f555857698..53e7bf2ccc44 100644
> --- a/kernel/sched/fair.c
> +++ b/kernel/sched/fair.c
> @@ -7780,7 +7780,7 @@ static inline void eenv_pd_busy_time(struct energy_env *eenv,
> for_each_cpu(cpu, pd_cpus) {
> unsigned long util = cpu_util(cpu, p, -1, 0);
>
> - busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
> + busy_time += effective_cpu_util(cpu, util, NULL, NULL);
> }
>
> eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
> @@ -7803,7 +7803,7 @@ eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
> for_each_cpu(cpu, pd_cpus) {
> struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
> unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
> - unsigned long eff_util;
> + unsigned long eff_util, min, max;
>
> /*
> * Performance domain frequency: utilization clamping
> @@ -7812,7 +7812,23 @@ eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
> * NOTE: in case RT tasks are running, by default the
> * FREQUENCY_UTIL's utilization can be max OPP.
> */
> - eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
> + eff_util = effective_cpu_util(cpu, util, &min, &max);
> +
> + /* Task's uclamp can modify min and max value */
> + if (tsk && uclamp_is_used()) {
> + min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
> +
> + /*
> + * If there is no active max uclamp constraint,
> + * directly use task's one otherwise keep max
> + */
> + if (uclamp_rq_is_idle(cpu_rq(cpu)))
> + max = uclamp_eff_value(p, UCLAMP_MAX);
> + else
> + max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
> + }
> +
> + eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
> max_util = max(max_util, eff_util);
> }
>
> diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
> index 8a70d51ffa33..c1574cd388e7 100644
> --- a/kernel/sched/sched.h
> +++ b/kernel/sched/sched.h
> @@ -2994,24 +2994,14 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
> #endif
>
> #ifdef CONFIG_SMP
> -/**
> - * enum cpu_util_type - CPU utilization type
> - * @FREQUENCY_UTIL: Utilization used to select frequency
> - * @ENERGY_UTIL: Utilization used during energy calculation
> - *
> - * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
> - * need to be aggregated differently depending on the usage made of them. This
> - * enum is used within effective_cpu_util() to differentiate the types of
> - * utilization expected by the callers, and adjust the aggregation accordingly.
> - */
> -enum cpu_util_type {
> - FREQUENCY_UTIL,
> - ENERGY_UTIL,
> -};
> -
> unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
> - enum cpu_util_type type,
> - struct task_struct *p);
> + unsigned long *min,
> + unsigned long *max);
> +
> +unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
> + unsigned long min,
> + unsigned long max);
> +
>
> /*
> * Verify the fitness of task @p to run on @cpu taking into account the
> --
> 2.34.1
>
Powered by blists - more mailing lists