lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite for Android: free password hash cracker in your pocket
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <bf9e4e2b-0c85-437a-880a-8ca6659c74e1@linux.dev>
Date: Wed, 25 Jun 2025 16:44:47 +0800
From: Lance Yang <lance.yang@...ux.dev>
To: David Hildenbrand <david@...hat.com>
Cc: 21cnbao@...il.com, akpm@...ux-foundation.org,
 baolin.wang@...ux.alibaba.com, chrisl@...nel.org, kasong@...cent.com,
 linux-arm-kernel@...ts.infradead.org, linux-kernel@...r.kernel.org,
 linux-mm@...ck.org, linux-riscv@...ts.infradead.org,
 lorenzo.stoakes@...cle.com, ryan.roberts@....com, v-songbaohua@...o.com,
 x86@...nel.org, ying.huang@...el.com, zhengtangquan@...o.com,
 Lance Yang <ioworker0@...il.com>
Subject: Re: [PATCH v4 3/4] mm: Support batched unmap for lazyfree large
 folios during reclamation



On 2025/6/24 23:34, David Hildenbrand wrote:
> On 24.06.25 17:26, Lance Yang wrote:
>> On 2025/6/24 20:55, David Hildenbrand wrote:
>>> On 14.02.25 10:30, Barry Song wrote:
>>>> From: Barry Song <v-songbaohua@...o.com>
>> [...]
>>>> diff --git a/mm/rmap.c b/mm/rmap.c
>>>> index 89e51a7a9509..8786704bd466 100644
>>>> --- a/mm/rmap.c
>>>> +++ b/mm/rmap.c
>>>> @@ -1781,6 +1781,25 @@ void folio_remove_rmap_pud(struct folio *folio,
>>>> struct page *page,
>>>>    #endif
>>>>    }
>>>> +/* We support batch unmapping of PTEs for lazyfree large folios */
>>>> +static inline bool can_batch_unmap_folio_ptes(unsigned long addr,
>>>> +            struct folio *folio, pte_t *ptep)
>>>> +{
>>>> +    const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
>>>> +    int max_nr = folio_nr_pages(folio);
>>>
>>> Let's assume we have the first page of a folio mapped at the last page
>>> table entry in our page table.
>>
>> Good point. I'm curious if it is something we've seen in practice ;)
> 
> I challenge you to write a reproducer :P I assume it might be doable 
> through simple mremap().

Yes! The scenario is indeed reproducible from userspace ;p

First, I get a 64KB folio by allocating a large anonymous mapping and
advising the kernel with madvise(MADV_HUGEPAGE). After faulting in the
pages, /proc/self/pagemap confirms the PFNs are contiguous.

Then, the key is to use mremap() with MREMAP_FIXED to move the folio to
a virtual address that crosses a PMD boundary. Doing so ensures the
physically contiguous folio is mapped by PTEs from two different page
tables.

The C reproducer is attached. It was tested on a system with 64KB mTHP
enabled (in madvise mode). Please correct me if I'm wrong ;)


```
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/mman.h>
#include <stdbool.h>

#define PAGE_SIZE ((size_t)sysconf(_SC_PAGESIZE))
#define FOLIO_SIZE (64 * 1024)
#define NUM_PAGES_IN_FOLIO (FOLIO_SIZE / PAGE_SIZE)
#define PMD_SIZE (2 * 1024 * 1024)

int get_pagemap_entry(uint64_t *entry, int pagemap_fd, uintptr_t vaddr) {
     size_t offset = (vaddr / PAGE_SIZE) * sizeof(uint64_t);
     if (pread(pagemap_fd, entry, sizeof(uint64_t), offset) != 
sizeof(uint64_t)) {
         perror("pread pagemap");
         return -1;
     }
     return 0;
}

int is_page_present(uint64_t entry) { return (entry >> 63) & 1; }
uint64_t get_pfn(uint64_t entry) { return entry & ((1ULL << 55) - 1); }

bool verify_contiguity(int pagemap_fd, uintptr_t vaddr, size_t size, 
const char *label) {
     printf("\n--- Verifying Contiguity for: %s at 0x%lx ---\n", label, 
vaddr);
     printf("Page |      Virtual Address      | Present |   PFN 
(Physical)   | Contiguous?\n");
  
printf("-----+---------------------------+---------+--------------------+-------------\n");

     uint64_t first_pfn = 0;
     bool is_contiguous = true;
     int num_pages = size / PAGE_SIZE;

     for (int i = 0; i < num_pages; ++i) {
         uintptr_t current_vaddr = vaddr + i * PAGE_SIZE;
         uint64_t pagemap_entry;

         if (get_pagemap_entry(&pagemap_entry, pagemap_fd, 
current_vaddr) != 0) {
             is_contiguous = false;
             break;
         }

         if (!is_page_present(pagemap_entry)) {
             printf(" %2d  | 0x%016lx |    No   |        N/A         | 
Error\n", i, current_vaddr);
             is_contiguous = false;
             continue;
         }

         uint64_t pfn = get_pfn(pagemap_entry);
         char contiguous_str[4] = "Yes";

         if (i == 0) {
             first_pfn = pfn;
         } else {
             if (pfn != first_pfn + i) {
                 strcpy(contiguous_str, "No!");
                 is_contiguous = false;
             }
         }

         printf(" %2d  | 0x%016lx |   Yes   | 0x%-16lx |     %s\n", i, 
current_vaddr, pfn, contiguous_str);
     }

     if (is_contiguous) {
         printf("Verification PASSED: PFNs are contiguous for %s.\n", 
label);
     } else {
         printf("Verification FAILED: PFNs are NOT contiguous for 
%s.\n", label);
     }
     return is_contiguous;
}


int main(void) {
     printf("--- Folio-across-PMD-boundary reproducer ---\n");
     printf("Page size: %zu KB, Folio size: %zu KB, PMD coverage: %zu MB\n",
            PAGE_SIZE / 1024, FOLIO_SIZE / 1024, PMD_SIZE / (1024 * 1024));

     size_t source_size = 4 * 1024 * 1024;
     void *source_addr = mmap(NULL, source_size, PROT_READ | PROT_WRITE,
                              MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
     if (source_addr == MAP_FAILED) {
         perror("mmap source"); exit(EXIT_FAILURE);
     }
     printf("\n1. Source memory mapped at: %p\n", source_addr);

     if (madvise(source_addr, source_size, MADV_HUGEPAGE) != 0) {
         perror("madvise MADV_HUGEPAGE");
     }
     printf("2. Advised kernel to use large folios (MADV_HUGEPAGE).\n");

     memset(source_addr, 'A', source_size);
     printf("3. Faulted in source pages.\n");

     int pagemap_fd = open("/proc/self/pagemap", O_RDONLY);
     if (pagemap_fd < 0) {
         perror("open /proc/self/pagemap");
         exit(EXIT_FAILURE);
     }

     if (!verify_contiguity(pagemap_fd, (uintptr_t)source_addr, 
FOLIO_SIZE, "Source Address (pre-mremap)")) {
         fprintf(stderr, "\nInitial folio allocation failed. Cannot 
proceed.\n");
         close(pagemap_fd);
         munmap(source_addr, source_size);
         exit(EXIT_FAILURE);
     }

     uintptr_t search_base = 0x10000000000UL;
     uintptr_t pmd_boundary = (search_base + PMD_SIZE) & ~(PMD_SIZE - 1);
     uintptr_t target_vaddr = pmd_boundary - PAGE_SIZE;
     printf("\n5. Calculated target address to be 0x%lx\n", target_vaddr);

     munmap((void *)target_vaddr, FOLIO_SIZE);
     void *new_addr = mremap(source_addr, FOLIO_SIZE, FOLIO_SIZE, 
MREMAP_MAYMOVE | MREMAP_FIXED, (void *)target_vaddr);
     if (new_addr == MAP_FAILED) {
         perror("mremap");
         close(pagemap_fd);
         exit(EXIT_FAILURE);
     }
     printf("6. Successfully mremap'd %zu KB to 0x%lx.\n", FOLIO_SIZE / 
1024, (uintptr_t)new_addr);

     bool final_success = verify_contiguity(pagemap_fd, 
(uintptr_t)new_addr, FOLIO_SIZE, "Target Address (post-mremap)");

     printf("\n--- Final Conclusion ---\n");
     if (final_success) {
         printf("✅ SUCCESS: The folio's pages remained physically 
contiguous after remapping to a PMD-crossing virtual address.\n");
         printf("   The reproducer successfully created the desired 
edge-case memory layout.\n");
     } else {
         printf("❌ UNEXPECTED FAILURE: The pages were not contiguous 
after mremap.\n");
     }

     close(pagemap_fd);
     munmap(new_addr, FOLIO_SIZE);

     return 0;
}
```

$ a.out

```
--- Folio-across-PMD-boundary reproducer ---
Page size: 4 KB, Folio size: 64 KB, PMD coverage: 2 MB

1. Source memory mapped at: 0x7f2e41200000
2. Advised kernel to use large folios (MADV_HUGEPAGE).
3. Faulted in source pages.

--- Verifying Contiguity for: Source Address (pre-mremap) at 
0x7f2e41200000 ---
Page |      Virtual Address      | Present |   PFN (Physical)   | 
Contiguous?
-----+---------------------------+---------+--------------------+-------------
   0  | 0x00007f2e41200000 |   Yes   | 0x113aa0           |     Yes
   1  | 0x00007f2e41201000 |   Yes   | 0x113aa1           |     Yes
   2  | 0x00007f2e41202000 |   Yes   | 0x113aa2           |     Yes
   3  | 0x00007f2e41203000 |   Yes   | 0x113aa3           |     Yes
   4  | 0x00007f2e41204000 |   Yes   | 0x113aa4           |     Yes
   5  | 0x00007f2e41205000 |   Yes   | 0x113aa5           |     Yes
   6  | 0x00007f2e41206000 |   Yes   | 0x113aa6           |     Yes
   7  | 0x00007f2e41207000 |   Yes   | 0x113aa7           |     Yes
   8  | 0x00007f2e41208000 |   Yes   | 0x113aa8           |     Yes
   9  | 0x00007f2e41209000 |   Yes   | 0x113aa9           |     Yes
  10  | 0x00007f2e4120a000 |   Yes   | 0x113aaa           |     Yes
  11  | 0x00007f2e4120b000 |   Yes   | 0x113aab           |     Yes
  12  | 0x00007f2e4120c000 |   Yes   | 0x113aac           |     Yes
  13  | 0x00007f2e4120d000 |   Yes   | 0x113aad           |     Yes
  14  | 0x00007f2e4120e000 |   Yes   | 0x113aae           |     Yes
  15  | 0x00007f2e4120f000 |   Yes   | 0x113aaf           |     Yes
Verification PASSED: PFNs are contiguous for Source Address (pre-mremap).

5. Calculated target address to be 0x100001ff000
6. Successfully mremap'd 64 KB to 0x100001ff000.

--- Verifying Contiguity for: Target Address (post-mremap) at 
0x100001ff000 ---
Page |      Virtual Address      | Present |   PFN (Physical)   | 
Contiguous?
-----+---------------------------+---------+--------------------+-------------
   0  | 0x00000100001ff000 |   Yes   | 0x113aa0           |     Yes
   1  | 0x0000010000200000 |   Yes   | 0x113aa1           |     Yes
   2  | 0x0000010000201000 |   Yes   | 0x113aa2           |     Yes
   3  | 0x0000010000202000 |   Yes   | 0x113aa3           |     Yes
   4  | 0x0000010000203000 |   Yes   | 0x113aa4           |     Yes
   5  | 0x0000010000204000 |   Yes   | 0x113aa5           |     Yes
   6  | 0x0000010000205000 |   Yes   | 0x113aa6           |     Yes
   7  | 0x0000010000206000 |   Yes   | 0x113aa7           |     Yes
   8  | 0x0000010000207000 |   Yes   | 0x113aa8           |     Yes
   9  | 0x0000010000208000 |   Yes   | 0x113aa9           |     Yes
  10  | 0x0000010000209000 |   Yes   | 0x113aaa           |     Yes
  11  | 0x000001000020a000 |   Yes   | 0x113aab           |     Yes
  12  | 0x000001000020b000 |   Yes   | 0x113aac           |     Yes
  13  | 0x000001000020c000 |   Yes   | 0x113aad           |     Yes
  14  | 0x000001000020d000 |   Yes   | 0x113aae           |     Yes
  15  | 0x000001000020e000 |   Yes   | 0x113aaf           |     Yes
Verification PASSED: PFNs are contiguous for Target Address (post-mremap).

--- Final Conclusion ---
✅ SUCCESS: The folio's pages remained physically contiguous after 
remapping to a PMD-crossing virtual address.
    The reproducer successfully created the desired edge-case memory layout.
```
Thanks,
Lance

> 
>>
>>>
>>> What prevents folio_pte_batch() from reading outside the page table?
>>
>> Assuming such a scenario is possible, to prevent any chance of an
>> out-of-bounds read, how about this change:
>>
>> diff --git a/mm/rmap.c b/mm/rmap.c
>> index fb63d9256f09..9aeae811a38b 100644
>> --- a/mm/rmap.c
>> +++ b/mm/rmap.c
>> @@ -1852,6 +1852,25 @@ static inline bool 
>> can_batch_unmap_folio_ptes(unsigned long addr,
>>       const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
>>       int max_nr = folio_nr_pages(folio);
>>       pte_t pte = ptep_get(ptep);
>> +    unsigned long end_addr;
>> +
>> +    /*
>> +     * To batch unmap, the entire folio's PTEs must be contiguous
>> +     * and mapped within the same PTE page table, which corresponds to
>> +     * a single PMD entry. Before calling folio_pte_batch(), which does
>> +     * not perform boundary checks itself, we must verify that the
>> +     * address range covered by the folio does not cross a PMD boundary.
>> +     */
>> +    end_addr = addr + (max_nr * PAGE_SIZE) - 1;
>> +
>> +    /*
>> +     * A fast way to check for a PMD boundary cross is to align both
>> +     * the start and end addresses to the PMD boundary and see if they
>> +     * are different. If they are, the range spans across at least two
>> +     * different PMD-managed regions.
>> +     */
>> +    if ((addr & PMD_MASK) != (end_addr & PMD_MASK))
>> +        return false;
> 
> You should not be messing with max_nr = folio_nr_pages(folio) here at 
> all. folio_pte_batch() takes care of that.
> 
> Also, way too many comments ;)
> 
> You may only batch within a single VMA and within a single page table.
> 
> So simply align the addr up to the next PMD, and make sure it does not 
> exceed the vma end.
> 
> ALIGN and friends can help avoiding excessive comments.
> 


Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ