[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <87f7a9fa-d66e-47ba-b511-a8ffb7e5e057@linux.dev>
Date: Wed, 25 Jun 2025 17:29:12 +0800
From: Lance Yang <lance.yang@...ux.dev>
To: David Hildenbrand <david@...hat.com>
Cc: 21cnbao@...il.com, akpm@...ux-foundation.org,
baolin.wang@...ux.alibaba.com, chrisl@...nel.org, kasong@...cent.com,
linux-arm-kernel@...ts.infradead.org, linux-kernel@...r.kernel.org,
linux-mm@...ck.org, linux-riscv@...ts.infradead.org,
lorenzo.stoakes@...cle.com, ryan.roberts@....com, v-songbaohua@...o.com,
x86@...nel.org, ying.huang@...el.com, zhengtangquan@...o.com,
Lance Yang <ioworker0@...il.com>
Subject: Re: [PATCH v4 3/4] mm: Support batched unmap for lazyfree large
folios during reclamation
On 2025/6/25 16:44, Lance Yang wrote:
>
>
> On 2025/6/24 23:34, David Hildenbrand wrote:
>> On 24.06.25 17:26, Lance Yang wrote:
>>> On 2025/6/24 20:55, David Hildenbrand wrote:
>>>> On 14.02.25 10:30, Barry Song wrote:
>>>>> From: Barry Song <v-songbaohua@...o.com>
>>> [...]
>>>>> diff --git a/mm/rmap.c b/mm/rmap.c
>>>>> index 89e51a7a9509..8786704bd466 100644
>>>>> --- a/mm/rmap.c
>>>>> +++ b/mm/rmap.c
>>>>> @@ -1781,6 +1781,25 @@ void folio_remove_rmap_pud(struct folio *folio,
>>>>> struct page *page,
>>>>> #endif
>>>>> }
>>>>> +/* We support batch unmapping of PTEs for lazyfree large folios */
>>>>> +static inline bool can_batch_unmap_folio_ptes(unsigned long addr,
>>>>> + struct folio *folio, pte_t *ptep)
>>>>> +{
>>>>> + const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
>>>>> + int max_nr = folio_nr_pages(folio);
>>>>
>>>> Let's assume we have the first page of a folio mapped at the last page
>>>> table entry in our page table.
>>>
>>> Good point. I'm curious if it is something we've seen in practice ;)
>>
>> I challenge you to write a reproducer :P I assume it might be doable
>> through simple mremap().
>
> Yes! The scenario is indeed reproducible from userspace ;p
>
> First, I get a 64KB folio by allocating a large anonymous mapping and
> advising the kernel with madvise(MADV_HUGEPAGE). After faulting in the
> pages, /proc/self/pagemap confirms the PFNs are contiguous.
>
> Then, the key is to use mremap() with MREMAP_FIXED to move the folio to
> a virtual address that crosses a PMD boundary. Doing so ensures the
> physically contiguous folio is mapped by PTEs from two different page
> tables.
Forgot to add:
The mTHP split counters didn't change during the mremap, which confirms
the large folio was only remapped, not split.
Thanks,
Lance
>
> The C reproducer is attached. It was tested on a system with 64KB mTHP
> enabled (in madvise mode). Please correct me if I'm wrong ;)
>
>
> ```
> #define _GNU_SOURCE
> #include <stdio.h>
> #include <stdlib.h>
> #include <string.h>
> #include <stdint.h>
> #include <unistd.h>
> #include <fcntl.h>
> #include <errno.h>
> #include <sys/mman.h>
> #include <stdbool.h>
>
> #define PAGE_SIZE ((size_t)sysconf(_SC_PAGESIZE))
> #define FOLIO_SIZE (64 * 1024)
> #define NUM_PAGES_IN_FOLIO (FOLIO_SIZE / PAGE_SIZE)
> #define PMD_SIZE (2 * 1024 * 1024)
>
> int get_pagemap_entry(uint64_t *entry, int pagemap_fd, uintptr_t vaddr) {
> size_t offset = (vaddr / PAGE_SIZE) * sizeof(uint64_t);
> if (pread(pagemap_fd, entry, sizeof(uint64_t), offset) !=
> sizeof(uint64_t)) {
> perror("pread pagemap");
> return -1;
> }
> return 0;
> }
>
> int is_page_present(uint64_t entry) { return (entry >> 63) & 1; }
> uint64_t get_pfn(uint64_t entry) { return entry & ((1ULL << 55) - 1); }
>
> bool verify_contiguity(int pagemap_fd, uintptr_t vaddr, size_t size,
> const char *label) {
> printf("\n--- Verifying Contiguity for: %s at 0x%lx ---\n", label,
> vaddr);
> printf("Page | Virtual Address | Present | PFN
> (Physical) | Contiguous?\n");
>
> printf("-----+---------------------------+---------+--------------------
> +-------------\n");
>
> uint64_t first_pfn = 0;
> bool is_contiguous = true;
> int num_pages = size / PAGE_SIZE;
>
> for (int i = 0; i < num_pages; ++i) {
> uintptr_t current_vaddr = vaddr + i * PAGE_SIZE;
> uint64_t pagemap_entry;
>
> if (get_pagemap_entry(&pagemap_entry, pagemap_fd,
> current_vaddr) != 0) {
> is_contiguous = false;
> break;
> }
>
> if (!is_page_present(pagemap_entry)) {
> printf(" %2d | 0x%016lx | No | N/A |
> Error\n", i, current_vaddr);
> is_contiguous = false;
> continue;
> }
>
> uint64_t pfn = get_pfn(pagemap_entry);
> char contiguous_str[4] = "Yes";
>
> if (i == 0) {
> first_pfn = pfn;
> } else {
> if (pfn != first_pfn + i) {
> strcpy(contiguous_str, "No!");
> is_contiguous = false;
> }
> }
>
> printf(" %2d | 0x%016lx | Yes | 0x%-16lx | %s\n", i,
> current_vaddr, pfn, contiguous_str);
> }
>
> if (is_contiguous) {
> printf("Verification PASSED: PFNs are contiguous for %s.\n",
> label);
> } else {
> printf("Verification FAILED: PFNs are NOT contiguous for %s.
> \n", label);
> }
> return is_contiguous;
> }
>
>
> int main(void) {
> printf("--- Folio-across-PMD-boundary reproducer ---\n");
> printf("Page size: %zu KB, Folio size: %zu KB, PMD coverage: %zu
> MB\n",
> PAGE_SIZE / 1024, FOLIO_SIZE / 1024, PMD_SIZE / (1024 * 1024));
>
> size_t source_size = 4 * 1024 * 1024;
> void *source_addr = mmap(NULL, source_size, PROT_READ | PROT_WRITE,
> MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
> if (source_addr == MAP_FAILED) {
> perror("mmap source"); exit(EXIT_FAILURE);
> }
> printf("\n1. Source memory mapped at: %p\n", source_addr);
>
> if (madvise(source_addr, source_size, MADV_HUGEPAGE) != 0) {
> perror("madvise MADV_HUGEPAGE");
> }
> printf("2. Advised kernel to use large folios (MADV_HUGEPAGE).\n");
>
> memset(source_addr, 'A', source_size);
> printf("3. Faulted in source pages.\n");
>
> int pagemap_fd = open("/proc/self/pagemap", O_RDONLY);
> if (pagemap_fd < 0) {
> perror("open /proc/self/pagemap");
> exit(EXIT_FAILURE);
> }
>
> if (!verify_contiguity(pagemap_fd, (uintptr_t)source_addr,
> FOLIO_SIZE, "Source Address (pre-mremap)")) {
> fprintf(stderr, "\nInitial folio allocation failed. Cannot
> proceed.\n");
> close(pagemap_fd);
> munmap(source_addr, source_size);
> exit(EXIT_FAILURE);
> }
>
> uintptr_t search_base = 0x10000000000UL;
> uintptr_t pmd_boundary = (search_base + PMD_SIZE) & ~(PMD_SIZE - 1);
> uintptr_t target_vaddr = pmd_boundary - PAGE_SIZE;
> printf("\n5. Calculated target address to be 0x%lx\n", target_vaddr);
>
> munmap((void *)target_vaddr, FOLIO_SIZE);
> void *new_addr = mremap(source_addr, FOLIO_SIZE, FOLIO_SIZE,
> MREMAP_MAYMOVE | MREMAP_FIXED, (void *)target_vaddr);
> if (new_addr == MAP_FAILED) {
> perror("mremap");
> close(pagemap_fd);
> exit(EXIT_FAILURE);
> }
> printf("6. Successfully mremap'd %zu KB to 0x%lx.\n", FOLIO_SIZE /
> 1024, (uintptr_t)new_addr);
>
> bool final_success = verify_contiguity(pagemap_fd,
> (uintptr_t)new_addr, FOLIO_SIZE, "Target Address (post-mremap)");
>
> printf("\n--- Final Conclusion ---\n");
> if (final_success) {
> printf("✅ SUCCESS: The folio's pages remained physically
> contiguous after remapping to a PMD-crossing virtual address.\n");
> printf(" The reproducer successfully created the desired
> edge-case memory layout.\n");
> } else {
> printf("❌ UNEXPECTED FAILURE: The pages were not contiguous
> after mremap.\n");
> }
>
> close(pagemap_fd);
> munmap(new_addr, FOLIO_SIZE);
>
> return 0;
> }
> ```
>
> $ a.out
>
> ```
> --- Folio-across-PMD-boundary reproducer ---
> Page size: 4 KB, Folio size: 64 KB, PMD coverage: 2 MB
>
> 1. Source memory mapped at: 0x7f2e41200000
> 2. Advised kernel to use large folios (MADV_HUGEPAGE).
> 3. Faulted in source pages.
>
> --- Verifying Contiguity for: Source Address (pre-mremap) at
> 0x7f2e41200000 ---
> Page | Virtual Address | Present | PFN (Physical) |
> Contiguous?
> -----+---------------------------+---------+--------------------
> +-------------
> 0 | 0x00007f2e41200000 | Yes | 0x113aa0 | Yes
> 1 | 0x00007f2e41201000 | Yes | 0x113aa1 | Yes
> 2 | 0x00007f2e41202000 | Yes | 0x113aa2 | Yes
> 3 | 0x00007f2e41203000 | Yes | 0x113aa3 | Yes
> 4 | 0x00007f2e41204000 | Yes | 0x113aa4 | Yes
> 5 | 0x00007f2e41205000 | Yes | 0x113aa5 | Yes
> 6 | 0x00007f2e41206000 | Yes | 0x113aa6 | Yes
> 7 | 0x00007f2e41207000 | Yes | 0x113aa7 | Yes
> 8 | 0x00007f2e41208000 | Yes | 0x113aa8 | Yes
> 9 | 0x00007f2e41209000 | Yes | 0x113aa9 | Yes
> 10 | 0x00007f2e4120a000 | Yes | 0x113aaa | Yes
> 11 | 0x00007f2e4120b000 | Yes | 0x113aab | Yes
> 12 | 0x00007f2e4120c000 | Yes | 0x113aac | Yes
> 13 | 0x00007f2e4120d000 | Yes | 0x113aad | Yes
> 14 | 0x00007f2e4120e000 | Yes | 0x113aae | Yes
> 15 | 0x00007f2e4120f000 | Yes | 0x113aaf | Yes
> Verification PASSED: PFNs are contiguous for Source Address (pre-mremap).
>
> 5. Calculated target address to be 0x100001ff000
> 6. Successfully mremap'd 64 KB to 0x100001ff000.
>
> --- Verifying Contiguity for: Target Address (post-mremap) at
> 0x100001ff000 ---
> Page | Virtual Address | Present | PFN (Physical) |
> Contiguous?
> -----+---------------------------+---------+--------------------
> +-------------
> 0 | 0x00000100001ff000 | Yes | 0x113aa0 | Yes
> 1 | 0x0000010000200000 | Yes | 0x113aa1 | Yes
> 2 | 0x0000010000201000 | Yes | 0x113aa2 | Yes
> 3 | 0x0000010000202000 | Yes | 0x113aa3 | Yes
> 4 | 0x0000010000203000 | Yes | 0x113aa4 | Yes
> 5 | 0x0000010000204000 | Yes | 0x113aa5 | Yes
> 6 | 0x0000010000205000 | Yes | 0x113aa6 | Yes
> 7 | 0x0000010000206000 | Yes | 0x113aa7 | Yes
> 8 | 0x0000010000207000 | Yes | 0x113aa8 | Yes
> 9 | 0x0000010000208000 | Yes | 0x113aa9 | Yes
> 10 | 0x0000010000209000 | Yes | 0x113aaa | Yes
> 11 | 0x000001000020a000 | Yes | 0x113aab | Yes
> 12 | 0x000001000020b000 | Yes | 0x113aac | Yes
> 13 | 0x000001000020c000 | Yes | 0x113aad | Yes
> 14 | 0x000001000020d000 | Yes | 0x113aae | Yes
> 15 | 0x000001000020e000 | Yes | 0x113aaf | Yes
> Verification PASSED: PFNs are contiguous for Target Address (post-mremap).
>
> --- Final Conclusion ---
> ✅ SUCCESS: The folio's pages remained physically contiguous after
> remapping to a PMD-crossing virtual address.
> The reproducer successfully created the desired edge-case memory
> layout.
> ```
> Thanks,
> Lance
>
>>
>>>
>>>>
>>>> What prevents folio_pte_batch() from reading outside the page table?
>>>
>>> Assuming such a scenario is possible, to prevent any chance of an
>>> out-of-bounds read, how about this change:
>>>
>>> diff --git a/mm/rmap.c b/mm/rmap.c
>>> index fb63d9256f09..9aeae811a38b 100644
>>> --- a/mm/rmap.c
>>> +++ b/mm/rmap.c
>>> @@ -1852,6 +1852,25 @@ static inline bool
>>> can_batch_unmap_folio_ptes(unsigned long addr,
>>> const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
>>> int max_nr = folio_nr_pages(folio);
>>> pte_t pte = ptep_get(ptep);
>>> + unsigned long end_addr;
>>> +
>>> + /*
>>> + * To batch unmap, the entire folio's PTEs must be contiguous
>>> + * and mapped within the same PTE page table, which corresponds to
>>> + * a single PMD entry. Before calling folio_pte_batch(), which does
>>> + * not perform boundary checks itself, we must verify that the
>>> + * address range covered by the folio does not cross a PMD
>>> boundary.
>>> + */
>>> + end_addr = addr + (max_nr * PAGE_SIZE) - 1;
>>> +
>>> + /*
>>> + * A fast way to check for a PMD boundary cross is to align both
>>> + * the start and end addresses to the PMD boundary and see if they
>>> + * are different. If they are, the range spans across at least two
>>> + * different PMD-managed regions.
>>> + */
>>> + if ((addr & PMD_MASK) != (end_addr & PMD_MASK))
>>> + return false;
>>
>> You should not be messing with max_nr = folio_nr_pages(folio) here at
>> all. folio_pte_batch() takes care of that.
>>
>> Also, way too many comments ;)
>>
>> You may only batch within a single VMA and within a single page table.
>>
>> So simply align the addr up to the next PMD, and make sure it does not
>> exceed the vma end.
>>
>> ALIGN and friends can help avoiding excessive comments.
>>
>
Powered by blists - more mailing lists