lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [day] [month] [year] [list]
Message-ID: <aPZ-IbX7K8f4Jngp@fedora>
Date: Mon, 20 Oct 2025 11:23:29 -0700
From: "Vishal Moola (Oracle)" <vishal.moola@...il.com>
To: Uladzislau Rezki <urezki@...il.com>
Cc: Matthew Wilcox <willy@...radead.org>, linux-mm@...ck.org,
	linux-kernel@...r.kernel.org,
	Andrew Morton <akpm@...ux-foundation.org>
Subject: Re: [RFC PATCH] mm/vmalloc: request large order pages from buddy
 allocator

On Fri, Oct 17, 2025 at 07:19:16PM +0200, Uladzislau Rezki wrote:
> On Fri, Oct 17, 2025 at 06:15:21PM +0200, Uladzislau Rezki wrote:
> > On Thu, Oct 16, 2025 at 12:02:59PM -0700, Vishal Moola (Oracle) wrote:
> > > On Thu, Oct 16, 2025 at 10:42:04AM -0700, Vishal Moola (Oracle) wrote:
> > > > On Thu, Oct 16, 2025 at 06:12:36PM +0200, Uladzislau Rezki wrote:
> > > > > On Wed, Oct 15, 2025 at 02:28:49AM -0700, Vishal Moola (Oracle) wrote:
> > > > > > On Wed, Oct 15, 2025 at 04:56:42AM +0100, Matthew Wilcox wrote:
> > > > > > > On Tue, Oct 14, 2025 at 11:27:54AM -0700, Vishal Moola (Oracle) wrote:
> > > > > > > > Running 1000 iterations of allocations on a small 4GB system finds:
> > > > > > > > 
> > > > > > > > 1000 2mb allocations:
> > > > > > > > 	[Baseline]			[This patch]
> > > > > > > > 	real    46.310s			real    34.380s
> > > > > > > > 	user    0.001s			user    0.008s
> > > > > > > > 	sys     46.058s			sys     34.152s
> > > > > > > > 
> > > > > > > > 10000 200kb allocations:
> > > > > > > > 	[Baseline]			[This patch]
> > > > > > > > 	real    56.104s			real    43.946s
> > > > > > > > 	user    0.001s			user    0.003s
> > > > > > > > 	sys     55.375s			sys     43.259s
> > > > > > > > 
> > > > > > > > 10000 20kb allocations:
> > > > > > > > 	[Baseline]			[This patch]
> > > > > > > > 	real    0m8.438s		real    0m9.160s
> > > > > > > > 	user    0m0.001s		user    0m0.002s
> > > > > > > > 	sys     0m7.936s		sys     0m8.671s
> > > > > > > 
> > > > > > > I'd be more confident in the 20kB numbers if you'd done 10x more
> > > > > > > iterations.
> > > > > > 
> > > > > > I actually ran my a number of times to mitigate the effects of possibly
> > > > > > too small sample sizes, so I do have that number for you too:
> > > > > > 
> > > > > > [Baseline]			[This patch]
> > > > > > real    1m28.119s		real    1m32.630s
> > > > > > user    0m0.012s		user    0m0.011s
> > > > > > sys     1m23.270s		sys     1m28.529s
> > > > > > 
> > > > > I have just had a look at performance figures of this patch. The test
> > > > > case is 16K allocation by one single thread, 1 000 000 loops, 10 run:
> > > > > 
> > > > > sudo ./test_vmalloc.sh run_test_mask=1 nr_threads=1 nr_pages=4
> > > > 
> > > > The reason I didn't use this test module is the same concern Matthew
> > > > brought up earlier about testing the PCP list rather than buddy
> > > > allocator. The test module allocates, then frees over and over again,
> > > > making it incredibly prone to reuse the pages over and over again.
> > > > 
> > > > > BOX: AMD Milan, 256 CPUs, 512GB of memory
> > > > > 
> > > > > # default 16K alloc
> > > > > [   15.823704] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 955334 usec
> > > > > [   17.751685] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1158739 usec
> > > > > [   19.443759] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1016522 usec
> > > > > [   21.035701] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 911381 usec
> > > > > [   22.727688] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 987286 usec
> > > > > [   24.199694] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 955112 usec
> > > > > [   25.755675] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 926393 usec
> > > > > [   27.355670] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 937875 usec
> > > > > [   28.979671] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1006985 usec
> > > > > [   30.531674] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 941088 usec
> > > > > 
> > > > > # the patch 16K alloc
> > > > > [   44.343380] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2296849 usec
> > > > > [   47.171290] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2014678 usec
> > > > > [   50.007258] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2094184 usec
> > > > > [   52.651141] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1953046 usec
> > > > > [   55.455089] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2209423 usec
> > > > > [   57.943153] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1941747 usec
> > > > > [   60.799043] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2038504 usec
> > > > > [   63.299007] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1788588 usec
> > > > > [   65.843011] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2137055 usec
> > > > > [   68.647031] Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2193022 usec
> > > > > 
> > > > > 2X slower.
> > > > > 
> > > > > perf-cycles, same test but on 64 CPUs:
> > > > > 
> > > > > +   97.02%     0.13%  [test_vmalloc]    [k] fix_size_alloc_test
> > > > > -   82.11%    82.10%  [kernel]          [k] native_queued_spin_lock_slowpath
> > > > >      26.19% ret_from_fork_asm
> > > > >         ret_from_fork
> > > > >       - kthread
> > > > >          - 25.96% test_func
> > > > >             - fix_size_alloc_test
> > > > >                - 23.49% __vmalloc_node_noprof
> > > > >                   - __vmalloc_node_range_noprof
> > > > >                      - 54.70% alloc_pages_noprof
> > > > >                           alloc_pages_mpol
> > > > >                           __alloc_frozen_pages_noprof
> > > > >                           get_page_from_freelist
> > > > >                           __rmqueue_pcplist
> > > > >                      - 5.58% __get_vm_area_node
> > > > >                           alloc_vmap_area
> > > > >                - 20.54% vfree.part.0
> > > > >                   - 20.43% __free_frozen_pages
> > > > >                        free_frozen_page_commit
> > > > >                        free_pcppages_bulk
> > > > >                        _raw_spin_lock_irqsave
> > > > >                        native_queued_spin_lock_slowpath
> > > > >          - 0.77% worker_thread
> > > > >             - process_one_work
> > > > >                - 0.76% vmstat_update
> > > > >                     refresh_cpu_vm_stats
> > > > >                     decay_pcp_high
> > > > >                     free_pcppages_bulk
> > > > >                     _raw_spin_lock_irqsave
> > > > >                     native_queued_spin_lock_slowpath
> > > > > +   76.57%     0.16%  [kernel]          [k] _raw_spin_lock_irqsave
> > > > > +   71.62%     0.00%  [kernel]          [k] __vmalloc_node_noprof
> > > > > +   71.61%     0.58%  [kernel]          [k] __vmalloc_node_range_noprof
> > > > > +   62.35%     0.06%  [kernel]          [k] alloc_pages_mpol
> > > > > +   62.27%     0.17%  [kernel]          [k] __alloc_frozen_pages_noprof
> > > > > +   62.20%     0.02%  [kernel]          [k] alloc_pages_noprof
> > > > > +   62.10%     0.05%  [kernel]          [k] get_page_from_freelist
> > > > > +   55.63%     0.19%  [kernel]          [k] __rmqueue_pcplist
> > > > > +   32.11%     0.00%  [kernel]          [k] ret_from_fork_asm
> > > > > +   32.11%     0.00%  [kernel]          [k] ret_from_fork
> > > > > +   32.11%     0.00%  [kernel]          [k] kthread
> > > > > 
> > > > > I would say the bottle-neck is a page-allocator. It seems high-order
> > > > > allocations are not good for it.
> > > 
> > > Ah also just took a closer look at this. I realize that you also did 16k
> > > allocations (which is at most order-2), so it may not be a good
> > > representation of high-order allocations either.
> > > 
> > I agree. But then we should not optimize "small" orders and focus on
> > highest ones. Because of double degrade. I assume stress-ng fork test
> > would alos notice this.
> > 
> > > Plus that falls into the regression range I found that I detailed in
> > > response to Matthew elsewhere (I've copy pasted it here for reference)
> > > 
> > >   I ended up finding that allocating sizes <=20k had noticeable
> > >   regressions, while [20k, 90k] was approximately the same, and >= 90k had
> > >   improvements (getting more and more noticeable as size grows in
> > >   magnitude).
> > > 
> > Yes, i did 2-order allocations 
> > 
> > # default
> > +   35.87%     4.24%  [kernel]            [k] alloc_pages_bulk_noprof
> > +   31.94%     0.88%  [kernel]            [k] vfree.part.0
> > -   27.38%    27.36%  [kernel]            [k] clear_page_rep
> >      27.36% ret_from_fork_asm
> >         ret_from_fork
> >         kthread
> >         test_func
> >         fix_size_alloc_test
> >         __vmalloc_node_noprof
> >         __vmalloc_node_range_noprof
> >         alloc_pages_bulk_noprof
> >         clear_page_rep
> > 
> > # patch
> > +   53.32%     1.12%  [kernel]        [k] get_page_from_freelist
> > +   49.41%     0.71%  [kernel]        [k] prep_new_page
> > -   48.70%    48.64%  [kernel]        [k] clear_page_rep
> >      48.64% ret_from_fork_asm
> >         ret_from_fork
> >         kthread
> >         test_func
> >         fix_size_alloc_test
> >         __vmalloc_node_noprof
> >         __vmalloc_node_range_noprof
> >         alloc_pages_noprof
> >         alloc_pages_mpol
> >         __alloc_frozen_pages_noprof
> >         get_page_from_freelist
> >         prep_new_page
> >         clear_page_rep
> > 
> > i noticed it is because of clear_page_rep() which with patch consumes
> > double in cycles. 
> > 
> > Both versions should mostly go over pcp-cache, as far as i remember
> > order-2 is allowed to be cached.
> > 
> > I wounder why the patch gives x2 of cycles to clear_page_rep()...
> > 
> And here we go with some results "without" pcp exxecise:
> 
> static int fix_size_alloc_test(void)
> {
> 	void **ptr;
> 	int i;
> 
> 	if (set_cpus_allowed_ptr(current, cpumask_of(1)) < 0)
> 		pr_err("Failed to set affinity to %d CPU\n", 1);
> 
> 	ptr = vmalloc(sizeof(void *) * test_loop_count);
> 	if (!ptr)
> 		return -1;
> 
> 	for (i = 0; i < test_loop_count; i++)
> 		ptr[i] = vmalloc((nr_pages > 0 ? nr_pages:1) * PAGE_SIZE);
> 
> 	for (i = 0; i < test_loop_count; i++) {
> 		if (ptr[i])
> 			vfree(ptr[i]);
> 	}
> 
> 	return 0;
> }
> 
> time sudo ./test_vmalloc.sh run_test_mask=1 nr_threads=1 nr_pages=nr-pages-in-order
> 
> # default order-1
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1423862 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1453518 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1451734 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1455142 usec
> 
> # patch order-1
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1431082 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1454855 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1476372 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 1433379 usec
> 
> # default order-2
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2198130 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2208504 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2219533 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2214151 usec
> 
> # patch order-2
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2110344 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2044186 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2083308 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 2073572 usec
> 
> # default order-3
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 3718592 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 3740495 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 3737213 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 3740765 usec
> 
> # patch order-3
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 3350391 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 3374568 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 3286374 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 3261335 usec
> 
> # default order-6(64 pages)
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 23847773 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 24015706 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 24226268 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 24078102 usec
> 
> # patch order-6
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 20128225 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 19968964 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 20067469 usec
> Summary: fix_size_alloc_test passed: 1 failed: 0 xfailed: 0 repeat: 1 loops: 1000000 avg: 19928870 usec
> 
> Now i see that results align with my initial thoughts when i first time
> saw your patch.
 
Its reassuring that your test results show similar performance even at
the order-1 and order-2 cases. This was what I was expecting as well.

I'm assuming this happened because you tested exactly aligned PAGE_SIZE
allocations (whereas somehow I hadn't thought to do that).

> The question which is not clear for me still, why pcp case is doing better
> even for cached orders.
>
> Do you have any thoughts?

I'm not sure either. I'm not familiar with the optimization differences
between the standard and bulk allocators :(

When looking at the code, it appears that although the pcp lists can cache
up to PAGE_ALLOC_COSTLY_ORDER (3), the bulk allocator doesn't have support
for anything outside of order-0. And whenever order-0 pages are
available, the bulk allocator appears incredibly efficient at grabbing
them.

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ