[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <CAMEtUuxp8_VJYUShxLGUOew5s0VNY_hH+w7QqqSehbFHKQwmvg@mail.gmail.com>
Date: Wed, 13 Aug 2014 16:46:41 -0700
From: Alexei Starovoitov <ast@...mgrid.com>
To: Andy Lutomirski <luto@...capital.net>
Cc: David Miller <davem@...emloft.net>,
David Laight <David.Laight@...lab.com>,
Ingo Molnar <mingo@...nel.org>,
Linus Torvalds <torvalds@...ux-foundation.org>,
Steven Rostedt <rostedt@...dmis.org>,
Daniel Borkmann <dborkman@...hat.com>,
Chema Gonzalez <chema@...gle.com>,
Eric Dumazet <edumazet@...gle.com>,
Peter Zijlstra <a.p.zijlstra@...llo.nl>,
"H. Peter Anvin" <hpa@...or.com>,
Andrew Morton <akpm@...ux-foundation.org>,
Kees Cook <keescook@...omium.org>,
Linux API <linux-api@...r.kernel.org>,
Network Development <netdev@...r.kernel.org>,
"linux-kernel@...r.kernel.org" <linux-kernel@...r.kernel.org>
Subject: Re: [PATCH RFC v4 net-next 00/26] BPF syscall, maps, verifier,
samples, llvm
On Wed, Aug 13, 2014 at 4:34 PM, Andy Lutomirski <luto@...capital.net> wrote:
> On Wed, Aug 13, 2014 at 4:25 PM, David Miller <davem@...emloft.net> wrote:
>> From: David Laight <David.Laight@...LAB.COM>
>> Date: Wed, 13 Aug 2014 08:52:30 +0000
>>
>>> From: Of Alexei Starovoitov
>>>> one more RFC...
>>>>
>>>> Major difference vs previous set is a new 'load 64-bit immediate' eBPF insn.
>>>> Which is first 16-byte instruction. It shows how eBPF ISA can be extended
>>>> while maintaining backward compatibility, but mainly it cleans up eBPF
>>>> program access to maps and improves run-time performance.
>>>
>>> Wouldn't it be more sensible to follow the scheme used by a lot of cpus
>>> and add a 'load high' instruction (follow with 'add' or 'or').
>>> It still takes 16 bytes to load a 64bit immediate value, but the instruction
>>> size remains constant.
>>> There is nothing to stop any JIT software detecting the instruction pair.
>>
>> The opposite argument is that JITs can expand the IMM64 load into whatever
>> sequence of instructions is most optimal.
>>
>> My only real gripe with IMM64 loads is that it's not mainly for
>> loading an immediate, it's for loading a pointer. And this
>> distinction is important for some JITs.
>>
>> For example, on sparc64 all symbol based addresses are actually 32-bit
>> because of the code model we use to compile the kernel and all modules.
>> So if we knew this is a pointer load and it's to a symbol in a kernel
>> or module image, we could do a 32-bit load.
>
> This is true for x86_64 as well, I think.
>
> (Almost. For x86_64 we have a choice between a sign-extended load of
> a value in the top 2GB of the address space and lea reg,offset(%rip).)
That would be an interesting optimization. I did movabsq just
because it was straightforward. JITs can play interesting tricks here.
Since it's really a constant value, there is no difference whether
it's a pointer or a constant. If JIT can use $rip trick on x64 or reduce
number of sethi insns on sparc, it should try to do it regardless of
how value in dst_reg will be used later on by the program.
JITs can also allocate some read-only area for constants and
do a relative load from there. Not sure that it will be faster though.
JITs can get more complex and smarter as time goes by. They can
even randomly do some ld_imm64 via movabsq and some via a
sequence of mov, shift, or. That will through away JIT spraying attacks.
If JITed code itself is random, that would be nice defense.
--
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Powered by blists - more mailing lists