lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Message-ID: <20190418012701.2965338-1-ast@kernel.org>
Date:   Wed, 17 Apr 2019 18:27:01 -0700
From:   Alexei Starovoitov <ast@...nel.org>
To:     <davem@...emloft.net>
CC:     <daniel@...earbox.net>, <netdev@...r.kernel.org>,
        <bpf@...r.kernel.org>, <kernel-team@...com>
Subject: [PATCH bpf-next] bpf: document the verifier limits

Document the verifier limits.

Signed-off-by: Alexei Starovoitov <ast@...nel.org>
---
 Documentation/bpf/bpf_design_QA.rst | 29 +++++++++++++++++++++++++++--
 1 file changed, 27 insertions(+), 2 deletions(-)

diff --git a/Documentation/bpf/bpf_design_QA.rst b/Documentation/bpf/bpf_design_QA.rst
index 10453c627135..cb402c59eca5 100644
--- a/Documentation/bpf/bpf_design_QA.rst
+++ b/Documentation/bpf/bpf_design_QA.rst
@@ -85,8 +85,33 @@ Q: Can loops be supported in a safe way?
 A: It's not clear yet.
 
 BPF developers are trying to find a way to
-support bounded loops where the verifier can guarantee that
-the program terminates in less than 4096 instructions.
+support bounded loops.
+
+Q: What are the verifier limits?
+--------------------------------
+A: The only limit known to the user space is BPF_MAXINSNS (4096).
+It's the maximum number of instructions that the unprivileged bpf
+program can have. The verifier has various internal limits.
+Like the maximum number of instructions that can be explored during
+program analysis. Currently, that limit is set to 1 million.
+Which essentially means that the largest program can consist
+of 1 million NOP instructions. There is a limit to the maximum number
+of subsequent branches, a limit to the number of nested bpf-to-bpf
+calls, a limit to the number of the verifier states per instruction,
+a limit to the number of maps used by the program.
+All these limits can be hit with a sufficiently complex program.
+There are also non-numerical limits that can cause the program
+to be rejected. The verifier used to recognize only pointer + constant
+expressions. Now it can recognize pointer + bounded_register.
+bpf_lookup_map_elem(key) had a requirement that 'key' must be
+a pointer to the stack. Now, 'key' can be a pointer to map value.
+The verifier is steadily getting 'smarter'. The limits are
+being removed. The only way to know that the program is going to
+be accepted by the verifier is to try to load it.
+The bpf development process guarantees that the future kernel
+versions will accept all bpf programs that were accepted by
+the earlier versions.
+
 
 Instruction level questions
 ---------------------------
-- 
2.20.0

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ