lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date: Wed, 15 Nov 2023 16:02:07 +0100
From: Heiner Kallweit <heiner.kallweit@....de>
To: Justin Lai <justinlai0215@...ltek.com>, kuba@...nel.org
Cc: davem@...emloft.net, edumazet@...gle.com, pabeni@...hat.com,
 linux-kernel@...r.kernel.org, netdev@...r.kernel.org, andrew@...n.ch,
 pkshih@...ltek.com, larry.chiu@...ltek.com
Subject: Re: [PATCH net-next v11 05/13] net:ethernet:realtek:rtase: Implement
 hardware configuration function

On 15.11.2023 14:34, Justin Lai wrote:
> Implement rtase_hw_config to set default hardware settings, including
> setting interrupt mitigation, tx/rx DMA burst, interframe gap time,
> rx packet filter, near fifo threshold and fill descriptor ring and
> tally counter address, and enable flow control. When filling the
> rx descriptor ring, the first group of queues needs to be processed
> separately because the positions of the first group of queues are not
> regular with other subsequent groups. The other queues are all newly
> added features, but we want to retain the original design. So they were
> not put together.
>
> Signed-off-by: Justin Lai <justinlai0215@...ltek.com>
> ---
>  .../net/ethernet/realtek/rtase/rtase_main.c   |  243 ++
>  drivers/net/ethernet/realtek/rtase/tt.c       | 2542 +++++++++++++++++
>  drivers/net/ethernet/realtek/rtase/tt.h       |  353 +++
>  3 files changed, 3138 insertions(+)
>  create mode 100644 drivers/net/ethernet/realtek/rtase/tt.c
>  create mode 100644 drivers/net/ethernet/realtek/rtase/tt.h
>
> diff --git a/drivers/net/ethernet/realtek/rtase/rtase_main.c b/drivers/net/ethernet/realtek/rtase/rtase_main.c
> index 46d128a68844..4e04189050cc 100644
> --- a/drivers/net/ethernet/realtek/rtase/rtase_main.c
> +++ b/drivers/net/ethernet/realtek/rtase/rtase_main.c
> @@ -466,6 +466,25 @@ static int rtase_init_ring(const struct net_device *dev)
>  	return -ENOMEM;
>  }
>
> +static void rtase_interrupt_mitigation(const struct rtase_private *tp)
> +{
> +	u32 i;
> +
> +	/* tx interrupt mitigation */
> +	for (i = 0; i < tp->func_tx_queue_num; i++)
> +		rtase_w16(tp, RTASE_INT_MITI_TX + i * 2, tp->tx_int_mit);
> +
> +	/* rx interrupt mitigation */
> +	for (i = 0; i < tp->func_rx_queue_num; i++)
> +		rtase_w16(tp, RTASE_INT_MITI_RX + i * 2, tp->rx_int_mit);
> +}
> +
> +static void rtase_tally_counter_addr_fill(const struct rtase_private *tp)
> +{
> +	rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(tp->tally_paddr));
> +	rtase_w32(tp, RTASE_DTCCR0, lower_32_bits(tp->tally_paddr));
> +}
> +
>  static void rtase_tally_counter_clear(const struct rtase_private *tp)
>  {
>  	u32 cmd = lower_32_bits(tp->tally_paddr);
> @@ -474,6 +493,123 @@ static void rtase_tally_counter_clear(const struct rtase_private *tp)
>  	rtase_w32(tp, RTASE_DTCCR0, cmd | COUNTER_RESET);
>  }
>
> +static void rtase_desc_addr_fill(const struct rtase_private *tp)
> +{
> +	const struct rtase_ring *ring;
> +	u16 i, cmd, val;
> +	int err;
> +
> +	for (i = 0; i < tp->func_tx_queue_num; i++) {
> +		ring = &tp->tx_ring[i];
> +
> +		rtase_w32(tp, RTASE_TX_DESC_ADDR0,
> +			  lower_32_bits(ring->phy_addr));
> +		rtase_w32(tp, RTASE_TX_DESC_ADDR4,
> +			  upper_32_bits(ring->phy_addr));
> +
> +		cmd = i | TX_DESC_CMD_WE | TX_DESC_CMD_CS;
> +		rtase_w16(tp, RTASE_TX_DESC_COMMAND, cmd);
> +
> +		err = read_poll_timeout(rtase_r16, val, !(val & TX_DESC_CMD_CS),
> +					10, 1000, false, tp, RTASE_TX_DESC_COMMAND);
> +
> +		if (err == -ETIMEDOUT)
> +			netdev_err(tp->dev, "error occurred in fill tx descriptor\n");
> +	}
> +
> +	for (i = 0; i < tp->func_rx_queue_num; i++) {
> +		ring = &tp->rx_ring[i];
> +
> +		if (i == 0) {
> +			rtase_w32(tp, RTASE_Q0_RX_DESC_ADDR0,
> +				  lower_32_bits(ring->phy_addr));
> +			rtase_w32(tp, RTASE_Q0_RX_DESC_ADDR4,
> +				  upper_32_bits(ring->phy_addr));
> +		} else {
> +			rtase_w32(tp, (RTASE_Q1_RX_DESC_ADDR0 + ((i - 1) * 8)),
> +				  lower_32_bits(ring->phy_addr));
> +			rtase_w32(tp, (RTASE_Q1_RX_DESC_ADDR4 + ((i - 1) * 8)),
> +				  upper_32_bits(ring->phy_addr));
> +		}
> +	}
> +}
> +
> +static void rtase_hw_set_features(const struct net_device *dev,
> +				  netdev_features_t features)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +	u16 rx_config, val;
> +
> +	rx_config = rtase_r16(tp, RTASE_RX_CONFIG_0);
> +	if (features & NETIF_F_RXALL)
> +		rx_config |= (ACCEPT_ERR | ACCEPT_RUNT);
> +	else
> +		rx_config &= ~(ACCEPT_ERR | ACCEPT_RUNT);
> +
> +	rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config);
> +
> +	val = rtase_r16(tp, RTASE_CPLUS_CMD);
> +	if (features & NETIF_F_RXCSUM)
> +		rtase_w16(tp, RTASE_CPLUS_CMD, val | RX_CHKSUM);
> +	else
> +		rtase_w16(tp, RTASE_CPLUS_CMD, val & ~RX_CHKSUM);
> +
> +	rx_config = rtase_r16(tp, RTASE_RX_CONFIG_1);
> +	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
> +		rx_config |= (INNER_VLAN_DETAG_EN | OUTER_VLAN_DETAG_EN);
> +	else
> +		rx_config &= ~(INNER_VLAN_DETAG_EN | OUTER_VLAN_DETAG_EN);
> +
> +	rtase_w16(tp, RTASE_RX_CONFIG_1, rx_config);
> +}
> +
> +static void rtase_set_mar(const struct rtase_private *tp)
> +{
> +	rtase_w32(tp, RTASE_MAR0, tp->mc_filter[0]);
> +	rtase_w32(tp, RTASE_MAR1, tp->mc_filter[1]);
> +}
> +
> +static void rtase_hw_set_rx_packet_filter(struct net_device *dev)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +	u32 mc_filter[2] = { 0xFFFFFFFF, 0xFFFFFFFF };
> +	u16 rx_mode;
> +
> +	rx_mode = rtase_r16(tp, RTASE_RX_CONFIG_0) & ~ACCEPT_MASK;
> +	rx_mode |= ACCEPT_BROADCAST | ACCEPT_MYPHYS;
> +
> +	if (dev->flags & IFF_PROMISC) {
> +		rx_mode |= ACCEPT_MULTICAST | ACCEPT_ALLPHYS;
> +	} else if ((netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) ||
> +		   (dev->flags & IFF_ALLMULTI)) {
> +		/* too many to filter perfectly -- accept all multicasts */

This comment seems to exist since RTL8139. The filtering seems to be
hash-based, so there's no perfect filtering anyway.
What's the benefit of the filter limit?

> +		rx_mode |= ACCEPT_MULTICAST;
> +	} else {
> +		struct netdev_hw_addr *hw_addr;
> +
> +		mc_filter[0] = 0;
> +		mc_filter[1] = 0;
> +
> +		netdev_for_each_mc_addr(hw_addr, dev) {
> +			u32 bit_nr = eth_hw_addr_crc(hw_addr);
> +			u32 idx = u32_get_bits(bit_nr, BIT(31));
> +			u32 bit = u32_get_bits(bit_nr, MULTICAST_FILTER_MASK);
> +
> +			mc_filter[idx] |= BIT(bit);
> +			rx_mode |= ACCEPT_MULTICAST;
> +		}
> +	}
> +
> +	if (dev->features & NETIF_F_RXALL)
> +		rx_mode |= ACCEPT_ERR | ACCEPT_RUNT;
> +
> +	tp->mc_filter[0] = swab32(mc_filter[1]);
> +	tp->mc_filter[1] = swab32(mc_filter[0]);
> +
> +	rtase_set_mar(tp);

Why this function at all? You can set the registers directly here.
Related question: Why store mc_filter[] in tp?
It's used nowhere else AFAICS.

> +	rtase_w16(tp, RTASE_RX_CONFIG_0, rx_mode);
> +}
> +
>  static void rtase_irq_dis_and_clear(const struct rtase_private *tp)
>  {
>  	const struct rtase_int_vector *ivec = &tp->int_vector[0];
> @@ -545,6 +681,113 @@ static void rtase_hw_reset(const struct net_device *dev)
>  	rtase_nic_reset(dev);
>  }
>
> +static void rtase_set_rx_queue(const struct rtase_private *tp)
> +{
> +	u16 reg_data;
> +
> +	reg_data = rtase_r16(tp, RTASE_FCR);
> +	switch (tp->func_rx_queue_num) {
> +	case 1:
> +		u16p_replace_bits(&reg_data, 0x1, FCR_RXQ_MASK);
> +		break;
> +	case 2:
> +		u16p_replace_bits(&reg_data, 0x2, FCR_RXQ_MASK);
> +		break;
> +	case 4:
> +		u16p_replace_bits(&reg_data, 0x3, FCR_RXQ_MASK);
> +		break;
> +	}
> +	rtase_w16(tp, RTASE_FCR, reg_data);
> +}
> +
> +static void rtase_set_tx_queue(const struct rtase_private *tp)
> +{
> +	u16 reg_data;
> +
> +	reg_data = rtase_r16(tp, RTASE_TX_CONFIG_1);
> +	switch (tp->tx_queue_ctrl) {
> +	case 1:
> +		u16p_replace_bits(&reg_data, 0x0, TC_MODE_MASK);
> +		break;
> +	case 2:
> +		u16p_replace_bits(&reg_data, 0x1, TC_MODE_MASK);
> +		break;
> +	case 3:
> +	case 4:
> +		u16p_replace_bits(&reg_data, 0x2, TC_MODE_MASK);
> +		break;
> +	default:
> +		u16p_replace_bits(&reg_data, 0x3, TC_MODE_MASK);
> +		break;
> +	}
> +	rtase_w16(tp, RTASE_TX_CONFIG_1, reg_data);
> +}
> +
> +static void rtase_hw_config(struct net_device *dev)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +	u32 reg_data32;
> +	u16 reg_data16;
> +
> +	rtase_hw_reset(dev);
> +
> +	/* Set Rx DMA burst */
> +	reg_data16 = rtase_r16(tp, RTASE_RX_CONFIG_0);
> +	reg_data16 &= ~(RX_SINGLE_TAG | RX_SINGLE_FETCH);
> +	u16p_replace_bits(&reg_data16, RX_DMA_BURST_256, RX_MX_DMA_MASK);
> +	rtase_w16(tp, RTASE_RX_CONFIG_0, reg_data16);
> +
> +	/* New Rx Descritpor */
> +	reg_data16 = rtase_r16(tp, RTASE_RX_CONFIG_1);
> +	reg_data16 |= RX_NEW_DESC_FORMAT_EN | PCIE_NEW_FLOW;
> +	u16p_replace_bits(&reg_data16, 0xF, RX_MAX_FETCH_DESC_MASK);
> +	rtase_w16(tp, RTASE_RX_CONFIG_1, reg_data16);
> +
> +	rtase_set_rx_queue(tp);
> +
> +	/* interrupt mitigation */
> +	rtase_interrupt_mitigation(tp);
> +
> +	/* set tx DMA burst size and interframe gap time */
> +	reg_data32 = rtase_r32(tp, RTASE_TX_CONFIG_0);
> +	u32p_replace_bits(&reg_data32, TX_DMA_BURST_UNLIMITED, TX_DMA_MASK);
> +	u32p_replace_bits(&reg_data32, INTERFRAMEGAP, TX_INTER_FRAME_GAP_MASK);
> +	rtase_w32(tp, RTASE_TX_CONFIG_0, reg_data32);
> +
> +	/* new tx Descriptor */
> +	reg_data16 = rtase_r16(tp, RTASE_TFUN_CTRL);
> +	rtase_w16(tp, RTASE_TFUN_CTRL, reg_data16 | TX_NEW_DESC_FORMAT_EN);
> +
> +	/* tx Fetch Desc Number */
> +	rtase_w8(tp, RTASE_TDFNR, 0x10);
> +
> +	/* tag num select */
> +	reg_data16 = rtase_r16(tp, RTASE_MTPS);
> +	u16p_replace_bits(&reg_data16, 0x4, TAG_NUM_SEL_MASK);
> +	rtase_w16(tp, RTASE_MTPS, reg_data16);
> +
> +	rtase_set_tx_queue(tp);
> +
> +	/* TOK condition */
> +	rtase_w16(tp, RTASE_TOKSEL, 0x5555);
> +
> +	rtase_tally_counter_addr_fill(tp);
> +	rtase_desc_addr_fill(tp);
> +	rtase_hw_set_features(dev, dev->features);
> +
> +	/* enable flow control */
> +	reg_data16 = rtase_r16(tp, RTASE_CPLUS_CMD);
> +	reg_data16 |= (FORCE_TXFLOW_EN | FORCE_RXFLOW_EN);
> +	rtase_w16(tp, RTASE_CPLUS_CMD, reg_data16);
> +	/* set Near FIFO Threshold - rx missed issue. */
> +	rtase_w16(tp, RTASE_RFIFONFULL, 0x190);
> +
> +	rtase_w16(tp, RTASE_RMS, tp->rx_buf_sz);
> +
> +	/* set Rx packet filter */
> +	rtase_hw_set_rx_packet_filter(dev);
> +}
> +
>  static void rtase_nic_enable(const struct net_device *dev)
>  {
>  	const struct rtase_private *tp = netdev_priv(dev);
> diff --git a/drivers/net/ethernet/realtek/rtase/tt.c b/drivers/net/ethernet/realtek/rtase/tt.c
> new file mode 100644
> index 000000000000..5ea4d51fcc47
> --- /dev/null
> +++ b/drivers/net/ethernet/realtek/rtase/tt.c
> @@ -0,0 +1,2542 @@
> +// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
> +/*
> + *  rtase is the Linux device driver released for Realtek Automotive Switch
> + *  controllers with PCI-Express interface.
> + *
> + *  Copyright(c) 2023 Realtek Semiconductor Corp.
> + *
> + *  Below is a simplified block diagram of the chip and its relevant interfaces.
> + *
> + *               *************************
> + *               *                       *
> + *               *  CPU network device   *
> + *               *                       *
> + *               *   +-------------+     *
> + *               *   |  PCIE Host  |     *
> + *               ***********++************
> + *                          ||
> + *                         PCIE
> + *                          ||
> + *      ********************++**********************
> + *      *            | PCIE Endpoint |             *
> + *      *            +---------------+             *
> + *      *                | GMAC |                  *
> + *      *                +--++--+  Realtek         *
> + *      *                   ||     RTL90xx Series  *
> + *      *                   ||                     *
> + *      *     +-------------++----------------+    *
> + *      *     |           | MAC |             |    *
> + *      *     |           +-----+             |    *
> + *      *     |                               |    *
> + *      *     |     Ethernet Switch Core      |    *
> + *      *     |                               |    *
> + *      *     |   +-----+           +-----+   |    *
> + *      *     |   | MAC |...........| MAC |   |    *
> + *      *     +---+-----+-----------+-----+---+    *
> + *      *         | PHY |...........| PHY |        *
> + *      *         +--++-+           +--++-+        *
> + *      *************||****************||***********
> + *
> + *  The block of the Realtek RTL90xx series is our entire chip architecture,
> + *  the GMAC is connected to the switch core, and there is no PHY in between.
> + *  In addition, this driver is mainly used to control GMAC, but does not
> + *  control the switch core, so it is not the same as DSA.
> + */
> +
> +#include <linux/crc32.h>
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/etherdevice.h>
> +#include <linux/if_vlan.h>
> +#include <linux/in.h>
> +#include <linux/init.h>
> +#include <linux/interrupt.h>
> +#include <linux/io.h>
> +#include <linux/iopoll.h>
> +#include <linux/ip.h>
> +#include <linux/ipv6.h>
> +#include <linux/mdio.h>
> +#include <linux/module.h>
> +#include <linux/moduleparam.h>
> +#include <linux/netdevice.h>
> +#include <linux/pci.h>
> +#include <linux/prefetch.h>
> +#include <linux/rtnetlink.h>
> +#include <linux/tcp.h>
> +#include <asm/irq.h>
> +#include <net/ip6_checksum.h>
> +#include <net/page_pool/helpers.h>
> +#include <net/pkt_cls.h>
> +
> +#include "rtase.h"
> +
> +#define RTK_OPTS1_DEBUG_VALUE 0x0BADBEEF
> +#define RTK_MAGIC_NUMBER      0x0BADBADBADBADBAD
> +
> +static const struct pci_device_id rtase_pci_tbl[] = {
> +	{PCI_VDEVICE(REALTEK, 0x906A)},
> +	{}
> +};
> +
> +MODULE_DEVICE_TABLE(pci, rtase_pci_tbl);
> +
> +MODULE_AUTHOR("Realtek ARD Software Team");
> +MODULE_DESCRIPTION("Network Driver for the PCIe interface of Realtek Automotive Ethernet Switch");
> +MODULE_LICENSE("Dual BSD/GPL");
> +
> +struct rtase_counters {
> +	__le64 tx_packets;
> +	__le64 rx_packets;
> +	__le64 tx_errors;
> +	__le32 rx_errors;
> +	__le16 rx_missed;
> +	__le16 align_errors;
> +	__le32 tx_one_collision;
> +	__le32 tx_multi_collision;
> +	__le64 rx_unicast;
> +	__le64 rx_broadcast;
> +	__le32 rx_multicast;
> +	__le16 tx_aborted;
> +	__le16 tx_underun;
> +} __packed;
> +

You defined this struct in patch 1 already in another source code file.
Why redefine it?

> +static void rtase_w8(const struct rtase_private *tp, u16 reg, u8 val8)
> +{
> +	writeb(val8, tp->mmio_addr + reg);
> +}
> +
> +static void rtase_w16(const struct rtase_private *tp, u16 reg, u16 val16)
> +{
> +	writew(val16, tp->mmio_addr + reg);
> +}
> +
> +static void rtase_w32(const struct rtase_private *tp, u16 reg, u32 val32)
> +{
> +	writel(val32, tp->mmio_addr + reg);
> +}
> +
> +static u8 rtase_r8(const struct rtase_private *tp, u16 reg)
> +{
> +	return readb(tp->mmio_addr + reg);
> +}
> +
> +static u16 rtase_r16(const struct rtase_private *tp, u16 reg)
> +{
> +	return readw(tp->mmio_addr + reg);
> +}
> +
> +static u32 rtase_r32(const struct rtase_private *tp, u16 reg)
> +{
> +	return readl(tp->mmio_addr + reg);
> +}
> +
> +static void rtase_set_rxbufsize(struct rtase_private *tp)
> +{
> +	tp->rx_buf_sz = RX_BUF_SIZE;
> +}
> +
> +static int rtase_alloc_desc(struct rtase_private *tp)
> +{
> +	struct pci_dev *pdev = tp->pdev;
> +	u32 i;
> +
> +	/* rx and tx descriptors needs 256 bytes alignment.
> +	 * dma_alloc_coherent provides more.
> +	 */
> +	for (i = 0; i < tp->func_tx_queue_num; i++) {
> +		tp->tx_ring[i].desc = dma_alloc_coherent(&pdev->dev,
> +							 RTASE_TX_RING_DESC_SIZE,
> +							 &tp->tx_ring[i].phy_addr,
> +							 GFP_KERNEL);
> +		if (!tp->tx_ring[i].desc)
> +			return -ENOMEM;
> +	}
> +
> +	for (i = 0; i < tp->func_rx_queue_num; i++) {
> +		tp->rx_ring[i].desc =
> +			dma_alloc_coherent(&pdev->dev, RTASE_RX_RING_DESC_SIZE,
> +					   &tp->rx_ring[i].phy_addr,
> +					   GFP_KERNEL);
> +		if (!tp->rx_ring[i].desc)
> +			return -ENOMEM;
> +	}
> +
> +	return 0;
> +}
> +
> +static void rtase_free_desc(struct rtase_private *tp)
> +{
> +	struct pci_dev *pdev = tp->pdev;
> +	u32 i;
> +
> +	for (i = 0; i < tp->func_tx_queue_num; i++) {
> +		if (!tp->tx_ring[i].desc)
> +			continue;
> +
> +		dma_free_coherent(&pdev->dev, RTASE_TX_RING_DESC_SIZE,
> +				  tp->tx_ring[i].desc,
> +				  tp->tx_ring[i].phy_addr);
> +		tp->tx_ring[i].desc = NULL;
> +	}
> +
> +	for (i = 0; i < tp->func_rx_queue_num; i++) {
> +		if (!tp->rx_ring[i].desc)
> +			continue;
> +
> +		dma_free_coherent(&pdev->dev, RTASE_RX_RING_DESC_SIZE,
> +				  tp->rx_ring[i].desc,
> +				  tp->rx_ring[i].phy_addr);
> +		tp->rx_ring[i].desc = NULL;
> +	}
> +}
> +
> +static void rtase_unmap_tx_skb(struct pci_dev *pdev, u32 len,
> +			       struct tx_desc *desc)
> +{
> +	dma_unmap_single(&pdev->dev, le64_to_cpu(desc->addr), len,
> +			 DMA_TO_DEVICE);
> +	desc->opts1 = cpu_to_le32(RTK_OPTS1_DEBUG_VALUE);
> +	desc->opts2 = 0x00;
> +	desc->addr = cpu_to_le64(RTK_MAGIC_NUMBER);
> +}
> +
> +static void rtase_tx_clear_range(struct rtase_ring *ring, u32 start, u32 n)
> +{
> +	const struct rtase_private *tp = ring->ivec->tp;
> +	struct net_device *dev = tp->dev;
> +	struct tx_desc *desc_base = ring->desc;
> +	u32 i;
> +
> +	for (i = 0; i < n; i++) {
> +		u32 entry = (start + i) % NUM_DESC;
> +		struct tx_desc *desc = desc_base + entry;
> +		u32 len = ring->mis.len[entry];
> +		struct sk_buff *skb;
> +
> +		if (len == 0)
> +			continue;
> +
> +		rtase_unmap_tx_skb(tp->pdev, len, desc);
> +		ring->mis.len[entry] = 0;
> +		skb = ring->skbuff[entry];
> +		if (!skb)
> +			continue;
> +
> +		dev->stats.tx_dropped++;
> +		dev_kfree_skb_any(skb);
> +		ring->skbuff[entry] = NULL;
> +	}
> +}
> +
> +static void rtase_tx_clear(struct rtase_private *tp)
> +{
> +	struct rtase_ring *ring;
> +	u16 i;
> +
> +	for (i = 0; i < tp->func_tx_queue_num; i++) {
> +		ring = &tp->tx_ring[i];
> +		rtase_tx_clear_range(ring, ring->dirty_idx, NUM_DESC);
> +		ring->cur_idx = 0;
> +		ring->dirty_idx = 0;
> +	}
> +}
> +
> +static void rtase_mark_to_asic(union rx_desc *desc, u32 rx_buf_sz)
> +{
> +	u32 eor = le32_to_cpu(desc->desc_cmd.opts1) & RING_END;
> +
> +	desc->desc_status.opts2 = 0;
> +	/* force memory writes to complete before releasing descriptor */
> +	dma_wmb();
> +	WRITE_ONCE(desc->desc_cmd.opts1,
> +		   cpu_to_le32(DESC_OWN | eor | rx_buf_sz));
> +}
> +
> +static bool rtase_tx_avail(struct rtase_ring *ring)
> +{
> +	u32 avail_num = READ_ONCE(ring->dirty_idx) + NUM_DESC -
> +			READ_ONCE(ring->cur_idx);
> +
> +	return avail_num > MAX_SKB_FRAGS;
> +}
> +
> +static int tx_handler(struct rtase_ring *ring, int budget)
> +{
> +	const struct rtase_private *tp = ring->ivec->tp;
> +	struct net_device *dev = tp->dev;
> +	int workdone = 0;
> +	u32 dirty_tx;
> +	u32 tx_left;
> +
> +	dirty_tx = ring->dirty_idx;
> +	tx_left = READ_ONCE(ring->cur_idx) - dirty_tx;
> +
> +	while (tx_left > 0) {
> +		u32 entry = dirty_tx % NUM_DESC;
> +		struct tx_desc *desc = ring->desc +
> +				       sizeof(struct tx_desc) * entry;
> +		u32 len = ring->mis.len[entry];
> +		u32 status;
> +
> +		status = le32_to_cpu(desc->opts1);
> +
> +		if (status & DESC_OWN)
> +			break;
> +
> +		rtase_unmap_tx_skb(tp->pdev, len, desc);
> +		ring->mis.len[entry] = 0;
> +		if (ring->skbuff[entry]) {
> +			dev_consume_skb_any(ring->skbuff[entry]);
> +			ring->skbuff[entry] = NULL;
> +		}
> +
> +		dev->stats.tx_bytes += len;
> +		dev->stats.tx_packets++;
> +		dirty_tx++;
> +		tx_left--;
> +		workdone++;
> +
> +		if (workdone == budget)
> +			break;
> +	}
> +
> +	if (ring->dirty_idx != dirty_tx) {
> +		WRITE_ONCE(ring->dirty_idx, dirty_tx);
> +
> +		if (__netif_subqueue_stopped(dev, ring->index) &&
> +		    rtase_tx_avail(ring))
> +			netif_start_subqueue(dev, ring->index);
> +

Really no memory barriers needed in this function?

> +		if (ring->cur_idx != dirty_tx)
> +			rtase_w8(tp, RTASE_TPPOLL, BIT(ring->index));
> +	}
> +
> +	return workdone;
> +}
> +
> +static void rtase_tx_desc_init(struct rtase_private *tp, u16 idx)
> +{
> +	struct rtase_ring *ring = &tp->tx_ring[idx];
> +	struct tx_desc *desc;
> +	u32 i;
> +
> +	memset(ring->desc, 0x0, RTASE_TX_RING_DESC_SIZE);
> +	memset(ring->skbuff, 0x0, sizeof(ring->skbuff));
> +	ring->cur_idx = 0;
> +	ring->dirty_idx = 0;
> +	ring->index = idx;
> +
> +	for (i = 0; i < NUM_DESC; i++) {
> +		ring->mis.len[i] = 0;
> +		if ((NUM_DESC - 1) == i) {
> +			desc = ring->desc + sizeof(struct tx_desc) * i;
> +			desc->opts1 = cpu_to_le32(RING_END);
> +		}
> +	}
> +
> +	ring->ring_handler = tx_handler;
> +	if (idx < 4) {
> +		ring->ivec = &tp->int_vector[idx];
> +		list_add_tail(&ring->ring_entry,
> +			      &tp->int_vector[idx].ring_list);
> +	} else {
> +		ring->ivec = &tp->int_vector[0];
> +		list_add_tail(&ring->ring_entry, &tp->int_vector[0].ring_list);
> +	}
> +}
> +
> +static void rtase_map_to_asic(union rx_desc *desc, dma_addr_t mapping,
> +			      u32 rx_buf_sz)
> +{
> +	desc->desc_cmd.addr = cpu_to_le64(mapping);
> +	/* make sure the physical address has been updated */
> +	wmb();
> +	rtase_mark_to_asic(desc, rx_buf_sz);
> +}
> +
> +static void rtase_make_unusable_by_asic(union rx_desc *desc)
> +{
> +	desc->desc_cmd.addr = cpu_to_le64(RTK_MAGIC_NUMBER);
> +	desc->desc_cmd.opts1 &= ~cpu_to_le32(DESC_OWN | RSVD_MASK);
> +}
> +
> +static int rtase_alloc_rx_skb(const struct rtase_ring *ring,
> +			      struct sk_buff **p_sk_buff, union rx_desc *desc,
> +			      dma_addr_t *rx_phy_addr, u8 in_intr)
> +{
> +	struct rtase_int_vector *ivec = ring->ivec;
> +	const struct rtase_private *tp = ivec->tp;
> +	struct sk_buff *skb = NULL;
> +	struct page *page;
> +	dma_addr_t mapping;
> +	void *buf_addr;
> +	int ret = 0;
> +
> +	page = page_pool_dev_alloc_pages(tp->page_pool);
> +	if (!page) {
> +		netdev_err(tp->dev, "failed to alloc page\n");
> +		goto err_out;
> +	}
> +
> +	buf_addr = page_address(page);
> +	mapping = page_pool_get_dma_addr(page);
> +
> +	skb = build_skb(buf_addr, PAGE_SIZE);
> +	if (!skb) {
> +		page_pool_put_full_page(tp->page_pool, page, true);
> +		netdev_err(tp->dev, "failed to build skb\n");
> +		goto err_out;
> +	}
> +
> +	*p_sk_buff = skb;
> +	*rx_phy_addr = mapping;
> +	rtase_map_to_asic(desc, mapping, tp->rx_buf_sz);
> +
> +	return ret;
> +
> +err_out:
> +	if (skb)
> +		dev_kfree_skb(skb);
> +
> +	ret = -ENOMEM;
> +	rtase_make_unusable_by_asic(desc);
> +
> +	return ret;
> +}
> +
> +static u32 rtase_rx_ring_fill(struct rtase_ring *ring, u32 ring_start,
> +			      u32 ring_end, u8 in_intr)
> +{
> +	union rx_desc *desc_base = ring->desc;
> +	u32 cur;
> +
> +	for (cur = ring_start; ring_end - cur > 0; cur++) {
> +		u32 i = cur % NUM_DESC;
> +		union rx_desc *desc = desc_base + i;
> +		int ret;
> +
> +		if (ring->skbuff[i])
> +			continue;
> +
> +		ret = rtase_alloc_rx_skb(ring, &ring->skbuff[i], desc,
> +					 &ring->mis.data_phy_addr[i],
> +					 in_intr);
> +		if (ret)
> +			break;
> +	}
> +
> +	return cur - ring_start;
> +}
> +
> +static void rtase_mark_as_last_descriptor(union rx_desc *desc)
> +{
> +	desc->desc_cmd.opts1 |= cpu_to_le32(RING_END);
> +}
> +
> +static void rtase_rx_ring_clear(struct rtase_ring *ring)
> +{
> +	union rx_desc *desc;
> +	u32 i;
> +
> +	for (i = 0; i < NUM_DESC; i++) {
> +		desc = ring->desc + sizeof(union rx_desc) * i;
> +
> +		if (!ring->skbuff[i])
> +			continue;
> +
> +		dev_kfree_skb(ring->skbuff[i]);
> +
> +		ring->skbuff[i] = NULL;
> +
> +		rtase_make_unusable_by_asic(desc);
> +	}
> +}
> +
> +static int rtase_fragmented_frame(u32 status)
> +{
> +	return (status & (RX_FIRST_FRAG | RX_LAST_FRAG)) !=
> +		(RX_FIRST_FRAG | RX_LAST_FRAG);
> +}
> +
> +static void rtase_rx_csum(const struct rtase_private *tp, struct sk_buff *skb,
> +			  const union rx_desc *desc)
> +{
> +	u32 opts2 = le32_to_cpu(desc->desc_status.opts2);
> +
> +	/* rx csum offload */
> +	if (((opts2 & RX_V4F) && !(opts2 & RX_IPF)) || (opts2 & RX_V6F)) {
> +		if (((opts2 & RX_TCPT) && !(opts2 & RX_TCPF)) ||
> +		    ((opts2 & RX_UDPT) && !(opts2 & RX_UDPF))) {
> +			skb->ip_summed = CHECKSUM_UNNECESSARY;
> +		} else {
> +			skb->ip_summed = CHECKSUM_NONE;
> +		}
> +	} else {
> +		skb->ip_summed = CHECKSUM_NONE;
> +	}
> +}
> +
> +static void rtase_rx_vlan_skb(union rx_desc *desc, struct sk_buff *skb)
> +{
> +	u32 opts2 = le32_to_cpu(desc->desc_status.opts2);
> +
> +	if (!(opts2 & RX_VLAN_TAG))
> +		return;
> +
> +	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & VLAN_TAG_MASK));
> +}
> +
> +static void rtase_rx_skb(const struct rtase_ring *ring, struct sk_buff *skb)
> +{
> +	struct rtase_int_vector *ivec = ring->ivec;
> +
> +	napi_gro_receive(&ivec->napi, skb);
> +}
> +
> +static int rx_handler(struct rtase_ring *ring, int budget)
> +{
> +	const struct rtase_private *tp = ring->ivec->tp;
> +	u32 pkt_size, cur_rx, delta, entry, status;
> +	struct net_device *dev = tp->dev;
> +	union rx_desc *desc_base = ring->desc;
> +	struct sk_buff *skb;
> +	union rx_desc *desc;
> +	int workdone = 0;
> +
> +	if (!ring->desc)
> +		return workdone;
> +
> +	cur_rx = ring->cur_idx;
> +	entry = cur_rx % NUM_DESC;
> +	desc = &desc_base[entry];
> +
> +	do {
> +		/* make sure discriptor has been updated */
> +		rmb();
> +		status = le32_to_cpu(desc->desc_status.opts1);
> +
> +		if (status & DESC_OWN)
> +			break;
> +
> +		if (unlikely(status & RX_RES)) {
> +			if (net_ratelimit())
> +				netdev_warn(dev, "Rx ERROR. status = %08x\n",
> +					    status);
> +
> +			dev->stats.rx_errors++;
> +
> +			if (status & (RX_RWT | RX_RUNT))
> +				dev->stats.rx_length_errors++;
> +
> +			if (status & RX_CRC)
> +				dev->stats.rx_crc_errors++;
> +
> +			if (dev->features & NETIF_F_RXALL)
> +				goto process_pkt;
> +
> +			rtase_mark_to_asic(desc, tp->rx_buf_sz);
> +			goto skip_process_pkt;
> +		}
> +
> +process_pkt:
> +		pkt_size = status & RX_PKT_SIZE_MASK;
> +		if (likely(!(dev->features & NETIF_F_RXFCS)))
> +			pkt_size -= ETH_FCS_LEN;
> +
> +		/* the driver does not support incoming fragmented
> +		 * frames. they are seen as a symptom of over-mtu
> +		 * sized frames
> +		 */
> +		if (unlikely(rtase_fragmented_frame(status))) {
> +			dev->stats.rx_dropped++;
> +			dev->stats.rx_length_errors++;
> +			rtase_mark_to_asic(desc, tp->rx_buf_sz);
> +			continue;
> +		}
> +
> +		skb = ring->skbuff[entry];
> +		dma_sync_single_for_cpu(&tp->pdev->dev,
> +					ring->mis.data_phy_addr[entry],
> +					tp->rx_buf_sz, DMA_FROM_DEVICE);
> +
> +		ring->skbuff[entry] = NULL;
> +
> +		if (dev->features & NETIF_F_RXCSUM)
> +			rtase_rx_csum(tp, skb, desc);
> +
> +		skb->dev = dev;
> +		skb_put(skb, pkt_size);
> +		skb_mark_for_recycle(skb);
> +		skb->protocol = eth_type_trans(skb, dev);
> +
> +		if (skb->pkt_type == PACKET_MULTICAST)
> +			dev->stats.multicast++;
> +
> +		rtase_rx_vlan_skb(desc, skb);
> +		rtase_rx_skb(ring, skb);
> +
> +		dev->stats.rx_bytes += pkt_size;
> +		dev->stats.rx_packets++;
> +
> +skip_process_pkt:
> +		workdone++;
> +		cur_rx++;
> +		entry = cur_rx % NUM_DESC;
> +		desc = ring->desc + sizeof(union rx_desc) * entry;
> +		prefetch(desc);
> +	} while (workdone != budget);
> +
> +	ring->cur_idx = cur_rx;
> +	delta = rtase_rx_ring_fill(ring, ring->dirty_idx, ring->cur_idx, 1);
> +
> +	if (!delta && workdone)
> +		netdev_info(dev, "no Rx buffer allocated\n");
> +
> +	ring->dirty_idx += delta;
> +
> +	if ((ring->dirty_idx + NUM_DESC) == ring->cur_idx)
> +		netdev_emerg(dev, "Rx buffers exhausted\n");
> +
> +	return workdone;
> +}
> +
> +static void rtase_rx_desc_init(struct rtase_private *tp, u16 idx)
> +{
> +	struct rtase_ring *ring = &tp->rx_ring[idx];
> +	u16 i;
> +
> +	memset(ring->desc, 0x0, RTASE_RX_RING_DESC_SIZE);
> +	memset(ring->skbuff, 0x0, sizeof(ring->skbuff));
> +	ring->cur_idx = 0;
> +	ring->dirty_idx = 0;
> +	ring->index = idx;
> +
> +	for (i = 0; i < NUM_DESC; i++)
> +		ring->mis.data_phy_addr[i] = 0;
> +
> +	ring->ring_handler = rx_handler;
> +	ring->ivec = &tp->int_vector[idx];
> +	list_add_tail(&ring->ring_entry, &tp->int_vector[idx].ring_list);
> +}
> +
> +static void rtase_rx_clear(struct rtase_private *tp)
> +{
> +	u32 i;
> +
> +	for (i = 0; i < tp->func_rx_queue_num; i++)
> +		rtase_rx_ring_clear(&tp->rx_ring[i]);
> +
> +	page_pool_destroy(tp->page_pool);
> +	tp->page_pool = NULL;
> +}
> +
> +static int rtase_init_ring(const struct net_device *dev)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +	struct page_pool *page_pool;
> +	struct page_pool_params pp_params = {
> +		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
> +		.order = 0,
> +		.pool_size = NUM_DESC * tp->func_rx_queue_num,
> +		.nid = dev_to_node(&tp->pdev->dev),
> +		.dev = &tp->pdev->dev,
> +		.dma_dir = DMA_FROM_DEVICE,
> +		.max_len = PAGE_SIZE,
> +		.offset = 0,
> +	};
> +	u32 num;
> +	u16 i;
> +
> +	page_pool = page_pool_create(&pp_params);
> +	if (IS_ERR(page_pool)) {
> +		netdev_err(tp->dev, "failed to create page pool\n");
> +		return -ENOMEM;
> +	}
> +
> +	tp->page_pool = page_pool;
> +
> +	for (i = 0; i < tp->func_tx_queue_num; i++)
> +		rtase_tx_desc_init(tp, i);
> +
> +	for (i = 0; i < tp->func_rx_queue_num; i++) {
> +		rtase_rx_desc_init(tp, i);
> +		num = rtase_rx_ring_fill(&tp->rx_ring[i], 0, NUM_DESC, 0);
> +		if (num != NUM_DESC)
> +			goto err_out;
> +
> +		rtase_mark_as_last_descriptor(tp->rx_ring[i].desc +
> +					      sizeof(union rx_desc) *
> +					      (NUM_DESC - 1));
> +	}
> +
> +	return 0;
> +
> +err_out:
> +	rtase_rx_clear(tp);
> +	return -ENOMEM;
> +}
> +
> +static void rtase_interrupt_mitigation(const struct rtase_private *tp)
> +{
> +	u32 i;
> +
> +	/* tx interrupt mitigation */
> +	for (i = 0; i < tp->func_tx_queue_num; i++)
> +		rtase_w16(tp, RTASE_INT_MITI_TX + i * 2, tp->tx_int_mit);
> +
> +	/* rx interrupt mitigation */
> +	for (i = 0; i < tp->func_rx_queue_num; i++)
> +		rtase_w16(tp, RTASE_INT_MITI_RX + i * 2, tp->rx_int_mit);
> +}
> +
> +static void rtase_tally_counter_addr_fill(const struct rtase_private *tp)
> +{
> +	rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(tp->tally_paddr));
> +	rtase_w32(tp, RTASE_DTCCR0, lower_32_bits(tp->tally_paddr));
> +}
> +
> +static void rtase_tally_counter_clear(const struct rtase_private *tp)
> +{
> +	u32 cmd = lower_32_bits(tp->tally_paddr);
> +
> +	rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(tp->tally_paddr));
> +	rtase_w32(tp, RTASE_DTCCR0, cmd | COUNTER_RESET);
> +}
> +
> +static void rtase_desc_addr_fill(const struct rtase_private *tp)
> +{
> +	const struct rtase_ring *ring;
> +	u16 i, cmd, val;
> +	int err;
> +
> +	for (i = 0; i < tp->func_tx_queue_num; i++) {
> +		ring = &tp->tx_ring[i];
> +
> +		rtase_w32(tp, RTASE_TX_DESC_ADDR0,
> +			  lower_32_bits(ring->phy_addr));
> +		rtase_w32(tp, RTASE_TX_DESC_ADDR4,
> +			  upper_32_bits(ring->phy_addr));
> +
> +		cmd = i | TX_DESC_CMD_WE | TX_DESC_CMD_CS;
> +		rtase_w16(tp, RTASE_TX_DESC_COMMAND, cmd);
> +
> +		err = read_poll_timeout(rtase_r16, val, !(val & TX_DESC_CMD_CS),
> +					10, 1000, false, tp, RTASE_TX_DESC_COMMAND);
> +
> +		if (err == -ETIMEDOUT)
> +			netdev_err(tp->dev, "error occurred in fill tx descriptor\n");
> +	}
> +
> +	for (i = 0; i < tp->func_rx_queue_num; i++) {
> +		ring = &tp->rx_ring[i];
> +
> +		if (i == 0) {
> +			rtase_w32(tp, RTASE_Q0_RX_DESC_ADDR0,
> +				  lower_32_bits(ring->phy_addr));
> +			rtase_w32(tp, RTASE_Q0_RX_DESC_ADDR4,
> +				  upper_32_bits(ring->phy_addr));
> +		} else {
> +			rtase_w32(tp, (RTASE_Q1_RX_DESC_ADDR0 + ((i - 1) * 8)),
> +				  lower_32_bits(ring->phy_addr));
> +			rtase_w32(tp, (RTASE_Q1_RX_DESC_ADDR4 + ((i - 1) * 8)),
> +				  upper_32_bits(ring->phy_addr));
> +		}
> +	}
> +}
> +
> +static void rtase_hw_set_features(const struct net_device *dev,
> +				  netdev_features_t features)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +	u16 rx_config, val;
> +
> +	rx_config = rtase_r16(tp, RTASE_RX_CONFIG_0);
> +	if (features & NETIF_F_RXALL)
> +		rx_config |= (ACCEPT_ERR | ACCEPT_RUNT);
> +	else
> +		rx_config &= ~(ACCEPT_ERR | ACCEPT_RUNT);
> +
> +	rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config);
> +
> +	val = rtase_r16(tp, RTASE_CPLUS_CMD);
> +	if (features & NETIF_F_RXCSUM)
> +		rtase_w16(tp, RTASE_CPLUS_CMD, val | RX_CHKSUM);
> +	else
> +		rtase_w16(tp, RTASE_CPLUS_CMD, val & ~RX_CHKSUM);
> +
> +	rx_config = rtase_r16(tp, RTASE_RX_CONFIG_1);
> +	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
> +		rx_config |= (INNER_VLAN_DETAG_EN | OUTER_VLAN_DETAG_EN);
> +	else
> +		rx_config &= ~(INNER_VLAN_DETAG_EN | OUTER_VLAN_DETAG_EN);
> +
> +	rtase_w16(tp, RTASE_RX_CONFIG_1, rx_config);
> +}
> +
> +static void rtase_set_mar(const struct rtase_private *tp)
> +{
> +	rtase_w32(tp, RTASE_MAR0, tp->mc_filter[0]);
> +	rtase_w32(tp, RTASE_MAR1, tp->mc_filter[1]);
> +}
> +
> +static void rtase_hw_set_rx_packet_filter(struct net_device *dev)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +	u32 mc_filter[2] = { 0xFFFFFFFF, 0xFFFFFFFF };
> +	u16 rx_mode;
> +
> +	rx_mode = rtase_r16(tp, RTASE_RX_CONFIG_0) & ~ACCEPT_MASK;
> +	rx_mode |= ACCEPT_BROADCAST | ACCEPT_MYPHYS;
> +
> +	if (dev->flags & IFF_PROMISC) {
> +		rx_mode |= ACCEPT_MULTICAST | ACCEPT_ALLPHYS;
> +	} else if ((netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) ||
> +		   (dev->flags & IFF_ALLMULTI)) {
> +		/* too many to filter perfectly -- accept all multicasts */
> +		rx_mode |= ACCEPT_MULTICAST;
> +	} else {
> +		struct netdev_hw_addr *hw_addr;
> +
> +		mc_filter[0] = 0;
> +		mc_filter[1] = 0;
> +
> +		netdev_for_each_mc_addr(hw_addr, dev) {
> +			u32 bit_nr = eth_hw_addr_crc(hw_addr);
> +			u32 idx = u32_get_bits(bit_nr, BIT(31));
> +			u32 bit = u32_get_bits(bit_nr, MULTICAST_FILTER_MASK);
> +
> +			mc_filter[idx] |= BIT(bit);
> +			rx_mode |= ACCEPT_MULTICAST;
> +		}
> +	}
> +
> +	if (dev->features & NETIF_F_RXALL)
> +		rx_mode |= ACCEPT_ERR | ACCEPT_RUNT;
> +
> +	tp->mc_filter[0] = swab32(mc_filter[1]);
> +	tp->mc_filter[1] = swab32(mc_filter[0]);
> +
> +	rtase_set_mar(tp);
> +	rtase_w16(tp, RTASE_RX_CONFIG_0, rx_mode);
> +}
> +

This function is define in rt_main already. You seem to duplicate a lot
of code. Why?

> +static void rtase_irq_dis_and_clear(const struct rtase_private *tp)
> +{
> +	const struct rtase_int_vector *ivec = &tp->int_vector[0];
> +	u32 val1;
> +	u16 val2;
> +	u8 i;
> +
> +	rtase_w32(tp, ivec->imr_addr, 0);
> +	val1 = rtase_r32(tp, ivec->isr_addr);
> +	rtase_w32(tp, ivec->isr_addr, val1);
> +
> +	for (i = 1; i < tp->int_nums; i++) {
> +		ivec = &tp->int_vector[i];
> +		rtase_w16(tp, ivec->imr_addr, 0);
> +		val2 = rtase_r16(tp, ivec->isr_addr);
> +		rtase_w16(tp, ivec->isr_addr, val2);
> +	}
> +}
> +
> +static void rtase_poll_timeout(const struct rtase_private *tp, u32 cond,
> +			       u32 sleep_us, u64 timeout_us, u16 reg)
> +{
> +	int err;
> +	u8 val;
> +
> +	err = read_poll_timeout(rtase_r8, val, val & cond, sleep_us, timeout_us,
> +				false, tp, reg);
> +
> +	if (err == -ETIMEDOUT)
> +		netdev_err(tp->dev, "poll reg 0x00%x timeout\n", reg);
> +}
> +
> +static void rtase_nic_reset(const struct net_device *dev)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +	u16 rx_config;
> +	u8 val;
> +
> +	rx_config = rtase_r16(tp, RTASE_RX_CONFIG_0);
> +	rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config & ~ACCEPT_MASK);
> +
> +	val = rtase_r8(tp, RTASE_MISC);
> +	rtase_w8(tp, RTASE_MISC, val | RX_DV_GATE_EN);
> +
> +	val = rtase_r8(tp, RTASE_CHIP_CMD);
> +	rtase_w8(tp, RTASE_CHIP_CMD, val | STOP_REQ);
> +	mdelay(2);
> +
> +	rtase_poll_timeout(tp, STOP_REQ_DONE, 100, 150000, RTASE_CHIP_CMD);
> +
> +	rtase_poll_timeout(tp, TX_FIFO_EMPTY, 100, 100000, RTASE_FIFOR);
> +
> +	rtase_poll_timeout(tp, RX_FIFO_EMPTY, 100, 100000, RTASE_FIFOR);
> +
> +	val = rtase_r8(tp, RTASE_CHIP_CMD);
> +	rtase_w8(tp, RTASE_CHIP_CMD, val & ~(TE | RE));
> +	val = rtase_r8(tp, RTASE_CHIP_CMD);
> +	rtase_w8(tp, RTASE_CHIP_CMD, val & ~STOP_REQ);
> +
> +	rtase_w16(tp, RTASE_RX_CONFIG_0, rx_config);
> +}
> +
> +static void rtase_hw_reset(const struct net_device *dev)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +
> +	rtase_irq_dis_and_clear(tp);
> +
> +	rtase_nic_reset(dev);
> +}
> +
> +static void rtase_set_rx_queue(const struct rtase_private *tp)
> +{
> +	u16 reg_data;
> +
> +	reg_data = rtase_r16(tp, RTASE_FCR);
> +	switch (tp->func_rx_queue_num) {
> +	case 1:
> +		u16p_replace_bits(&reg_data, 0x1, FCR_RXQ_MASK);
> +		break;
> +	case 2:
> +		u16p_replace_bits(&reg_data, 0x2, FCR_RXQ_MASK);
> +		break;
> +	case 4:
> +		u16p_replace_bits(&reg_data, 0x3, FCR_RXQ_MASK);
> +		break;
> +	}
> +	rtase_w16(tp, RTASE_FCR, reg_data);
> +}
> +
> +static void rtase_set_tx_queue(const struct rtase_private *tp)
> +{
> +	u16 reg_data;
> +
> +	reg_data = rtase_r16(tp, RTASE_TX_CONFIG_1);
> +	switch (tp->tx_queue_ctrl) {
> +	case 1:
> +		u16p_replace_bits(&reg_data, 0x0, TC_MODE_MASK);
> +		break;
> +	case 2:
> +		u16p_replace_bits(&reg_data, 0x1, TC_MODE_MASK);
> +		break;
> +	case 3:
> +	case 4:
> +		u16p_replace_bits(&reg_data, 0x2, TC_MODE_MASK);
> +		break;
> +	default:
> +		u16p_replace_bits(&reg_data, 0x3, TC_MODE_MASK);
> +		break;
> +	}
> +	rtase_w16(tp, RTASE_TX_CONFIG_1, reg_data);
> +}
> +
> +static void rtase_hw_config(struct net_device *dev)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +	u32 reg_data32;
> +	u16 reg_data16;
> +
> +	rtase_hw_reset(dev);
> +
> +	/* Set Rx DMA burst */
> +	reg_data16 = rtase_r16(tp, RTASE_RX_CONFIG_0);
> +	reg_data16 &= ~(RX_SINGLE_TAG | RX_SINGLE_FETCH);
> +	u16p_replace_bits(&reg_data16, RX_DMA_BURST_256, RX_MX_DMA_MASK);
> +	rtase_w16(tp, RTASE_RX_CONFIG_0, reg_data16);
> +
> +	/* New Rx Descritpor */
> +	reg_data16 = rtase_r16(tp, RTASE_RX_CONFIG_1);
> +	reg_data16 |= RX_NEW_DESC_FORMAT_EN | PCIE_NEW_FLOW;
> +	u16p_replace_bits(&reg_data16, 0xF, RX_MAX_FETCH_DESC_MASK);
> +	rtase_w16(tp, RTASE_RX_CONFIG_1, reg_data16);
> +
> +	rtase_set_rx_queue(tp);
> +
> +	/* interrupt mitigation */
> +	rtase_interrupt_mitigation(tp);
> +
> +	/* set tx DMA burst size and interframe gap time */
> +	reg_data32 = rtase_r32(tp, RTASE_TX_CONFIG_0);
> +	u32p_replace_bits(&reg_data32, TX_DMA_BURST_UNLIMITED, TX_DMA_MASK);
> +	u32p_replace_bits(&reg_data32, INTERFRAMEGAP, TX_INTER_FRAME_GAP_MASK);
> +	rtase_w32(tp, RTASE_TX_CONFIG_0, reg_data32);
> +
> +	/* new tx Descriptor */
> +	reg_data16 = rtase_r16(tp, RTASE_TFUN_CTRL);
> +	rtase_w16(tp, RTASE_TFUN_CTRL, reg_data16 | TX_NEW_DESC_FORMAT_EN);
> +
> +	/* tx Fetch Desc Number */
> +	rtase_w8(tp, RTASE_TDFNR, 0x10);
> +
> +	/* tag num select */
> +	reg_data16 = rtase_r16(tp, RTASE_MTPS);
> +	u16p_replace_bits(&reg_data16, 0x4, TAG_NUM_SEL_MASK);
> +	rtase_w16(tp, RTASE_MTPS, reg_data16);
> +
> +	rtase_set_tx_queue(tp);
> +
> +	/* TOK condition */
> +	rtase_w16(tp, RTASE_TOKSEL, 0x5555);
> +
> +	rtase_tally_counter_addr_fill(tp);
> +	rtase_desc_addr_fill(tp);
> +	rtase_hw_set_features(dev, dev->features);
> +
> +	/* enable flow control */
> +	reg_data16 = rtase_r16(tp, RTASE_CPLUS_CMD);
> +	reg_data16 |= (FORCE_TXFLOW_EN | FORCE_RXFLOW_EN);
> +	rtase_w16(tp, RTASE_CPLUS_CMD, reg_data16);
> +	/* set Near FIFO Threshold - rx missed issue. */
> +	rtase_w16(tp, RTASE_RFIFONFULL, 0x190);
> +
> +	rtase_w16(tp, RTASE_RMS, tp->rx_buf_sz);
> +
> +	/* set Rx packet filter */
> +	rtase_hw_set_rx_packet_filter(dev);
> +}
> +
> +static void rtase_nic_enable(const struct net_device *dev)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +	u16 rcr = rtase_r16(tp, RTASE_RX_CONFIG_1);
> +	u8 val;
> +
> +	/* PCIe PLA reload */
> +	rtase_w16(tp, RTASE_RX_CONFIG_1, rcr & ~PCIE_RELOAD_En);
> +	rtase_w16(tp, RTASE_RX_CONFIG_1, rcr | PCIE_RELOAD_En);
> +
> +	/* set PCIe TE & RE */
> +	val = rtase_r8(tp, RTASE_CHIP_CMD);
> +	rtase_w8(tp, RTASE_CHIP_CMD, val | TE | RE);
> +
> +	/* clear rxdv_gated_en */
> +	val = rtase_r8(tp, RTASE_MISC);
> +	rtase_w8(tp, RTASE_MISC, val & ~RX_DV_GATE_EN);
> +}
> +
> +static void rtase_enable_hw_interrupt(const struct rtase_private *tp)
> +{
> +	const struct rtase_int_vector *ivec = &tp->int_vector[0];
> +	u32 i;
> +
> +	rtase_w32(tp, ivec->imr_addr, ivec->imr);
> +
> +	for (i = 1; i < tp->int_nums; i++) {
> +		ivec = &tp->int_vector[i];
> +		rtase_w16(tp, ivec->imr_addr, ivec->imr);
> +	}
> +}
> +
> +static void rtase_hw_start(const struct net_device *dev)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +
> +	rtase_nic_enable(dev);
> +	rtase_enable_hw_interrupt(tp);
> +}
> +
> +/*  the interrupt handler does RXQ0 and TXQ0, TXQ4~7 interrutp status
> + */
> +static irqreturn_t rtase_interrupt(int irq, void *dev_instance)
> +{
> +	const struct rtase_private *tp;
> +	struct rtase_int_vector *ivec;
> +	u32 status;
> +
> +	ivec = dev_instance;
> +	tp = ivec->tp;
> +	status = rtase_r32(tp, ivec->isr_addr);
> +
> +	rtase_w32(tp, ivec->imr_addr, 0x0);
> +	rtase_w32(tp, ivec->isr_addr, status & ~FOVW);
> +
> +	if (napi_schedule_prep(&ivec->napi))
> +		__napi_schedule(&ivec->napi);
> +
> +	return IRQ_HANDLED;
> +}
> +
> +/*  the interrupt handler does RXQ1&TXQ1 or RXQ2&TXQ2 or RXQ3&TXQ3 interrupt
> + *  status according to interrupt vector
> + */
> +static irqreturn_t rtase_q_interrupt(int irq, void *dev_instance)
> +{
> +	const struct rtase_private *tp;
> +	struct rtase_int_vector *ivec;
> +	u16 status;
> +
> +	ivec = dev_instance;
> +	tp = ivec->tp;
> +	status = rtase_r16(tp, ivec->isr_addr);
> +
> +	rtase_w16(tp, ivec->imr_addr, 0x0);
> +	rtase_w16(tp, ivec->isr_addr, status);
> +
> +	if (napi_schedule_prep(&ivec->napi))
> +		__napi_schedule(&ivec->napi);
> +
> +	return IRQ_HANDLED;
> +}
> +
> +static int rtase_poll(struct napi_struct *napi, int budget)
> +{
> +	const struct rtase_int_vector *ivec;
> +	const struct rtase_private *tp;
> +	struct rtase_ring *ring;
> +	int total_workdone = 0;
> +
> +	ivec = container_of(napi, struct rtase_int_vector, napi);
> +	tp = ivec->tp;
> +
> +	list_for_each_entry(ring, &ivec->ring_list, ring_entry) {
> +		total_workdone += ring->ring_handler(ring, budget);
> +	}
> +
> +	if (total_workdone >= budget)
> +		return budget;
> +
> +	if (napi_complete_done(napi, total_workdone)) {
> +		if (!ivec->index)
> +			rtase_w32(tp, ivec->imr_addr, ivec->imr);
> +		else
> +			rtase_w16(tp, ivec->imr_addr, ivec->imr);
> +	}
> +
> +	return total_workdone;
> +}
> +
> +static int rtase_open(struct net_device *dev)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +	struct rtase_int_vector *ivec = &tp->int_vector[0];
> +	const struct pci_dev *pdev = tp->pdev;
> +	int ret;
> +	u16 i;
> +
> +	rtase_set_rxbufsize(tp);
> +
> +	ret = rtase_alloc_desc(tp);
> +	if (ret)
> +		goto err_free_all_allocated_mem;
> +
> +	ret = rtase_init_ring(dev);
> +	if (ret)
> +		goto err_free_all_allocated_mem;
> +
> +	INIT_DELAYED_WORK(&tp->task, NULL);
> +

Why not just init once in probe()?

> +	rtase_hw_config(dev);
> +
> +	if (tp->sw_flag & SWF_MSIX_ENABLED) {
> +		ret = request_irq(ivec->irq, rtase_interrupt, 0,
> +				  dev->name, ivec);
> +
> +		/* request other interrupts to handle multiqueue */
> +		for (i = 1; i < tp->int_nums; i++) {
> +			if (ret)
> +				continue;
> +
> +			ivec = &tp->int_vector[i];
> +			if (ivec->status != 1)
> +				continue;
> +
> +			snprintf(ivec->name, sizeof(ivec->name), "%s_int%i", tp->dev->name, i);
> +			ret = request_irq(ivec->irq, rtase_q_interrupt, 0,
> +					  ivec->name, ivec);
> +		}
> +	} else if (tp->sw_flag & SWF_MSI_ENABLED) {
> +		ret = request_irq(pdev->irq, rtase_interrupt, 0, dev->name,
> +				  ivec);
> +	} else {
> +		ret = request_irq(pdev->irq, rtase_interrupt, IRQF_SHARED,
> +				  dev->name, ivec);
> +	}
> +
> +	if (ret != 0) {
> +		netdev_err(dev, "can't request MSIX interrupt. Error: %d\n", ret);
> +		goto err_free_all_allocated_mem;
> +	}
> +
> +	rtase_hw_start(dev);
> +
> +	netif_carrier_on(dev);
> +	netif_wake_queue(dev);
> +
> +	goto out;
> +
> +err_free_all_allocated_mem:
> +	rtase_free_desc(tp);
> +
> +out:
> +	return ret;
> +}
> +
> +static void rtase_down(struct net_device *dev)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +	u32 i;
> +
> +	netif_stop_queue(dev);
> +
> +	/* give a racing hard_start_xmit a few cycles to complete */
> +	synchronize_rcu();
> +
> +	netif_carrier_off(dev);
> +
> +	rtase_hw_reset(dev);
> +
> +	for (i = 0; i < tp->int_nums; i++)
> +		synchronize_irq(tp->int_vector[i].irq);
> +
> +	rtase_tx_clear(tp);
> +
> +	rtase_rx_clear(tp);
> +}
> +
> +static int rtase_close(struct net_device *dev)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +	const struct pci_dev *pdev = tp->pdev;
> +	u32 i;
> +
> +	rtase_down(dev);
> +
> +	if (tp->sw_flag & SWF_MSIX_ENABLED) {
> +		for (i = 0; i < tp->int_nums; i++)
> +			free_irq(tp->int_vector[i].irq, &tp->int_vector[i]);
> +
> +	} else {
> +		free_irq(pdev->irq, &tp->int_vector[0]);
> +	}
> +
> +	rtase_free_desc(tp);
> +
> +	return 0;
> +}
> +
> +static u32 rtase_tx_vlan_tag(const struct rtase_private *tp,
> +			     const struct sk_buff *skb)
> +{
> +	return (skb_vlan_tag_present(skb)) ?
> +		(TX_VLAN_TAG | swab16(skb_vlan_tag_get(skb))) : 0x00;
> +}
> +
> +static u32 rtase_tx_csum(struct sk_buff *skb, const struct net_device *dev)
> +{
> +	u8 ip_protocol;
> +	u32 csum_cmd;
> +
> +	switch (vlan_get_protocol(skb)) {
> +	case htons(ETH_P_IP):
> +		csum_cmd = TX_IPCS_C;
> +		ip_protocol = ip_hdr(skb)->protocol;
> +		break;
> +
> +	case htons(ETH_P_IPV6):
> +		csum_cmd = TX_IPV6F_C;
> +		ip_protocol = ipv6_hdr(skb)->nexthdr;
> +		break;
> +
> +	default:
> +		ip_protocol = IPPROTO_RAW;
> +		break;
> +	}
> +
> +	if (ip_protocol == IPPROTO_TCP)
> +		csum_cmd |= TX_TCPCS_C;
> +	else if (ip_protocol == IPPROTO_UDP)
> +		csum_cmd |= TX_UDPCS_C;
> +	else
> +		WARN_ON_ONCE(1);
> +
> +	csum_cmd |= u32_encode_bits(skb_transport_offset(skb), TCPHO_MASK);
> +
> +	return csum_cmd;
> +}
> +
> +static int rtase_xmit_frags(struct rtase_ring *ring, struct sk_buff *skb,
> +			    u32 opts1, u32 opts2)
> +{
> +	const struct skb_shared_info *info = skb_shinfo(skb);
> +	const struct rtase_private *tp = ring->ivec->tp;
> +	const u8 nr_frags = info->nr_frags;
> +	struct tx_desc *txd = NULL;
> +	u32 cur_frag, entry;
> +	u64 pkt_len_cnt = 0;
> +
> +	entry = ring->cur_idx;
> +	for (cur_frag = 0; cur_frag < nr_frags; cur_frag++) {
> +		const skb_frag_t *frag = &info->frags[cur_frag];
> +		dma_addr_t mapping;
> +		u32 status, len;
> +		void *addr;
> +
> +		entry = (entry + 1) % NUM_DESC;
> +
> +		txd = ring->desc + sizeof(struct tx_desc) * entry;
> +		len = skb_frag_size(frag);
> +		addr = skb_frag_address(frag);
> +		mapping = dma_map_single(&tp->pdev->dev, addr, len,
> +					 DMA_TO_DEVICE);
> +
> +		if (unlikely(dma_mapping_error(&tp->pdev->dev, mapping))) {
> +			if (unlikely(net_ratelimit()))
> +				netdev_err(tp->dev,
> +					   "Failed to map TX fragments DMA!\n");
> +
> +			goto err_out;
> +		}
> +
> +		if (((entry + 1) % NUM_DESC) == 0)
> +			status = (opts1 | len | RING_END);
> +		else
> +			status = opts1 | len;
> +
> +		if (cur_frag == (nr_frags - 1)) {
> +			ring->skbuff[entry] = skb;
> +			status |= TX_LAST_FRAG;
> +		}
> +
> +		ring->mis.len[entry] = len;
> +		txd->addr = cpu_to_le64(mapping);
> +		txd->opts2 = cpu_to_le32(opts2);
> +
> +		/* make sure the operating fields have been updated */
> +		wmb();
> +		txd->opts1 = cpu_to_le32(status);
> +		pkt_len_cnt += len;
> +	}
> +
> +	return cur_frag;
> +
> +err_out:
> +	rtase_tx_clear_range(ring, ring->cur_idx + 1, cur_frag);
> +	return -EIO;
> +}
> +
> +static netdev_tx_t rtase_start_xmit(struct sk_buff *skb,
> +				    struct net_device *dev)
> +{
> +	struct skb_shared_info *shinfo = skb_shinfo(skb);
> +	struct rtase_private *tp = netdev_priv(dev);
> +	u32 q_idx, entry, len, opts1, opts2;
> +	u32 mss = shinfo->gso_size;
> +	struct rtase_ring *ring;
> +	struct tx_desc *txd;
> +	dma_addr_t mapping;
> +	bool stop_queue;
> +	int frags;
> +
> +	/* multiqueues */
> +	q_idx = skb_get_queue_mapping(skb);
> +	ring = &tp->tx_ring[q_idx];
> +
> +	if (unlikely(!rtase_tx_avail(ring))) {
> +		if (net_ratelimit())
> +			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
> +		goto err_stop;
> +	}
> +
> +	entry = ring->cur_idx % NUM_DESC;
> +	txd = ring->desc + sizeof(struct tx_desc) * entry;
> +
> +	opts1 = DESC_OWN;
> +	opts2 = rtase_tx_vlan_tag(tp, skb);
> +
> +	/* tcp segmentation offload (or tcp large send) */
> +	if (mss) {
> +		if (shinfo->gso_type & SKB_GSO_TCPV4) {
> +			opts1 |= GIANT_SEND_V4;
> +		} else if (shinfo->gso_type & SKB_GSO_TCPV6) {
> +			if (skb_cow_head(skb, 0))
> +				goto err_dma_0;
> +
> +			tcp_v6_gso_csum_prep(skb);
> +			opts1 |= GIANT_SEND_V6;
> +		} else {
> +			WARN_ON_ONCE(1);
> +		}
> +
> +		opts1 |= u32_encode_bits(skb_transport_offset(skb), TCPHO_MASK);
> +		opts2 |= u32_encode_bits(mss, MSS_MASK);
> +	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
> +		opts2 |= rtase_tx_csum(skb, dev);
> +	}
> +
> +	frags = rtase_xmit_frags(ring, skb, opts1, opts2);
> +	if (unlikely(frags < 0))
> +		goto err_dma_0;
> +
> +	if (frags) {
> +		len = skb_headlen(skb);
> +		opts1 |= TX_FIRST_FRAG;
> +	} else {
> +		len = skb->len;
> +		ring->skbuff[entry] = skb;
> +		opts1 |= TX_FIRST_FRAG | TX_LAST_FRAG;
> +	}
> +
> +	if (((entry + 1) % NUM_DESC) == 0)
> +		opts1 |= (len | RING_END);
> +	else
> +		opts1 |= len;
> +
> +	mapping = dma_map_single(&tp->pdev->dev, skb->data, len,
> +				 DMA_TO_DEVICE);
> +
> +	if (unlikely(dma_mapping_error(&tp->pdev->dev, mapping))) {
> +		if (unlikely(net_ratelimit()))
> +			netdev_err(dev, "Failed to map TX DMA!\n");
> +
> +		goto err_dma_1;
> +	}
> +
> +	ring->mis.len[entry] = len;
> +	txd->addr = cpu_to_le64(mapping);
> +	txd->opts2 = cpu_to_le32(opts2);
> +	txd->opts1 = cpu_to_le32(opts1 & ~DESC_OWN);
> +
> +	/* make sure the operating fields have been updated */
> +	wmb();
> +
> +	txd->opts1 = cpu_to_le32(opts1);
> +
> +	skb_tx_timestamp(skb);
> +
> +	/* tx needs to see descriptor changes before updated cur_idx */
> +	smp_wmb();
> +
> +	WRITE_ONCE(ring->cur_idx, ring->cur_idx + frags + 1);
> +
> +	stop_queue = !rtase_tx_avail(ring);
> +	if (unlikely(stop_queue))
> +		netif_stop_subqueue(dev, q_idx);
> +
> +	/* set polling bit */
> +	rtase_w8(tp, RTASE_TPPOLL, BIT(ring->index));
> +
> +	if (unlikely(stop_queue)) {
> +		/* make sure cur_idx and dirty_idx have been updated */
> +		smp_rmb();
> +		if (rtase_tx_avail(ring))
> +			netif_start_subqueue(dev, q_idx);
> +	}
> +
> +	return NETDEV_TX_OK;
> +
> +err_dma_1:
> +	ring->skbuff[entry] = NULL;
> +	rtase_tx_clear_range(ring, ring->cur_idx + 1, frags);
> +
> +err_dma_0:
> +	dev->stats.tx_dropped++;
> +	dev_kfree_skb_any(skb);
> +	return NETDEV_TX_OK;
> +
> +err_stop:
> +	netif_stop_queue(dev);
> +	dev->stats.tx_dropped++;
> +	return NETDEV_TX_BUSY;
> +}
> +
> +static void rtase_set_rx_mode(struct net_device *dev)
> +{
> +	rtase_hw_set_rx_packet_filter(dev);
> +}
> +
> +static void rtase_enable_eem_write(const struct rtase_private *tp)
> +{
> +	u8 val;
> +
> +	val = rtase_r8(tp, RTASE_EEM);
> +	rtase_w8(tp, RTASE_EEM, val | EEM_UNLOCK);
> +}
> +
> +static void rtase_disable_eem_write(const struct rtase_private *tp)
> +{
> +	u8 val;
> +
> +	val = rtase_r8(tp, RTASE_EEM);
> +	rtase_w8(tp, RTASE_EEM, val & ~EEM_UNLOCK);
> +}
> +
> +static void rtase_rar_set(const struct rtase_private *tp, const u8 *addr)
> +{
> +	u32 rar_low, rar_high;
> +
> +	rar_low = (u32)addr[0] | ((u32)addr[1] << 8) |
> +		  ((u32)addr[2] << 16) | ((u32)addr[3] << 24);
> +
> +	rar_high = (u32)addr[4] | ((u32)addr[5] << 8);
> +
> +	rtase_enable_eem_write(tp);
> +	rtase_w32(tp, RTASE_MAC0, rar_low);
> +	rtase_w32(tp, RTASE_MAC4, rar_high);
> +	rtase_disable_eem_write(tp);
> +	rtase_w16(tp, RTASE_LBK_CTRL, LBK_ATLD | LBK_CLR);
> +}
> +
> +static int rtase_set_mac_address(struct net_device *dev, void *p)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +	int ret;
> +
> +	ret = eth_mac_addr(dev, p);
> +	if (ret)
> +		return ret;
> +
> +	rtase_rar_set(tp, dev->dev_addr);
> +
> +	return 0;
> +}
> +
> +static int rtase_change_mtu(struct net_device *dev, int new_mtu)
> +{
> +	dev->mtu = new_mtu;
> +
> +	netdev_update_features(dev);
> +
> +	return 0;
> +}
> +
> +static void rtase_wait_for_quiescence(const struct net_device *dev)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +	struct rtase_int_vector *ivec;
> +	u32 i;
> +
> +	for (i = 0; i < tp->int_nums; i++) {
> +		ivec = &tp->int_vector[i];
> +		synchronize_irq(ivec->irq);
> +		/* wait for any pending NAPI task to complete */
> +		napi_disable(&ivec->napi);
> +	}
> +
> +	rtase_irq_dis_and_clear(tp);
> +
> +	for (i = 0; i < tp->int_nums; i++) {
> +		ivec = &tp->int_vector[i];
> +		napi_enable(&ivec->napi);
> +	}
> +}
> +
> +static void rtase_sw_reset(struct net_device *dev)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +	int ret;
> +
> +	netif_stop_queue(dev);
> +	netif_carrier_off(dev);
> +	rtase_hw_reset(dev);
> +
> +	/* let's wait a bit while any (async) irq lands on */
> +	rtase_wait_for_quiescence(dev);
> +	rtase_tx_clear(tp);
> +	rtase_rx_clear(tp);
> +
> +	ret = rtase_init_ring(dev);
> +	if (ret) {
> +		netdev_err(dev, "unable to init ring\n");
> +		rtase_free_desc(tp);
> +		return;
> +	}
> +
> +	rtase_hw_config(dev);
> +	/* always link, so start to transmit & receive */
> +	rtase_hw_start(dev);
> +
> +	netif_carrier_on(dev);
> +	netif_wake_queue(dev);
> +}
> +
> +static void rtase_dump_tally_counter(const struct rtase_private *tp)
> +{
> +	dma_addr_t paddr = tp->tally_paddr;
> +	u32 cmd = lower_32_bits(paddr);
> +	u32 val;
> +	int err;
> +
> +	rtase_w32(tp, RTASE_DTCCR4, upper_32_bits(paddr));
> +	rtase_w32(tp, RTASE_DTCCR0, cmd);
> +	rtase_w32(tp, RTASE_DTCCR0, cmd | COUNTER_DUMP);
> +
> +	err = read_poll_timeout(rtase_r32, val, !(val & COUNTER_DUMP), 10, 250,
> +				false, tp, RTASE_DTCCR0);
> +
> +	if (err == -ETIMEDOUT)
> +		netdev_err(tp->dev, "error occurred in dump tally counter\n");
> +}
> +
> +static void rtase_dump_state(const struct net_device *dev)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +	const struct rtase_counters *counters;
> +	int max_reg_size = RTASE_PCI_REGS_SIZE;
> +	const struct rtase_ring *ring;
> +	u32 dword_rd;
> +	int n = 0;
> +
> +	ring = &tp->tx_ring[0];
> +	netdev_err(dev, "Tx descriptor info:\n");
> +	netdev_err(dev, "Tx curIdx = 0x%x\n", ring->cur_idx);
> +	netdev_err(dev, "Tx dirtyIdx = 0x%x\n", ring->dirty_idx);
> +	netdev_err(dev, "Tx phyAddr = 0x%llx\n", ring->phy_addr);
> +
> +	ring = &tp->rx_ring[0];
> +	netdev_err(dev, "Rx descriptor info:\n");
> +	netdev_err(dev, "Rx curIdx = 0x%x\n", ring->cur_idx);
> +	netdev_err(dev, "Rx dirtyIdx = 0x%x\n", ring->dirty_idx);
> +	netdev_err(dev, "Rx phyAddr = 0x%llx\n", ring->phy_addr);
> +
> +	netdev_err(dev, "Device Registers:\n");
> +	netdev_err(dev, "Chip Command = 0x%02x\n", rtase_r8(tp, RTASE_CHIP_CMD));
> +	netdev_err(dev, "IMR = %08x\n", rtase_r32(tp, RTASE_IMR0));
> +	netdev_err(dev, "ISR = %08x\n", rtase_r32(tp, RTASE_ISR0));
> +	netdev_err(dev, "Boot Ctrl Reg(0xE004) = %04x\n",
> +		   rtase_r16(tp, RTASE_BOOT_CTL));
> +	netdev_err(dev, "EPHY ISR(0xE014) = %04x\n",
> +		   rtase_r16(tp, RTASE_EPHY_ISR));
> +	netdev_err(dev, "EPHY IMR(0xE016) = %04x\n",
> +		   rtase_r16(tp, RTASE_EPHY_IMR));
> +	netdev_err(dev, "CLKSW SET REG(0xE018) = %04x\n",
> +		   rtase_r16(tp, RTASE_CLKSW_SET));
> +
> +	netdev_err(dev, "Dump PCI Registers:\n");
> +
> +	while (n < max_reg_size) {
> +		if ((n % RTASE_DWORD_MOD) == 0)
> +			netdev_err(tp->dev, "0x%03x:\n", n);
> +
> +		pci_read_config_dword(tp->pdev, n, &dword_rd);
> +		netdev_err(tp->dev, "%08x\n", dword_rd);
> +		n += 4;
> +	}
> +
> +	netdev_err(dev, "Dump tally counter:\n");
> +	counters = tp->tally_vaddr;
> +	rtase_dump_tally_counter(tp);
> +
> +	netdev_err(dev, "tx_packets %lld\n",
> +		   le64_to_cpu(counters->tx_packets));
> +	netdev_err(dev, "rx_packets %lld\n",
> +		   le64_to_cpu(counters->rx_packets));
> +	netdev_err(dev, "tx_errors %lld\n",
> +		   le64_to_cpu(counters->tx_errors));
> +	netdev_err(dev, "rx_missed %lld\n",
> +		   le64_to_cpu(counters->rx_missed));
> +	netdev_err(dev, "align_errors %lld\n",
> +		   le64_to_cpu(counters->align_errors));
> +	netdev_err(dev, "tx_one_collision %lld\n",
> +		   le64_to_cpu(counters->tx_one_collision));
> +	netdev_err(dev, "tx_multi_collision %lld\n",
> +		   le64_to_cpu(counters->tx_multi_collision));
> +	netdev_err(dev, "rx_unicast %lld\n",
> +		   le64_to_cpu(counters->rx_unicast));
> +	netdev_err(dev, "rx_broadcast %lld\n",
> +		   le64_to_cpu(counters->rx_broadcast));
> +	netdev_err(dev, "rx_multicast %lld\n",
> +		   le64_to_cpu(counters->rx_multicast));
> +	netdev_err(dev, "tx_aborted %lld\n",
> +		   le64_to_cpu(counters->tx_aborted));
> +	netdev_err(dev, "tx_underun %lld\n",
> +		   le64_to_cpu(counters->tx_underun));
> +}
> +
> +static void rtase_tx_timeout(struct net_device *dev, unsigned int txqueue)
> +{
> +	rtase_dump_state(dev);
> +	rtase_sw_reset(dev);
> +}
> +
> +static void rtase_get_stats64(struct net_device *dev,
> +			      struct rtnl_link_stats64 *stats)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +	const struct rtase_counters *counters = tp->tally_vaddr;
> +
> +	if (!counters)
> +		return;
> +
> +	netdev_stats_to_stats64(stats, &dev->stats);
> +	dev_fetch_sw_netstats(stats, dev->tstats);
> +
> +	/* fetch additional counter values missing in stats collected by driver
> +	 * from tally counter
> +	 */
> +	rtase_dump_tally_counter(tp);
> +
> +	stats->tx_errors = le64_to_cpu(counters->tx_errors);
> +	stats->collisions = le32_to_cpu(counters->tx_multi_collision);
> +	stats->tx_aborted_errors = le16_to_cpu(counters->tx_aborted);
> +	stats->rx_missed_errors = le16_to_cpu(counters->rx_missed);
> +}
> +
> +static void rtase_enable_vlan_filter(const struct rtase_private *tp, bool enabled)
> +{
> +	u16 tmp;
> +
> +	if (enabled == 1) {
> +		tmp = rtase_r16(tp, RTASE_FCR);
> +		if (!(tmp & FCR_VLAN_FTR_EN))
> +			rtase_w16(tp, RTASE_FCR, tmp | FCR_VLAN_FTR_EN);
> +
> +		tmp = rtase_r16(tp, RTASE_PCPR);
> +		if (!(tmp & PCPR_VLAN_FTR_EN))
> +			rtase_w16(tp, RTASE_PCPR, tmp | PCPR_VLAN_FTR_EN);
> +	} else {
> +		tmp = rtase_r16(tp, RTASE_FCR);
> +		if (tmp & FCR_VLAN_FTR_EN)
> +			rtase_w16(tp, RTASE_FCR, tmp & ~FCR_VLAN_FTR_EN);
> +
> +		tmp = rtase_r16(tp, RTASE_PCPR);
> +		if (!(tmp & PCPR_VLAN_FTR_EN))
> +			rtase_w16(tp, RTASE_PCPR, tmp & ~PCPR_VLAN_FTR_EN);
> +	}
> +}
> +
> +static int rtase_vlan_rx_add_vid(struct net_device *dev, __be16 protocol,
> +				 u16 vid)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +	u16 tmp_mem, i;
> +
> +	if (be16_to_cpu(protocol) != ETH_P_8021Q)
> +		return -EINVAL;
> +
> +	for (i = 0; i < RTASE_VLAN_FILTER_ENTRY_NUM; i++) {
> +		u16 addr, mask;
> +
> +		if (!(tp->vlan_filter_ctrl & BIT(i))) {
> +			tp->vlan_filter_ctrl |= BIT(i);
> +			tp->vlan_filter_vid[i] = vid;
> +			rtase_w32(tp, RTASE_VLAN_ENTRY_0 + i * 4,
> +				  vid | VLAN_ENTRY_CAREBIT);
> +			/* each 16-bit register contains two VLAN entries */
> +			addr = RTASE_VLAN_ENTRY_MEM_0 + (i & ~0x1);
> +			mask = 0x1 << ((i & 0x1) * 8);
> +			tmp_mem = rtase_r16(tp, addr);
> +			tmp_mem |= mask;
> +			rtase_w16(tp, addr, tmp_mem);
> +			break;
> +		}
> +	}
> +
> +	if (i == RTASE_VLAN_FILTER_ENTRY_NUM)
> +		return -ENOENT;
> +
> +	rtase_enable_vlan_filter(tp, true);
> +
> +	return 0;
> +}
> +
> +static int rtase_vlan_rx_kill_vid(struct net_device *dev, __be16 protocol,
> +				  u16 vid)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +	u16 tmp_mem, i;
> +
> +	if (be16_to_cpu(protocol) != ETH_P_8021Q)
> +		return -EINVAL;
> +
> +	for (i = 0; i < RTASE_VLAN_FILTER_ENTRY_NUM; i++) {
> +		u16 addr, mask;
> +
> +		if (tp->vlan_filter_vid[i] == vid) {
> +			tp->vlan_filter_ctrl &= ~BIT(i);
> +			tp->vlan_filter_vid[i] = 0;
> +			rtase_w32(tp, RTASE_VLAN_ENTRY_0 + i * 4, 0);
> +
> +			/* each 16-bit register contains two VLAN entries */
> +			addr = RTASE_VLAN_ENTRY_MEM_0 + (i & ~0x1);
> +			mask = ~(0x1 << ((i & 0x1) * 8));
> +			tmp_mem = rtase_r16(tp, addr);
> +			tmp_mem &= mask;
> +			rtase_w16(tp, addr, tmp_mem);
> +			break;
> +		}
> +	}
> +
> +	/* check vlan filter enabled */
> +	if (!tp->vlan_filter_ctrl)
> +		rtase_enable_vlan_filter(tp, false);
> +
> +	return 0;
> +}
> +
> +#ifdef CONFIG_NET_POLL_CONTROLLER
> +/* Polling 'interrupt' - used by things like netconsole to send skbs
> + * without having to re-enable interrupts. It's not called while
> + * the interrupt routine is executing.
> + */
> +static void rtase_netpoll(struct net_device *dev)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +	const struct pci_dev *pdev = tp->pdev;
> +
> +	disable_irq(pdev->irq);
> +	rtase_interrupt(pdev->irq, dev);
> +	enable_irq(pdev->irq);
> +}
> +#endif
> +
> +static void rtase_set_hw_cbs(const struct rtase_private *tp, u32 queue)
> +{
> +	u32 idle = tp->tx_qos[queue].idleslope * RTASE_1T_CLOCK;
> +	u32 val, i;
> +
> +	val = u32_encode_bits(idle / RTASE_1T_POWER, RTASE_IDLESLOPE_INT_MASK);
> +	idle %= RTASE_1T_POWER;
> +
> +	for (i = 1; i <= RTASE_IDLESLOPE_INT_SHIFT; i++) {
> +		idle *= 2;
> +		if ((idle / RTASE_1T_POWER) == 1)
> +			val |= BIT(RTASE_IDLESLOPE_INT_SHIFT - i);
> +
> +		idle %= RTASE_1T_POWER;
> +	}
> +	rtase_w32(tp, RTASE_TXQCRDT_0 + queue * 4, val);
> +}
> +
> +static void rtase_setup_tc_cbs(struct rtase_private *tp,
> +			       const struct tc_cbs_qopt_offload *qopt)
> +{
> +	u32 queue = qopt->queue;
> +
> +	tp->tx_qos[queue].hicredit = qopt->hicredit;
> +	tp->tx_qos[queue].locredit = qopt->locredit;
> +	tp->tx_qos[queue].idleslope = qopt->idleslope;
> +	tp->tx_qos[queue].sendslope = qopt->sendslope;
> +
> +	/* set hardware cbs */
> +	rtase_set_hw_cbs(tp, queue);
> +}
> +
> +static int rtase_setup_tc(struct net_device *dev, enum tc_setup_type type,
> +			  void *type_data)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +
> +	switch (type) {
> +	case TC_SETUP_QDISC_CBS:
> +		rtase_setup_tc_cbs(tp, type_data);
> +		break;
> +	default:
> +		return -EOPNOTSUPP;
> +	}
> +
> +	return 0;
> +}
> +
> +static netdev_features_t rtase_fix_features(struct net_device *dev,
> +					    netdev_features_t features)
> +{
> +	netdev_features_t features_fix = features;
> +
> +	if (dev->mtu > MSS_MAX)
> +		features_fix &= ~NETIF_F_ALL_TSO;
> +
> +	if (dev->mtu > ETH_DATA_LEN)
> +		features_fix &= ~NETIF_F_ALL_TSO;
> +
> +	return features_fix;
> +}
> +
> +static int rtase_set_features(struct net_device *dev,
> +			      netdev_features_t features)
> +{
> +	netdev_features_t features_set = features;
> +
> +	features_set &= NETIF_F_RXALL | NETIF_F_RXCSUM |
> +			NETIF_F_HW_VLAN_CTAG_RX;
> +
> +	if (features_set ^ dev->features)
> +		rtase_hw_set_features(dev, features_set);
> +
> +	return 0;
> +}
> +
> +static const struct net_device_ops rtase_netdev_ops = {
> +	.ndo_open = rtase_open,
> +	.ndo_stop = rtase_close,
> +	.ndo_start_xmit = rtase_start_xmit,
> +	.ndo_set_rx_mode = rtase_set_rx_mode,
> +	.ndo_set_mac_address = rtase_set_mac_address,
> +	.ndo_change_mtu = rtase_change_mtu,
> +	.ndo_tx_timeout = rtase_tx_timeout,
> +	.ndo_get_stats64 = rtase_get_stats64,
> +	.ndo_vlan_rx_add_vid = rtase_vlan_rx_add_vid,
> +	.ndo_vlan_rx_kill_vid = rtase_vlan_rx_kill_vid,
> +#ifdef CONFIG_NET_POLL_CONTROLLER
> +	.ndo_poll_controller = rtase_netpoll,
> +#endif
> +	.ndo_setup_tc = rtase_setup_tc,
> +	.ndo_fix_features = rtase_fix_features,
> +	.ndo_set_features = rtase_set_features,
> +};
> +
> +static void rtase_get_mac_address(struct net_device *dev)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +	u8 mac_addr[ETH_ALEN] __aligned(2) = {};
> +	u32 i;
> +
> +	for (i = 0; i < ETH_ALEN; i++)
> +		mac_addr[i] = rtase_r8(tp, RTASE_MAC0 + i);
> +
> +	if (!is_valid_ether_addr(mac_addr)) {
> +		eth_random_addr(mac_addr);
> +		dev->addr_assign_type = NET_ADDR_RANDOM;
> +		netdev_warn(dev, "Random ether addr %pM\n", mac_addr);
> +	}
> +
> +	eth_hw_addr_set(dev, mac_addr);
> +	rtase_rar_set(tp, mac_addr);
> +
> +	/* keep the original MAC address */
> +	ether_addr_copy(tp->org_mac_addr, dev->dev_addr);
> +	ether_addr_copy(dev->perm_addr, dev->dev_addr);
> +}
> +
> +static void rtase_get_drvinfo(struct net_device *dev,
> +			      struct ethtool_drvinfo *drvinfo)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +
> +	strscpy(drvinfo->driver, KBUILD_MODNAME, 32);
> +	strscpy(drvinfo->bus_info, pci_name(tp->pdev), 32);
> +}
> +
> +static int rtase_get_settings(struct net_device *dev,
> +			      struct ethtool_link_ksettings *cmd)
> +{
> +	u32 supported = SUPPORTED_MII | SUPPORTED_Pause | SUPPORTED_Asym_Pause;
> +
> +	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
> +						supported);
> +	cmd->base.speed = SPEED_5000;
> +	cmd->base.duplex = DUPLEX_FULL;
> +	cmd->base.port = PORT_MII;
> +	cmd->base.autoneg = AUTONEG_DISABLE;
> +
> +	return 0;
> +}
> +
> +static void rtase_get_pauseparam(struct net_device *dev,
> +				 struct ethtool_pauseparam *pause)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +	u16 value = rtase_r16(tp, RTASE_CPLUS_CMD);
> +
> +	pause->autoneg = AUTONEG_DISABLE;
> +
> +	if ((value & (FORCE_TXFLOW_EN | FORCE_RXFLOW_EN)) ==
> +	    (FORCE_TXFLOW_EN | FORCE_RXFLOW_EN)) {
> +		pause->rx_pause = 1;
> +		pause->tx_pause = 1;
> +	} else if ((value & FORCE_TXFLOW_EN)) {
> +		pause->tx_pause = 1;
> +	} else if ((value & FORCE_RXFLOW_EN)) {
> +		pause->rx_pause = 1;
> +	}
> +}
> +
> +static int rtase_set_pauseparam(struct net_device *dev,
> +				struct ethtool_pauseparam *pause)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +	u16 value = rtase_r16(tp, RTASE_CPLUS_CMD);
> +
> +	if (pause->autoneg)
> +		return -EOPNOTSUPP;
> +
> +	value &= ~(FORCE_TXFLOW_EN | FORCE_RXFLOW_EN);
> +
> +	if (pause->tx_pause)
> +		value |= FORCE_TXFLOW_EN;
> +
> +	if (pause->rx_pause)
> +		value |= FORCE_RXFLOW_EN;
> +
> +	rtase_w16(tp, RTASE_CPLUS_CMD, value);
> +	return 0;
> +}
> +
> +static const char rtase_gstrings[][ETH_GSTRING_LEN] = {
> +	"tx_packets",
> +	"rx_packets",
> +	"tx_errors",
> +	"rx_errors",
> +	"rx_missed",
> +	"align_errors",
> +	"tx_single_collisions",
> +	"tx_multi_collisions",
> +	"unicast",
> +	"broadcast",
> +	"multicast",
> +	"tx_aborted",
> +	"tx_underrun",
> +};
> +
> +static void rtase_get_strings(struct net_device *dev, u32 stringset, u8 *data)
> +{
> +	switch (stringset) {
> +	case ETH_SS_STATS:
> +		memcpy(data, *rtase_gstrings, sizeof(rtase_gstrings));
> +		break;
> +	}
> +}
> +
> +static int rtase_get_sset_count(struct net_device *dev, int sset)
> +{
> +	int ret = -EOPNOTSUPP;
> +
> +	switch (sset) {
> +	case ETH_SS_STATS:
> +		ret = ARRAY_SIZE(rtase_gstrings);
> +		break;
> +	}
> +
> +	return ret;
> +}
> +
> +static void rtase_get_ethtool_stats(struct net_device *dev,
> +				    struct ethtool_stats *stats, u64 *data)
> +{
> +	struct rtase_private *tp = netdev_priv(dev);
> +	const struct rtase_counters *counters;
> +
> +	ASSERT_RTNL();
> +
> +	counters = tp->tally_vaddr;
> +	if (!counters)
> +		return;
> +
> +	rtase_dump_tally_counter(tp);
> +
> +	data[0] = le64_to_cpu(counters->tx_packets);
> +	data[1] = le64_to_cpu(counters->rx_packets);
> +	data[2] = le64_to_cpu(counters->tx_errors);
> +	data[3] = le32_to_cpu(counters->rx_errors);
> +	data[4] = le16_to_cpu(counters->rx_missed);
> +	data[5] = le16_to_cpu(counters->align_errors);
> +	data[6] = le32_to_cpu(counters->tx_one_collision);
> +	data[7] = le32_to_cpu(counters->tx_multi_collision);
> +	data[8] = le64_to_cpu(counters->rx_unicast);
> +	data[9] = le64_to_cpu(counters->rx_broadcast);
> +	data[10] = le32_to_cpu(counters->rx_multicast);
> +	data[11] = le16_to_cpu(counters->tx_aborted);
> +	data[12] = le16_to_cpu(counters->tx_underun);
> +}
> +
> +static const struct ethtool_ops rtase_ethtool_ops = {
> +	.get_drvinfo = rtase_get_drvinfo,
> +	.get_link = ethtool_op_get_link,
> +	.get_link_ksettings = rtase_get_settings,
> +	.get_pauseparam = rtase_get_pauseparam,
> +	.set_pauseparam = rtase_set_pauseparam,
> +	.get_strings = rtase_get_strings,
> +	.get_sset_count = rtase_get_sset_count,
> +	.get_ethtool_stats = rtase_get_ethtool_stats,
> +	.get_ts_info = ethtool_op_get_ts_info,
> +};
> +
> +static void rtase_init_netdev_ops(struct net_device *dev)
> +{
> +	dev->netdev_ops = &rtase_netdev_ops;
> +	dev->ethtool_ops = &rtase_ethtool_ops;
> +}
> +
> +static void rtase_reset_interrupt(struct pci_dev *pdev,
> +				  const struct rtase_private *tp)
> +{
> +	if (tp->sw_flag & SWF_MSIX_ENABLED)
> +		pci_disable_msix(pdev);
> +	else
> +		pci_disable_msi(pdev);
> +}
> +
> +static int rtase_alloc_msix(struct pci_dev *pdev, struct rtase_private *tp)
> +{
> +	int ret;
> +	u16 i;
> +
> +	memset(tp->msix_entry, 0x0, RTASE_NUM_MSIX * sizeof(struct msix_entry));
> +
> +	for (i = 0; i < RTASE_NUM_MSIX; i++)
> +		tp->msix_entry[i].entry = i;
> +
> +	ret = pci_enable_msix_range(pdev, tp->msix_entry, tp->int_nums,
> +				    tp->int_nums);
> +
> +	if (ret == tp->int_nums) {
> +		for (i = 0; i < tp->int_nums; i++) {
> +			tp->int_vector[i].irq = pci_irq_vector(pdev, i);
> +			tp->int_vector[i].status = 1;
> +		}
> +	}
> +
> +	return ret;
> +}
> +
> +static int rtase_alloc_interrupt(struct pci_dev *pdev,
> +				 struct rtase_private *tp)
> +{
> +	int ret;
> +
> +	ret = rtase_alloc_msix(pdev, tp);
> +	if (ret != tp->int_nums) {
> +		ret = pci_enable_msi(pdev);
> +		if (ret)
> +			dev_err(&pdev->dev,
> +				"unable to alloc interrupt.(MSI)\n");
> +		else
> +			tp->sw_flag |= SWF_MSI_ENABLED;
> +	} else {
> +		tp->sw_flag |= SWF_MSIX_ENABLED;
> +	}
> +
> +	return ret;
> +}
> +
> +static void rtase_init_hardware(const struct rtase_private *tp)
> +{
> +	u16 i;
> +
> +	for (i = 0; i < RTASE_VLAN_FILTER_ENTRY_NUM; i++)
> +		rtase_w32(tp, RTASE_VLAN_ENTRY_0 + i * 4, 0);
> +}
> +
> +static void rtase_init_int_vector(struct rtase_private *tp)
> +{
> +	u16 i;
> +
> +	/* interrupt vector 0 */
> +	tp->int_vector[0].tp = tp;
> +	tp->int_vector[0].index = 0;
> +	tp->int_vector[0].imr_addr = RTASE_IMR0;
> +	tp->int_vector[0].isr_addr = RTASE_ISR0;
> +	tp->int_vector[0].imr = ROK | RDU | TOK | TOK4 | TOK5 | TOK6 | TOK7;
> +	tp->int_vector[0].poll = rtase_poll;
> +
> +	memset(tp->int_vector[0].name, 0x0, sizeof(tp->int_vector[0].name));
> +	INIT_LIST_HEAD(&tp->int_vector[0].ring_list);
> +
> +	netif_napi_add(tp->dev, &tp->int_vector[0].napi,
> +		       tp->int_vector[0].poll);
> +	napi_enable(&tp->int_vector[0].napi);
> +
> +	/* interrupt vector 1 ~ 3 */
> +	for (i = 1; i < tp->int_nums; i++) {
> +		tp->int_vector[i].tp = tp;
> +		tp->int_vector[i].index = i;
> +		tp->int_vector[i].imr_addr = RTASE_IMR1 + (i - 1) * 4;
> +		tp->int_vector[i].isr_addr = RTASE_ISR1 + (i - 1) * 4;
> +		tp->int_vector[i].imr = Q_ROK | Q_RDU | Q_TOK;
> +		tp->int_vector[i].poll = rtase_poll;
> +
> +		memset(tp->int_vector[i].name, 0x0, sizeof(tp->int_vector[0].name));
> +		INIT_LIST_HEAD(&tp->int_vector[i].ring_list);
> +
> +		netif_napi_add(tp->dev, &tp->int_vector[i].napi,
> +			       tp->int_vector[i].poll);
> +		napi_enable(&tp->int_vector[i].napi);
> +	}
> +}
> +
> +static u16 rtase_calc_time_mitigation(u32 time_us)
> +{
> +	u16 int_miti;
> +	u8 msb, time_count, time_unit;
> +
> +	time_us = min_t(int, time_us, MITI_MAX_TIME);
> +
> +	msb = fls(time_us);
> +	if (msb >= MITI_COUNT_BIT_NUM) {
> +		time_unit = msb - MITI_COUNT_BIT_NUM;
> +		time_count = time_us >> (msb - MITI_COUNT_BIT_NUM);
> +	} else {
> +		time_unit = 0;
> +		time_count = time_us;
> +	}
> +
> +	int_miti = u16_encode_bits(time_count, MITI_TIME_COUNT_MASK) |
> +		   u16_encode_bits(time_unit, MITI_TIME_UNIT_MASK);
> +
> +	return int_miti;
> +}
> +
> +static u16 rtase_calc_packet_num_mitigation(u16 pkt_num)
> +{
> +	u16 int_miti;
> +	u8 msb, pkt_num_count, pkt_num_unit;
> +
> +	pkt_num = min_t(int, pkt_num, MITI_MAX_PKT_NUM);
> +
> +	if (pkt_num > 60) {
> +		pkt_num_unit = MITI_MAX_PKT_NUM_IDX;
> +		pkt_num_count = pkt_num / MITI_MAX_PKT_NUM_UNIT;
> +	} else {
> +		msb = fls(pkt_num);
> +		if (msb >= MITI_COUNT_BIT_NUM) {
> +			pkt_num_unit = msb - MITI_COUNT_BIT_NUM;
> +			pkt_num_count = pkt_num >> (msb - MITI_COUNT_BIT_NUM);
> +		} else {
> +			pkt_num_unit = 0;
> +			pkt_num_count = pkt_num;
> +		}
> +	}
> +
> +	int_miti = u16_encode_bits(pkt_num_count, MITI_PKT_NUM_COUNT_MASK) |
> +		   u16_encode_bits(pkt_num_unit, MITI_PKT_NUM_UNIT_MASK);
> +
> +	return int_miti;
> +}
> +
> +static void rtase_init_software_variable(struct pci_dev *pdev,
> +					 struct rtase_private *tp)
> +{
> +	u16 int_miti;
> +
> +	tp->tx_queue_ctrl = RTASE_TXQ_CTRL;
> +	tp->func_tx_queue_num = RTASE_FUNC_TXQ_NUM;
> +	tp->func_rx_queue_num = RTASE_FUNC_RXQ_NUM;
> +	tp->int_nums = RTASE_INTERRUPT_NUM;
> +
> +	int_miti = rtase_calc_time_mitigation(MITI_DEFAULT_TIME) |
> +		   rtase_calc_packet_num_mitigation(MITI_DEFAULT_PKT_NUM);
> +	tp->tx_int_mit = int_miti;
> +	tp->rx_int_mit = int_miti;
> +
> +	tp->sw_flag = 0;
> +
> +	rtase_init_int_vector(tp);
> +
> +	/* MTU range: 60 - hw-specific max */
> +	tp->dev->min_mtu = ETH_ZLEN;
> +	tp->dev->max_mtu = MAX_JUMBO_SIZE;
> +}
> +
> +static bool rtase_check_mac_version_valid(struct rtase_private *tp)
> +{
> +	u32 hw_ver = rtase_r32(tp, RTASE_TX_CONFIG_0) & HW_VER_MASK;
> +	bool known_ver = false;
> +
> +	switch (hw_ver) {
> +	case 0x00800000:
> +	case 0x04000000:
> +	case 0x04800000:
> +		known_ver = true;
> +		break;
> +	}
> +
> +	return known_ver;
> +}
> +
> +static int rtase_init_board(struct pci_dev *pdev, struct net_device **dev_out,
> +			    void __iomem **ioaddr_out)
> +{
> +	struct net_device *dev;
> +	void __iomem *ioaddr;
> +	int ret = -ENOMEM;
> +
> +	/* dev zeroed in alloc_etherdev */
> +	dev = alloc_etherdev_mq(sizeof(struct rtase_private),
> +				RTASE_FUNC_TXQ_NUM);
> +	if (!dev)
> +		goto err_out;
> +
> +	SET_NETDEV_DEV(dev, &pdev->dev);
> +
> +	ret = pci_enable_device(pdev);
> +	if (ret < 0)
> +		goto err_out_free_dev;
> +
> +	/* make sure PCI base addr 1 is MMIO */
> +	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
> +		ret = -ENODEV;
> +		goto err_out_disable;
> +	}
> +
> +	/* check for weird/broken PCI region reporting */
> +	if (pci_resource_len(pdev, 2) < RTASE_REGS_SIZE) {
> +		ret = -ENODEV;
> +		goto err_out_disable;
> +	}
> +
> +	ret = pci_request_regions(pdev, KBUILD_MODNAME);
> +	if (ret < 0)
> +		goto err_out_disable;
> +
> +	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)))
> +		dev->features |= NETIF_F_HIGHDMA;
> +	else if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
> +		goto err_out_free_res;
> +	else
> +		dev_info(&pdev->dev, "DMA_BIT_MASK: 32\n");
> +
> +	pci_set_master(pdev);
> +
> +	/* ioremap MMIO region */
> +	ioaddr = ioremap(pci_resource_start(pdev, 2),
> +			 pci_resource_len(pdev, 2));
> +	if (!ioaddr) {
> +		ret = -EIO;
> +		goto err_out_free_res;
> +	}
> +
> +	*ioaddr_out = ioaddr;
> +	*dev_out = dev;
> +	goto out;
> +
> +err_out_free_res:
> +	pci_release_regions(pdev);
> +
> +err_out_disable:
> +	pci_disable_device(pdev);
> +
> +err_out_free_dev:
> +	free_netdev(dev);
> +
> +err_out:
> +	*ioaddr_out = NULL;
> +	*dev_out = NULL;
> +
> +out:
> +	return ret;
> +}
> +
> +static void rtase_release_board(struct pci_dev *pdev, struct net_device *dev,
> +				void __iomem *ioaddr)
> +{
> +	const struct rtase_private *tp = netdev_priv(dev);
> +
> +	rtase_rar_set(tp, tp->org_mac_addr);
> +	iounmap(ioaddr);
> +
> +	if ((tp->sw_flag & SWF_MSIX_ENABLED))
> +		pci_disable_msix(pdev);
> +	else
> +		pci_disable_msi(pdev);
> +
> +	pci_release_regions(pdev);
> +	pci_disable_device(pdev);
> +	free_netdev(dev);
> +}
> +
> +static int rtase_init_one(struct pci_dev *pdev,
> +			  const struct pci_device_id *ent)
> +{
> +	struct net_device *dev = NULL;
> +	void __iomem *ioaddr = NULL;
> +	struct rtase_private *tp;
> +	int ret;
> +
> +	if (!pdev->is_physfn && pdev->is_virtfn) {
> +		dev_err(&pdev->dev, "This module does not support a virtual function.");
> +		return -EINVAL;
> +	}
> +
> +	dev_dbg(&pdev->dev, "Automotive Switch Ethernet driver loaded\n");
> +
> +	ret = rtase_init_board(pdev, &dev, &ioaddr);
> +	if (ret != 0)
> +		return ret;
> +
> +	tp = netdev_priv(dev);
> +	tp->mmio_addr = ioaddr;
> +	tp->dev = dev;
> +	tp->pdev = pdev;
> +
> +	/* identify chip attached to board */
> +	if (!rtase_check_mac_version_valid(tp)) {
> +		return dev_err_probe(&pdev->dev, -ENODEV,
> +				     "unknown chip version, contact rtase maintainers (see MAINTAINERS file)\n");
> +	}
> +
> +	dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
> +	if (!dev->tstats)
> +		goto err_out_1;
> +
> +	rtase_init_software_variable(pdev, tp);
> +	rtase_init_hardware(tp);
> +
> +	ret = rtase_alloc_interrupt(pdev, tp);
> +	if (ret < 0) {
> +		dev_err(&pdev->dev, "unable to alloc MSIX/MSI\n");
> +		goto err_out_1;
> +	}
> +
> +	rtase_init_netdev_ops(dev);
> +
> +	dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
> +
> +	dev->features |= NETIF_F_IP_CSUM;
> +	dev->features |= NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO;
> +	dev->features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
> +	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
> +			   NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_TX |
> +			   NETIF_F_HW_VLAN_CTAG_RX;
> +	dev->hw_features |= NETIF_F_RXALL;
> +	dev->hw_features |= NETIF_F_RXFCS;
> +	dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
> +	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
> +			     NETIF_F_HIGHDMA;
> +	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
> +	netif_set_tso_max_size(dev, LSO_64K);
> +	netif_set_tso_max_segs(dev, NIC_MAX_PHYS_BUF_COUNT_LSO2);
> +
> +	rtase_get_mac_address(dev);
> +
> +	tp->tally_vaddr = dma_alloc_coherent(&pdev->dev,
> +					     sizeof(*tp->tally_vaddr),
> +					     &tp->tally_paddr,
> +					     GFP_KERNEL);
> +	if (!tp->tally_vaddr) {
> +		ret = -ENOMEM;
> +		goto err_out;
> +	}
> +
> +	rtase_tally_counter_clear(tp);
> +
> +	pci_set_drvdata(pdev, dev);
> +
> +	ret = register_netdev(dev);
> +	if (ret != 0)
> +		goto err_out;
> +
> +	netdev_dbg(dev, "%pM, IRQ %d\n", dev->dev_addr, dev->irq);
> +
> +	netif_carrier_off(dev);
> +
> +	goto out;
> +
> +err_out:
> +	if (tp->tally_vaddr) {
> +		dma_free_coherent(&pdev->dev,
> +				  sizeof(*tp->tally_vaddr),
> +				  tp->tally_vaddr,
> +				  tp->tally_paddr);
> +
> +		tp->tally_vaddr = NULL;
> +	}
> +
> +err_out_1:
> +	rtase_release_board(pdev, dev, ioaddr);
> +
> +out:
> +	return ret;
> +}
> +
> +static void rtase_remove_one(struct pci_dev *pdev)
> +{
> +	struct net_device *dev = pci_get_drvdata(pdev);
> +	struct rtase_private *tp = netdev_priv(dev);
> +	struct rtase_int_vector *ivec;
> +	u32 i;
> +
> +	for (i = 0; i < tp->int_nums; i++) {
> +		ivec = &tp->int_vector[i];
> +		netif_napi_del(&ivec->napi);
> +	}
> +
> +	unregister_netdev(dev);
> +	rtase_reset_interrupt(pdev, tp);
> +	if (tp->tally_vaddr) {
> +		dma_free_coherent(&pdev->dev,
> +				  sizeof(*tp->tally_vaddr),
> +				  tp->tally_vaddr,
> +				  tp->tally_paddr);
> +		tp->tally_vaddr = NULL;
> +	}
> +
> +	rtase_release_board(pdev, dev, tp->mmio_addr);
> +	pci_set_drvdata(pdev, NULL);
> +}
> +
> +static void rtase_shutdown(struct pci_dev *pdev)
> +{
> +	struct net_device *dev = pci_get_drvdata(pdev);
> +	const struct rtase_private *tp = netdev_priv(dev);
> +
> +	if (netif_running(dev))
> +		rtase_close(dev);
> +
> +	rtase_reset_interrupt(pdev, tp);
> +}
> +
> +#ifdef CONFIG_PM
> +static int rtase_suspend(struct pci_dev *pdev, pm_message_t state)
> +{
> +	struct net_device *dev = pci_get_drvdata(pdev);
> +
> +	if (!netif_running(dev))
> +		goto out;
> +
> +	netif_stop_queue(dev);
> +	netif_carrier_off(dev);
> +	netif_device_detach(dev);
> +	rtase_hw_reset(dev);
> +
> +out:
> +	pci_save_state(pdev);
> +
> +	return 0;
> +}
> +
> +static int rtase_resume(struct pci_dev *pdev)
> +{
> +	struct net_device *dev = pci_get_drvdata(pdev);
> +	struct rtase_private *tp = netdev_priv(dev);
> +	int ret;
> +
> +	pci_set_power_state(pdev, PCI_D0);
> +	pci_restore_state(pdev);
> +	pci_enable_wake(pdev, PCI_D0, 0);
> +
> +	/* restore last modified mac address */
> +	rtase_rar_set(tp, dev->dev_addr);
> +
> +	if (!netif_running(dev))
> +		goto out;
> +
> +	rtase_wait_for_quiescence(dev);
> +
> +	rtase_tx_clear(tp);
> +	rtase_rx_clear(tp);
> +
> +	ret = rtase_init_ring(dev);
> +	if (ret) {
> +		netdev_err(dev, "unable to init ring\n");
> +		rtase_free_desc(tp);
> +		return -ENOMEM;
> +	}
> +
> +	rtase_hw_config(dev);
> +	/* always link, so start to transmit & receive */
> +	rtase_hw_start(dev);
> +
> +	netif_carrier_on(dev);
> +	netif_wake_queue(dev);
> +	netif_device_attach(dev);
> +
> +out:
> +	return 0;
> +}
> +#endif /* CONFIG_PM */
> +
> +static struct pci_driver rtase_pci_driver = {
> +	.name = KBUILD_MODNAME,
> +	.id_table = rtase_pci_tbl,
> +	.probe = rtase_init_one,
> +	.remove = rtase_remove_one,
> +	.shutdown = rtase_shutdown,
> +#ifdef CONFIG_PM
> +	.suspend = rtase_suspend,
> +	.resume = rtase_resume,
> +#endif
> +};
> +
> +module_pci_driver(rtase_pci_driver);
> diff --git a/drivers/net/ethernet/realtek/rtase/tt.h b/drivers/net/ethernet/realtek/rtase/tt.h
> new file mode 100644
> index 000000000000..9239c518c504
> --- /dev/null
> +++ b/drivers/net/ethernet/realtek/rtase/tt.h
> @@ -0,0 +1,353 @@
> +/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
> +/*
> + *  rtase is the Linux device driver released for Realtek Automotive Switch
> + *  controllers with PCI-Express interface.
> + *
> + *  Copyright(c) 2023 Realtek Semiconductor Corp.
> + */
> +
> +#ifndef _RTASE_H_
> +#define _RTASE_H_
> +
> +/* the low 32 bit address of receive buffer must be 8-byte alignment. */
> +#define RTK_RX_ALIGN 8
> +
> +#define HW_VER_MASK 0x7C800000
> +
> +#define RX_DMA_BURST_256       4
> +#define TX_DMA_BURST_UNLIMITED 7
> +#define RX_BUF_SIZE            (PAGE_SIZE - \
> +				SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
> +#define MAX_JUMBO_SIZE         (RX_BUF_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN)
> +
> +/* 3 means InterFrameGap = the shortest one */
> +#define INTERFRAMEGAP 0x03
> +
> +#define RTASE_REGS_SIZE     256
> +#define RTASE_PCI_REGS_SIZE 0x100
> +
> +#define MULTICAST_FILTER_MASK  GENMASK(30, 26)
> +#define MULTICAST_FILTER_LIMIT 32
> +
> +#define RTASE_VLAN_FILTER_ENTRY_NUM 32
> +#define RTASE_NUM_TX_QUEUE 8
> +#define RTASE_NUM_RX_QUEUE 4
> +
> +#define RTASE_TXQ_CTRL      1
> +#define RTASE_FUNC_TXQ_NUM  1
> +#define RTASE_FUNC_RXQ_NUM  1
> +#define RTASE_INTERRUPT_NUM 1
> +
> +#define MITI_TIME_COUNT_MASK     GENMASK(3, 0)
> +#define MITI_TIME_UNIT_MASK      GENMASK(7, 4)
> +#define MITI_DEFAULT_TIME        128
> +#define MITI_MAX_TIME            491520
> +#define MITI_PKT_NUM_COUNT_MASK  GENMASK(11, 8)
> +#define MITI_PKT_NUM_UNIT_MASK   GENMASK(13, 12)
> +#define MITI_DEFAULT_PKT_NUM     64
> +#define MITI_MAX_PKT_NUM_IDX     3
> +#define MITI_MAX_PKT_NUM_UNIT    16
> +#define MITI_MAX_PKT_NUM         240
> +#define MITI_COUNT_BIT_NUM       4
> +
> +#define RTASE_NUM_MSIX 4
> +
> +#define RTASE_DWORD_MOD 16
> +
> +/*****************************************************************************/
> +enum rtase_registers {
> +	RTASE_MAC0   = 0x0000,
> +	RTASE_MAC4   = 0x0004,
> +	RTASE_MAR0   = 0x0008,
> +	RTASE_MAR1   = 0x000C,
> +	RTASE_DTCCR0 = 0x0010,
> +	RTASE_DTCCR4 = 0x0014,
> +#define COUNTER_RESET BIT(0)
> +#define COUNTER_DUMP  BIT(3)
> +
> +	RTASE_FCR    = 0x0018,
> +#define FCR_RXQ_MASK    GENMASK(5, 4)
> +#define FCR_VLAN_FTR_EN BIT(1)
> +
> +	RTASE_LBK_CTRL = 0x001A,
> +#define LBK_ATLD BIT(1)
> +#define LBK_CLR  BIT(0)
> +
> +	RTASE_TX_DESC_ADDR0   = 0x0020,
> +	RTASE_TX_DESC_ADDR4   = 0x0024,
> +	RTASE_TX_DESC_COMMAND = 0x0028,
> +#define TX_DESC_CMD_CS BIT(15)
> +#define TX_DESC_CMD_WE BIT(14)
> +
> +	RTASE_BOOT_CTL  = 0x6004,
> +	RTASE_CLKSW_SET = 0x6018,
> +
> +	RTASE_CHIP_CMD = 0x0037,
> +#define STOP_REQ      BIT(7)
> +#define STOP_REQ_DONE BIT(6)
> +#define RE            BIT(3)
> +#define TE            BIT(2)
> +
> +	RTASE_IMR0 = 0x0038,
> +	RTASE_ISR0 = 0x003C,
> +#define TOK7 BIT(30)
> +#define TOK6 BIT(28)
> +#define TOK5 BIT(26)
> +#define TOK4 BIT(24)
> +#define FOVW BIT(6)
> +#define RDU  BIT(4)
> +#define TOK  BIT(2)
> +#define ROK  BIT(0)
> +
> +	RTASE_IMR1 = 0x0800,
> +	RTASE_ISR1 = 0x0802,
> +#define Q_TOK BIT(4)
> +#define Q_RDU BIT(1)
> +#define Q_ROK BIT(0)
> +
> +	RTASE_EPHY_ISR = 0x6014,
> +	RTASE_EPHY_IMR = 0x6016,
> +
> +	RTASE_TX_CONFIG_0 = 0x0040,
> +#define TX_INTER_FRAME_GAP_MASK GENMASK(25, 24)
> +	/* DMA burst value (0-7) is shift this many bits */
> +#define TX_DMA_MASK             GENMASK(10, 8)
> +
> +	RTASE_RX_CONFIG_0 = 0x0044,
> +#define RX_SINGLE_FETCH  BIT(14)
> +#define RX_SINGLE_TAG    BIT(13)
> +#define RX_MX_DMA_MASK   GENMASK(10, 8)
> +#define ACPT_FLOW        BIT(7)
> +#define ACCEPT_ERR       BIT(5)
> +#define ACCEPT_RUNT      BIT(4)
> +#define ACCEPT_BROADCAST BIT(3)
> +#define ACCEPT_MULTICAST BIT(2)
> +#define ACCEPT_MYPHYS    BIT(1)
> +#define ACCEPT_ALLPHYS   BIT(0)
> +#define ACCEPT_MASK      (ACPT_FLOW | ACCEPT_ERR | ACCEPT_RUNT | \
> +			  ACCEPT_BROADCAST | ACCEPT_MULTICAST | \
> +			  ACCEPT_MYPHYS | ACCEPT_ALLPHYS)
> +
> +	RTASE_RX_CONFIG_1 = 0x0046,
> +#define RX_MAX_FETCH_DESC_MASK  GENMASK(15, 11)
> +#define RX_NEW_DESC_FORMAT_EN   BIT(8)
> +#define OUTER_VLAN_DETAG_EN     BIT(7)
> +#define INNER_VLAN_DETAG_EN     BIT(6)
> +#define PCIE_NEW_FLOW           BIT(2)
> +#define PCIE_RELOAD_En          BIT(0)
> +
> +	RTASE_EEM = 0x0050,
> +#define EEM_UNLOCK 0xC0
> +
> +	RTASE_TDFNR  = 0x0057,
> +	RTASE_TPPOLL = 0x0090,
> +	RTASE_PDR    = 0x00B0,
> +	RTASE_FIFOR  = 0x00D3,
> +#define TX_FIFO_EMPTY BIT(5)
> +#define RX_FIFO_EMPTY BIT(4)
> +
> +	RTASE_PCPR = 0x00D8,
> +#define PCPR_VLAN_FTR_EN BIT(6)
> +
> +	RTASE_RMS       = 0x00DA,
> +	RTASE_CPLUS_CMD = 0x00E0,
> +#define FORCE_RXFLOW_EN BIT(11)
> +#define FORCE_TXFLOW_EN BIT(10)
> +#define RX_CHKSUM       BIT(5)
> +
> +	RTASE_Q0_RX_DESC_ADDR0 = 0x00E4,
> +	RTASE_Q0_RX_DESC_ADDR4 = 0x00E8,
> +	RTASE_Q1_RX_DESC_ADDR0 = 0x4000,
> +	RTASE_Q1_RX_DESC_ADDR4 = 0x4004,
> +	RTASE_MTPS             = 0x00EC,
> +#define TAG_NUM_SEL_MASK  GENMASK(10, 8)
> +
> +	RTASE_MISC = 0x00F2,
> +#define RX_DV_GATE_EN BIT(3)
> +
> +	RTASE_TFUN_CTRL = 0x0400,
> +#define TX_NEW_DESC_FORMAT_EN BIT(0)
> +
> +	RTASE_TX_CONFIG_1 = 0x203E,
> +#define TC_MODE_MASK  GENMASK(11, 10)
> +
> +	RTASE_TOKSEL      = 0x2046,
> +	RTASE_TXQCRDT_0   = 0x2500,
> +	RTASE_RFIFONFULL  = 0x4406,
> +	RTASE_INT_MITI_TX = 0x0A00,
> +	RTASE_INT_MITI_RX = 0x0A80,
> +
> +	RTASE_VLAN_ENTRY_MEM_0 = 0x7234,
> +	RTASE_VLAN_ENTRY_0     = 0xAC80,
> +};
> +
> +enum desc_status_bit {
> +	DESC_OWN = BIT(31), /* Descriptor is owned by NIC */
> +	RING_END = BIT(30), /* End of descriptor ring */
> +};
> +
> +enum sw_flag_content {
> +	SWF_MSI_ENABLED  = BIT(1),
> +	SWF_MSIX_ENABLED = BIT(2),
> +};
> +
> +#define RSVD_MASK 0x3FFFC000
> +
> +struct tx_desc {
> +	__le32 opts1;
> +	__le32 opts2;
> +	__le64 addr;
> +	__le32 opts3;
> +	__le32 reserved1;
> +	__le32 reserved2;
> +	__le32 reserved3;
> +} __packed;
> +
> +/*------ offset 0 of tx descriptor ------*/
> +#define TX_FIRST_FRAG BIT(29) /* Tx First segment of a packet */
> +#define TX_LAST_FRAG  BIT(28) /* Tx Final segment of a packet */
> +#define GIANT_SEND_V4 BIT(26) /* TCP Giant Send Offload V4 (GSOv4) */
> +#define GIANT_SEND_V6 BIT(25) /* TCP Giant Send Offload V6 (GSOv6) */
> +#define TX_VLAN_TAG   BIT(17) /* Add VLAN tag */
> +
> +/*------ offset 4 of tx descriptor ------*/
> +#define TX_UDPCS_C BIT(31) /* Calculate UDP/IP checksum */
> +#define TX_TCPCS_C BIT(30) /* Calculate TCP/IP checksum */
> +#define TX_IPCS_C  BIT(29) /* Calculate IP checksum */
> +#define TX_IPV6F_C BIT(28) /* Indicate it is an IPv6 packet */
> +
> +union rx_desc {
> +	struct {
> +		__le64 header_buf_addr;
> +		__le32 reserved1;
> +		__le32 opts_header_len;
> +		__le64 addr;
> +		__le32 reserved2;
> +		__le32 opts1;
> +	} __packed desc_cmd;
> +
> +	struct {
> +		__le32 reserved1;
> +		__le32 reserved2;
> +		__le32 rss;
> +		__le32 opts4;
> +		__le32 reserved3;
> +		__le32 opts3;
> +		__le32 opts2;
> +		__le32 opts1;
> +	} __packed desc_status;
> +} __packed;
> +
> +/*------ offset 28 of rx descriptor ------*/
> +#define RX_FIRST_FRAG    BIT(25) /* Rx First segment of a packet */
> +#define RX_LAST_FRAG     BIT(24) /* Rx Final segment of a packet */
> +#define RX_RES           BIT(20)
> +#define RX_RUNT          BIT(19)
> +#define RX_RWT           BIT(18)
> +#define RX_CRC           BIT(16)
> +#define RX_V6F           BIT(31)
> +#define RX_V4F           BIT(30)
> +#define RX_UDPT          BIT(29)
> +#define RX_TCPT          BIT(28)
> +#define RX_IPF           BIT(26) /* IP checksum failed */
> +#define RX_UDPF          BIT(25) /* UDP/IP checksum failed */
> +#define RX_TCPF          BIT(24) /* TCP/IP checksum failed */
> +#define RX_LBK_FIFO_FULL BIT(17) /* Loopback FIFO Full */
> +#define RX_VLAN_TAG      BIT(16) /* VLAN tag available */
> +
> +#define NUM_DESC                1024
> +#define RTASE_TX_RING_DESC_SIZE (NUM_DESC * sizeof(struct tx_desc))
> +#define RTASE_RX_RING_DESC_SIZE (NUM_DESC * sizeof(union rx_desc))
> +#define VLAN_ENTRY_CAREBIT      0xF0000000
> +#define VLAN_TAG_MASK           GENMASK(15, 0)
> +#define RX_PKT_SIZE_MASK        GENMASK(13, 0)
> +
> +/* txqos hardware definitions */
> +#define RTASE_1T_CLOCK            64
> +#define RTASE_1T_POWER            10000000
> +#define RTASE_IDLESLOPE_INT_SHIFT 25
> +#define RTASE_IDLESLOPE_INT_MASK  GENMASK(31, 25)
> +
> +#define IVEC_NAME_SIZE (IFNAMSIZ + 10)
> +
> +struct rtase_int_vector {
> +	struct rtase_private *tp;
> +	unsigned int irq;
> +	u8 status;
> +	char name[IVEC_NAME_SIZE];
> +	u16 index;
> +	u16 imr_addr;
> +	u16 isr_addr;
> +	u32 imr;
> +	struct list_head ring_list;
> +	struct napi_struct napi;
> +	int (*poll)(struct napi_struct *napi, int budget);
> +};
> +
> +struct rtase_ring {
> +	struct rtase_int_vector *ivec;
> +	void *desc;
> +	dma_addr_t phy_addr;
> +	u32 cur_idx;
> +	u32 dirty_idx;
> +	u16 index;
> +
> +	struct sk_buff *skbuff[NUM_DESC];
> +	union {
> +		u32 len[NUM_DESC];
> +		dma_addr_t data_phy_addr[NUM_DESC];
> +	} mis;
> +
> +	struct list_head ring_entry;
> +	int (*ring_handler)(struct rtase_ring *ring, int budget);
> +};
> +
> +struct rtase_txqos {
> +	int hicredit;
> +	int locredit;
> +	int idleslope;
> +	int sendslope;
> +};
> +
> +struct rtase_private {
> +	void __iomem *mmio_addr;
> +	u32 sw_flag;
> +	u32 mc_filter[2];
> +
> +	struct pci_dev *pdev;
> +	struct net_device *dev;
> +	u32 rx_buf_sz;
> +
> +	struct page_pool *page_pool;
> +	struct rtase_ring tx_ring[RTASE_NUM_TX_QUEUE];
> +	struct rtase_txqos tx_qos[RTASE_NUM_TX_QUEUE];
> +	struct rtase_ring rx_ring[RTASE_NUM_RX_QUEUE];
> +	struct rtase_counters *tally_vaddr;
> +	dma_addr_t tally_paddr;
> +
> +	u32 vlan_filter_ctrl;
> +	u16 vlan_filter_vid[RTASE_VLAN_FILTER_ENTRY_NUM];
> +
> +	struct delayed_work task;

I don't see this member anywhere used. What is it good for?
And related: Why the delayed version?

> +	u8 org_mac_addr[ETH_ALEN];

How's the org_mac_addr different from perm_addr?

> +	struct msix_entry msix_entry[RTASE_NUM_MSIX];
> +	struct rtase_int_vector int_vector[RTASE_NUM_MSIX];
> +
> +	u16 tx_queue_ctrl;
> +	u16 func_tx_queue_num;
> +	u16 func_rx_queue_num;
> +	u16 int_nums;
> +	u16 tx_int_mit;
> +	u16 rx_int_mit;
> +};
> +
> +#define LSO_64K 64000
> +
> +#define NIC_MAX_PHYS_BUF_COUNT_LSO2 (16 * 4)
> +
> +#define TCPHO_MASK GENMASK(24, 18)
> +
> +#define MSS_MAX  0x07FF /* MSS value */
> +#define MSS_MASK GENMASK(28, 18)
> +
> +#endif /* _RTASE_H_ */


Powered by blists - more mailing lists