[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <16fbe862-a8aa-4017-b332-8d031d784d7f@quicinc.com>
Date: Fri, 16 Feb 2024 20:59:08 +0530
From: Kathiravan Thirumoorthy <quic_kathirav@...cinc.com>
To: Md Sadre Alam <quic_mdalam@...cinc.com>, <andersson@...nel.org>,
<konrad.dybcio@...aro.org>, <broonie@...nel.org>, <robh@...nel.org>,
<krzysztof.kozlowski+dt@...aro.org>, <conor+dt@...nel.org>,
<miquel.raynal@...tlin.com>, <richard@....at>, <vigneshr@...com>,
<manivannan.sadhasivam@...aro.org>, <linux-arm-msm@...r.kernel.org>,
<linux-spi@...r.kernel.org>, <devicetree@...r.kernel.org>,
<linux-kernel@...r.kernel.org>, <linux-mtd@...ts.infradead.org>
CC: <quic_srichara@...cinc.com>, <quic_varada@...cinc.com>
Subject: Re: [PATCH 2/5] drivers: mtd: nand: Add qpic_common API file
On 2/15/2024 7:18 PM, Md Sadre Alam wrote:
> Add qpic_common.c file which hold all the common
> qpic APIs which will be used by both qpic raw nand
> driver and qpic spi nand driver.
>
> Co-developed-by: Sricharan Ramabadhran <quic_srichara@...cinc.com>
> Signed-off-by: Sricharan Ramabadhran <quic_srichara@...cinc.com>
> Co-developed-by: Varadarajan Narayanan <quic_varada@...cinc.com>
> Signed-off-by: Varadarajan Narayanan <quic_varada@...cinc.com>
> Signed-off-by: Md Sadre Alam <quic_mdalam@...cinc.com>
> ---
> drivers/mtd/nand/Makefile | 1 +
> drivers/mtd/nand/qpic_common.c | 786 +++++++++++++++++
> drivers/mtd/nand/raw/qcom_nandc.c | 1226 +-------------------------
> include/linux/mtd/nand-qpic-common.h | 488 ++++++++++
> 4 files changed, 1291 insertions(+), 1210 deletions(-)
> create mode 100644 drivers/mtd/nand/qpic_common.c
> create mode 100644 include/linux/mtd/nand-qpic-common.h
>
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 19e1291ac4d5..131707a41293 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -12,3 +12,4 @@ nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o
> nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o
> nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o
> nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o
> +obj-y += qpic_common.o
> diff --git a/drivers/mtd/nand/qpic_common.c b/drivers/mtd/nand/qpic_common.c
> new file mode 100644
> index 000000000000..4d74ba888028
> --- /dev/null
> +++ b/drivers/mtd/nand/qpic_common.c
> @@ -0,0 +1,786 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * QPIC Controller common API file.
> + * Copyright (C) 2023 Qualcomm Inc.
Copyright should be repharsed?
> + * Authors: Md sadre Alam <quic_mdalam@...cinc.com>
> + * Sricharan R <quic_srichara@...cinc.com>
> + * Varadarajan Narayanan <quic_varada@...cinc.com>
> + *
> + */
> +
> +#include <linux/mtd/nand-qpic-common.h>
> +
> +struct qcom_nand_controller *
> +get_qcom_nand_controller(struct nand_chip *chip)
> +{
> + return container_of(chip->controller, struct qcom_nand_controller,
> + controller);
> +}
> +EXPORT_SYMBOL(get_qcom_nand_controller);
> +
> +/*
> + * Helper to prepare DMA descriptors for configuring registers
> + * before reading a NAND page.
> + */
> +void config_nand_page_read(struct nand_chip *chip)
> +{
> + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> +
> + write_reg_dma(nandc, NAND_ADDR0, 2, 0);
> + write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
> + if (!nandc->props->qpic_v2)
> + write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
> + write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
> + write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
> + NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
> +}
> +EXPORT_SYMBOL(config_nand_page_read);
> +
> +/* Frees the BAM transaction memory */
> +void free_bam_transaction(struct qcom_nand_controller *nandc)
> +{
> + struct bam_transaction *bam_txn = nandc->bam_txn;
> +
> + devm_kfree(nandc->dev, bam_txn);
> +}
> +EXPORT_SYMBOL(free_bam_transaction);
> +
> +/* Callback for DMA descriptor completion */
> +void qpic_bam_dma_done(void *data)
> +{
> + struct bam_transaction *bam_txn = data;
> +
> + /*
> + * In case of data transfer with NAND, 2 callbacks will be generated.
> + * One for command channel and another one for data channel.
> + * If current transaction has data descriptors
> + * (i.e. wait_second_completion is true), then set this to false
> + * and wait for second DMA descriptor completion.
> + */
> + if (bam_txn->wait_second_completion)
> + bam_txn->wait_second_completion = false;
> + else
> + complete(&bam_txn->txn_done);
> +}
> +EXPORT_SYMBOL(qpic_bam_dma_done);
> +
> +void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
> + bool is_cpu)
> +{
> + if (!nandc->props->is_bam)
> + return;
> +
> + if (is_cpu)
> + dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
> + MAX_REG_RD *
> + sizeof(*nandc->reg_read_buf),
> + DMA_FROM_DEVICE);
> + else
> + dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
> + MAX_REG_RD *
> + sizeof(*nandc->reg_read_buf),
> + DMA_FROM_DEVICE);
> +}
> +EXPORT_SYMBOL(nandc_read_buffer_sync);
> +
> +__le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
> +{
> + switch (offset) {
> + case NAND_FLASH_CMD:
> + return ®s->cmd;
> + case NAND_ADDR0:
> + return ®s->addr0;
> + case NAND_ADDR1:
> + return ®s->addr1;
> + case NAND_FLASH_CHIP_SELECT:
> + return ®s->chip_sel;
> + case NAND_EXEC_CMD:
> + return ®s->exec;
> + case NAND_FLASH_STATUS:
> + return ®s->clrflashstatus;
> + case NAND_DEV0_CFG0:
> + return ®s->cfg0;
> + case NAND_DEV0_CFG1:
> + return ®s->cfg1;
> + case NAND_DEV0_ECC_CFG:
> + return ®s->ecc_bch_cfg;
> + case NAND_READ_STATUS:
> + return ®s->clrreadstatus;
> + case NAND_DEV_CMD1:
> + return ®s->cmd1;
> + case NAND_DEV_CMD1_RESTORE:
> + return ®s->orig_cmd1;
> + case NAND_DEV_CMD_VLD:
> + return ®s->vld;
> + case NAND_DEV_CMD_VLD_RESTORE:
> + return ®s->orig_vld;
> + case NAND_EBI2_ECC_BUF_CFG:
> + return ®s->ecc_buf_cfg;
> + case NAND_READ_LOCATION_0:
> + return ®s->read_location0;
> + case NAND_READ_LOCATION_1:
> + return ®s->read_location1;
> + case NAND_READ_LOCATION_2:
> + return ®s->read_location2;
> + case NAND_READ_LOCATION_3:
> + return ®s->read_location3;
> + case NAND_READ_LOCATION_LAST_CW_0:
> + return ®s->read_location_last0;
> + case NAND_READ_LOCATION_LAST_CW_1:
> + return ®s->read_location_last1;
> + case NAND_READ_LOCATION_LAST_CW_2:
> + return ®s->read_location_last2;
> + case NAND_READ_LOCATION_LAST_CW_3:
> + return ®s->read_location_last3;
> + default:
> + return NULL;
> + }
> +}
> +EXPORT_SYMBOL(offset_to_nandc_reg);
> +
> +/* reset the register read buffer for next NAND operation */
> +void clear_read_regs(struct qcom_nand_controller *nandc)
> +{
> + nandc->reg_read_pos = 0;
> + nandc_read_buffer_sync(nandc, false);
> +}
> +EXPORT_SYMBOL(clear_read_regs);
> +
> +int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
> + int reg_off, const void *vaddr, int size,
> + bool flow_control)
> +{
> + struct desc_info *desc;
> + struct dma_async_tx_descriptor *dma_desc;
> + struct scatterlist *sgl;
> + struct dma_slave_config slave_conf;
> + struct qcom_adm_peripheral_config periph_conf = {};
> + enum dma_transfer_direction dir_eng;
> + int ret;
> +
> + desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> + if (!desc)
> + return -ENOMEM;
> +
> + sgl = &desc->adm_sgl;
> +
> + sg_init_one(sgl, vaddr, size);
> +
> + if (read) {
> + dir_eng = DMA_DEV_TO_MEM;
> + desc->dir = DMA_FROM_DEVICE;
> + } else {
> + dir_eng = DMA_MEM_TO_DEV;
> + desc->dir = DMA_TO_DEVICE;
> + }
> +
> + ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
> + if (ret == 0) {
> + ret = -ENOMEM;
> + goto err;
> + }
> +
> + memset(&slave_conf, 0x00, sizeof(slave_conf));
> +
> + slave_conf.device_fc = flow_control;
> + if (read) {
> + slave_conf.src_maxburst = 16;
> + slave_conf.src_addr = nandc->base_dma + reg_off;
> + if (nandc->data_crci) {
> + periph_conf.crci = nandc->data_crci;
> + slave_conf.peripheral_config = &periph_conf;
> + slave_conf.peripheral_size = sizeof(periph_conf);
> + }
> + } else {
> + slave_conf.dst_maxburst = 16;
> + slave_conf.dst_addr = nandc->base_dma + reg_off;
> + if (nandc->cmd_crci) {
> + periph_conf.crci = nandc->cmd_crci;
> + slave_conf.peripheral_config = &periph_conf;
> + slave_conf.peripheral_size = sizeof(periph_conf);
> + }
> + }
> +
> + ret = dmaengine_slave_config(nandc->chan, &slave_conf);
> + if (ret) {
> + dev_err(nandc->dev, "failed to configure dma channel\n");
> + goto err;
> + }
> +
> + dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
> + if (!dma_desc) {
> + dev_err(nandc->dev, "failed to prepare desc\n");
> + ret = -EINVAL;
> + goto err;
> + }
> +
> + desc->dma_desc = dma_desc;
> +
> + list_add_tail(&desc->node, &nandc->desc_list);
> +
> + return 0;
> +err:
> + kfree(desc);
> +
> + return ret;
> +}
> +EXPORT_SYMBOL(prep_adm_dma_desc);
> +
> +/* helpers to submit/free our list of dma descriptors */
> +int submit_descs(struct qcom_nand_controller *nandc)
> +{
> + struct desc_info *desc, *n;
> + dma_cookie_t cookie = 0;
> + struct bam_transaction *bam_txn = nandc->bam_txn;
> + int ret = 0;
> +
> + if (nandc->props->is_bam) {
> + if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
> + ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
> + if (ret)
> + goto err_unmap_free_desc;
> + }
> +
> + if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
> + ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
> + DMA_PREP_INTERRUPT);
> + if (ret)
> + goto err_unmap_free_desc;
> + }
> +
> + if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
> + ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
> + DMA_PREP_CMD);
> + if (ret)
> + goto err_unmap_free_desc;
> + }
> + }
> +
> + list_for_each_entry(desc, &nandc->desc_list, node)
> + cookie = dmaengine_submit(desc->dma_desc);
> +
> + if (nandc->props->is_bam) {
> + bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
> + bam_txn->last_cmd_desc->callback_param = bam_txn;
> + if (bam_txn->last_data_desc) {
> + bam_txn->last_data_desc->callback = qpic_bam_dma_done;
> + bam_txn->last_data_desc->callback_param = bam_txn;
> + bam_txn->wait_second_completion = true;
> + }
> +
> + dma_async_issue_pending(nandc->tx_chan);
> + dma_async_issue_pending(nandc->rx_chan);
> + dma_async_issue_pending(nandc->cmd_chan);
> +
> + if (!wait_for_completion_timeout(&bam_txn->txn_done,
> + QPIC_NAND_COMPLETION_TIMEOUT))
> + ret = -ETIMEDOUT;
> + } else {
> + if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
> + ret = -ETIMEDOUT;
> + }
> +
> +err_unmap_free_desc:
> + /*
> + * Unmap the dma sg_list and free the desc allocated by both
> + * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
> + */
> + list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
> + list_del(&desc->node);
> +
> + if (nandc->props->is_bam)
> + dma_unmap_sg(nandc->dev, desc->bam_sgl,
> + desc->sgl_cnt, desc->dir);
> + else
> + dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
> + desc->dir);
> +
> + kfree(desc);
> + }
> +
> + return ret;
> +}
> +EXPORT_SYMBOL(submit_descs);
> +
> +/*
> + * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
> + * for BAM. This descriptor will be added in the NAND DMA descriptor queue
> + * which will be submitted to DMA engine.
> + */
> +int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
> + struct dma_chan *chan,
> + unsigned long flags)
> +{
> + struct desc_info *desc;
> + struct scatterlist *sgl;
> + unsigned int sgl_cnt;
> + int ret;
> + struct bam_transaction *bam_txn = nandc->bam_txn;
> + enum dma_transfer_direction dir_eng;
> + struct dma_async_tx_descriptor *dma_desc;
> +
> + desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> + if (!desc)
> + return -ENOMEM;
> +
> + if (chan == nandc->cmd_chan) {
> + sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
> + sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
> + bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
> + dir_eng = DMA_MEM_TO_DEV;
> + desc->dir = DMA_TO_DEVICE;
> + } else if (chan == nandc->tx_chan) {
> + sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
> + sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
> + bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
> + dir_eng = DMA_MEM_TO_DEV;
> + desc->dir = DMA_TO_DEVICE;
> + } else {
> + sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
> + sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
> + bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
> + dir_eng = DMA_DEV_TO_MEM;
> + desc->dir = DMA_FROM_DEVICE;
> + }
> +
> + sg_mark_end(sgl + sgl_cnt - 1);
> + ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
> + if (ret == 0) {
> + dev_err(nandc->dev, "failure in mapping desc\n");
> + kfree(desc);
> + return -ENOMEM;
> + }
> +
> + desc->sgl_cnt = sgl_cnt;
> + desc->bam_sgl = sgl;
> +
> + dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
> + flags);
> +
> + if (!dma_desc) {
> + dev_err(nandc->dev, "failure in prep desc\n");
> + dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
> + kfree(desc);
> + return -EINVAL;
> + }
> +
> + desc->dma_desc = dma_desc;
> +
> + /* update last data/command descriptor */
> + if (chan == nandc->cmd_chan)
> + bam_txn->last_cmd_desc = dma_desc;
> + else
> + bam_txn->last_data_desc = dma_desc;
> +
> + list_add_tail(&desc->node, &nandc->desc_list);
> +
> + return 0;
> +}
> +EXPORT_SYMBOL(prepare_bam_async_desc);
> +
> +/*
> + * Prepares the command descriptor for BAM DMA which will be used for NAND
> + * register reads and writes. The command descriptor requires the command
> + * to be formed in command element type so this function uses the command
> + * element from bam transaction ce array and fills the same with required
> + * data. A single SGL can contain multiple command elements so
> + * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
> + * after the current command element.
> + */
> +int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
> + int reg_off, const void *vaddr,
> + int size, unsigned int flags)
> +{
> + int bam_ce_size;
> + int i, ret;
> + struct bam_cmd_element *bam_ce_buffer;
> + struct bam_transaction *bam_txn = nandc->bam_txn;
> +
> + bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
> +
> + /* fill the command desc */
> + for (i = 0; i < size; i++) {
> + if (read)
> + bam_prep_ce(&bam_ce_buffer[i],
> + nandc_reg_phys(nandc, reg_off + 4 * i),
> + BAM_READ_COMMAND,
> + reg_buf_dma_addr(nandc,
> + (__le32 *)vaddr + i));
> + else
> + bam_prep_ce_le32(&bam_ce_buffer[i],
> + nandc_reg_phys(nandc, reg_off + 4 * i),
> + BAM_WRITE_COMMAND,
> + *((__le32 *)vaddr + i));
> + }
> +
> + bam_txn->bam_ce_pos += size;
> +
> + /* use the separate sgl after this command */
> + if (flags & NAND_BAM_NEXT_SGL) {
> + bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
> + bam_ce_size = (bam_txn->bam_ce_pos -
> + bam_txn->bam_ce_start) *
> + sizeof(struct bam_cmd_element);
> + sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
> + bam_ce_buffer, bam_ce_size);
> + bam_txn->cmd_sgl_pos++;
> + bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
> +
> + if (flags & NAND_BAM_NWD) {
> + ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
> + DMA_PREP_FENCE |
> + DMA_PREP_CMD);
> + if (ret)
> + return ret;
> + }
> + }
> +
> + return 0;
> +}
> +EXPORT_SYMBOL(prep_bam_dma_desc_cmd);
> +
> +/*
> + * Prepares the data descriptor for BAM DMA which will be used for NAND
> + * data reads and writes.
> + */
> +int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
> + const void *vaddr,
> + int size, unsigned int flags)
> +{
> + int ret;
> + struct bam_transaction *bam_txn = nandc->bam_txn;
> +
> + if (read) {
> + sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
> + vaddr, size);
> + bam_txn->rx_sgl_pos++;
> + } else {
> + sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
> + vaddr, size);
> + bam_txn->tx_sgl_pos++;
> +
> + /*
> + * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
> + * is not set, form the DMA descriptor
> + */
> + if (!(flags & NAND_BAM_NO_EOT)) {
> + ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
> + DMA_PREP_INTERRUPT);
> + if (ret)
> + return ret;
> + }
> + }
> +
> + return 0;
> +}
> +EXPORT_SYMBOL(prep_bam_dma_desc_data);
> +
> +/*
> + * read_reg_dma: prepares a descriptor to read a given number of
> + * contiguous registers to the reg_read_buf pointer
> + *
> + * @first: offset of the first register in the contiguous block
> + * @num_regs: number of registers to read
> + * @flags: flags to control DMA descriptor preparation
> + */
> +int read_reg_dma(struct qcom_nand_controller *nandc, int first,
> + int num_regs, unsigned int flags)
> +{
> + bool flow_control = false;
> + void *vaddr;
> +
> + vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
> + nandc->reg_read_pos += num_regs;
> +
> + if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
> + first = dev_cmd_reg_addr(nandc, first);
> +
> + if (nandc->props->is_bam)
> + return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
> + num_regs, flags);
> +
> + if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
> + flow_control = true;
> +
> + return prep_adm_dma_desc(nandc, true, first, vaddr,
> + num_regs * sizeof(u32), flow_control);
> +}
> +EXPORT_SYMBOL(read_reg_dma);
> +
> +/*
> + * write_reg_dma: prepares a descriptor to write a given number of
> + * contiguous registers
> + *
> + * @first: offset of the first register in the contiguous block
> + * @num_regs: number of registers to write
> + * @flags: flags to control DMA descriptor preparation
> + */
> +int write_reg_dma(struct qcom_nand_controller *nandc, int first,
> + int num_regs, unsigned int flags)
> +{
> + bool flow_control = false;
> + struct nandc_regs *regs = nandc->regs;
> + void *vaddr;
> +
> + vaddr = offset_to_nandc_reg(regs, first);
> +
> + if (first == NAND_ERASED_CW_DETECT_CFG) {
> + if (flags & NAND_ERASED_CW_SET)
> + vaddr = ®s->erased_cw_detect_cfg_set;
> + else
> + vaddr = ®s->erased_cw_detect_cfg_clr;
> + }
> +
> + if (first == NAND_EXEC_CMD)
> + flags |= NAND_BAM_NWD;
> +
> + if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
> + first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
> +
> + if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
> + first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
> +
> + if (nandc->props->is_bam)
> + return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
> + num_regs, flags);
> +
> + if (first == NAND_FLASH_CMD)
> + flow_control = true;
> +
> + return prep_adm_dma_desc(nandc, false, first, vaddr,
> + num_regs * sizeof(u32), flow_control);
> +}
> +EXPORT_SYMBOL(write_reg_dma);
> +
> +/*
> + * read_data_dma: prepares a DMA descriptor to transfer data from the
> + * controller's internal buffer to the buffer 'vaddr'
> + *
> + * @reg_off: offset within the controller's data buffer
> + * @vaddr: virtual address of the buffer we want to write to
> + * @size: DMA transaction size in bytes
> + * @flags: flags to control DMA descriptor preparation
> + */
> +int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> + const u8 *vaddr, int size, unsigned int flags)
> +{
> + if (nandc->props->is_bam)
> + return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
> +
> + return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
> +}
> +EXPORT_SYMBOL(read_data_dma);
> +
> +/*
> + * write_data_dma: prepares a DMA descriptor to transfer data from
> + * 'vaddr' to the controller's internal buffer
> + *
> + * @reg_off: offset within the controller's data buffer
> + * @vaddr: virtual address of the buffer we want to read from
> + * @size: DMA transaction size in bytes
> + * @flags: flags to control DMA descriptor preparation
> + */
> +int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> + const u8 *vaddr, int size, unsigned int flags)
> +{
> + if (nandc->props->is_bam)
> + return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
> +
> + return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
> +}
> +EXPORT_SYMBOL(write_data_dma);
> +
> +/* Allocates and Initializes the BAM transaction */
> +struct bam_transaction *
> +alloc_bam_transaction(struct qcom_nand_controller *nandc)
> +{
> + struct bam_transaction *bam_txn;
> + size_t bam_txn_size;
> + unsigned int num_cw = nandc->max_cwperpage;
> + void *bam_txn_buf;
> +
> + bam_txn_size =
> + sizeof(*bam_txn) + num_cw *
> + ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
> + (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
> + (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
> +
> + bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
> + if (!bam_txn_buf)
> + return NULL;
> +
> + bam_txn = bam_txn_buf;
> + bam_txn_buf += sizeof(*bam_txn);
> +
> + bam_txn->bam_ce = bam_txn_buf;
> + bam_txn_buf +=
> + sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
> +
> + bam_txn->cmd_sgl = bam_txn_buf;
> + bam_txn_buf +=
> + sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
> +
> + bam_txn->data_sgl = bam_txn_buf;
> +
> + init_completion(&bam_txn->txn_done);
> +
> + return bam_txn;
> +}
> +EXPORT_SYMBOL(alloc_bam_transaction);
> +
> +/* Clears the BAM transaction indexes */
> +void clear_bam_transaction(struct qcom_nand_controller *nandc)
> +{
> + struct bam_transaction *bam_txn = nandc->bam_txn;
> +
> + if (!nandc->props->is_bam)
> + return;
> +
> + bam_txn->bam_ce_pos = 0;
> + bam_txn->bam_ce_start = 0;
> + bam_txn->cmd_sgl_pos = 0;
> + bam_txn->cmd_sgl_start = 0;
> + bam_txn->tx_sgl_pos = 0;
> + bam_txn->tx_sgl_start = 0;
> + bam_txn->rx_sgl_pos = 0;
> + bam_txn->rx_sgl_start = 0;
> + bam_txn->last_data_desc = NULL;
> + bam_txn->wait_second_completion = false;
> +
> + sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
> + QPIC_PER_CW_CMD_SGL);
> + sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
> + QPIC_PER_CW_DATA_SGL);
> +
> + reinit_completion(&bam_txn->txn_done);
> +}
> +EXPORT_SYMBOL(clear_bam_transaction);
> +
> +void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
> +{
> + if (nandc->props->is_bam) {
> + if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
> + dma_unmap_single(nandc->dev, nandc->reg_read_dma,
> + MAX_REG_RD *
> + sizeof(*nandc->reg_read_buf),
> + DMA_FROM_DEVICE);
> +
> + if (nandc->tx_chan)
> + dma_release_channel(nandc->tx_chan);
> +
> + if (nandc->rx_chan)
> + dma_release_channel(nandc->rx_chan);
> +
> + if (nandc->cmd_chan)
> + dma_release_channel(nandc->cmd_chan);
> + } else {
> + if (nandc->chan)
> + dma_release_channel(nandc->chan);
> + }
> +}
> +EXPORT_SYMBOL(qcom_nandc_unalloc);
> +
> +int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
> +{
> + int ret;
> +
> + ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
> + if (ret) {
> + dev_err(nandc->dev, "failed to set DMA mask\n");
> + return ret;
> + }
> +
> + /*
> + * we use the internal buffer for reading ONFI params, reading small
> + * data like ID and status, and preforming read-copy-write operations
> + * when writing to a codeword partially. 532 is the maximum possible
> + * size of a codeword for our nand controller
> + */
> + nandc->buf_size = 532;
> +
> + nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
> + if (!nandc->data_buffer)
> + return -ENOMEM;
> +
> + nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
> + if (!nandc->regs)
> + return -ENOMEM;
> +
> + nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
> + sizeof(*nandc->reg_read_buf),
> + GFP_KERNEL);
> + if (!nandc->reg_read_buf)
> + return -ENOMEM;
> +
> + if (nandc->props->is_bam) {
> + nandc->reg_read_dma =
> + dma_map_single(nandc->dev, nandc->reg_read_buf,
> + MAX_REG_RD *
> + sizeof(*nandc->reg_read_buf),
> + DMA_FROM_DEVICE);
> + if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
> + dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
> + return -EIO;
> + }
> +
> + nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
> + if (IS_ERR(nandc->tx_chan)) {
> + ret = PTR_ERR(nandc->tx_chan);
> + nandc->tx_chan = NULL;
> + dev_err_probe(nandc->dev, ret,
> + "tx DMA channel request failed\n");
> + goto unalloc;
> + }
> +
> + nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
> + if (IS_ERR(nandc->rx_chan)) {
> + ret = PTR_ERR(nandc->rx_chan);
> + nandc->rx_chan = NULL;
> + dev_err_probe(nandc->dev, ret,
> + "rx DMA channel request failed\n");
> + goto unalloc;
> + }
> +
> + nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
> + if (IS_ERR(nandc->cmd_chan)) {
> + ret = PTR_ERR(nandc->cmd_chan);
> + nandc->cmd_chan = NULL;
> + dev_err_probe(nandc->dev, ret,
> + "cmd DMA channel request failed\n");
> + goto unalloc;
> + }
> +
> + /*
> + * Initially allocate BAM transaction to read ONFI param page.
> + * After detecting all the devices, this BAM transaction will
> + * be freed and the next BAM transaction will be allocated with
> + * maximum codeword size
> + */
> + nandc->max_cwperpage = 1;
> + nandc->bam_txn = alloc_bam_transaction(nandc);
> + if (!nandc->bam_txn) {
> + dev_err(nandc->dev,
> + "failed to allocate bam transaction\n");
> + ret = -ENOMEM;
> + goto unalloc;
> + }
> + } else {
> + nandc->chan = dma_request_chan(nandc->dev, "rxtx");
> + if (IS_ERR(nandc->chan)) {
> + ret = PTR_ERR(nandc->chan);
> + nandc->chan = NULL;
> + dev_err_probe(nandc->dev, ret,
> + "rxtx DMA channel request failed\n");
> + return ret;
> + }
> + }
> +
> + INIT_LIST_HEAD(&nandc->desc_list);
> + INIT_LIST_HEAD(&nandc->host_list);
> +
> + return 0;
> +unalloc:
> + qcom_nandc_unalloc(nandc);
> + return ret;
> +}
> +EXPORT_SYMBOL(qcom_nandc_alloc);
> diff --git a/drivers/mtd/nand/raw/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c
> index b079605c84d3..75c6ca698c85 100644
> --- a/drivers/mtd/nand/raw/qcom_nandc.c
> +++ b/drivers/mtd/nand/raw/qcom_nandc.c
> @@ -2,186 +2,7 @@
> /*
> * Copyright (c) 2016, The Linux Foundation. All rights reserved.
> */
> -#include <linux/bitops.h>
> -#include <linux/clk.h>
> -#include <linux/delay.h>
> -#include <linux/dmaengine.h>
> -#include <linux/dma-mapping.h>
> -#include <linux/dma/qcom_adm.h>
> -#include <linux/dma/qcom_bam_dma.h>
> -#include <linux/module.h>
> -#include <linux/mtd/partitions.h>
> -#include <linux/mtd/rawnand.h>
> -#include <linux/of.h>
> -#include <linux/platform_device.h>
> -#include <linux/slab.h>
> -
> -/* NANDc reg offsets */
> -#define NAND_FLASH_CMD 0x00
> -#define NAND_ADDR0 0x04
> -#define NAND_ADDR1 0x08
> -#define NAND_FLASH_CHIP_SELECT 0x0c
> -#define NAND_EXEC_CMD 0x10
> -#define NAND_FLASH_STATUS 0x14
> -#define NAND_BUFFER_STATUS 0x18
> -#define NAND_DEV0_CFG0 0x20
> -#define NAND_DEV0_CFG1 0x24
> -#define NAND_DEV0_ECC_CFG 0x28
> -#define NAND_AUTO_STATUS_EN 0x2c
> -#define NAND_DEV1_CFG0 0x30
> -#define NAND_DEV1_CFG1 0x34
> -#define NAND_READ_ID 0x40
> -#define NAND_READ_STATUS 0x44
> -#define NAND_DEV_CMD0 0xa0
> -#define NAND_DEV_CMD1 0xa4
> -#define NAND_DEV_CMD2 0xa8
> -#define NAND_DEV_CMD_VLD 0xac
> -#define SFLASHC_BURST_CFG 0xe0
> -#define NAND_ERASED_CW_DETECT_CFG 0xe8
> -#define NAND_ERASED_CW_DETECT_STATUS 0xec
> -#define NAND_EBI2_ECC_BUF_CFG 0xf0
> -#define FLASH_BUF_ACC 0x100
> -
> -#define NAND_CTRL 0xf00
> -#define NAND_VERSION 0xf08
> -#define NAND_READ_LOCATION_0 0xf20
> -#define NAND_READ_LOCATION_1 0xf24
> -#define NAND_READ_LOCATION_2 0xf28
> -#define NAND_READ_LOCATION_3 0xf2c
> -#define NAND_READ_LOCATION_LAST_CW_0 0xf40
> -#define NAND_READ_LOCATION_LAST_CW_1 0xf44
> -#define NAND_READ_LOCATION_LAST_CW_2 0xf48
> -#define NAND_READ_LOCATION_LAST_CW_3 0xf4c
> -
> -/* dummy register offsets, used by write_reg_dma */
> -#define NAND_DEV_CMD1_RESTORE 0xdead
> -#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
> -
> -/* NAND_FLASH_CMD bits */
> -#define PAGE_ACC BIT(4)
> -#define LAST_PAGE BIT(5)
> -
> -/* NAND_FLASH_CHIP_SELECT bits */
> -#define NAND_DEV_SEL 0
> -#define DM_EN BIT(2)
> -
> -/* NAND_FLASH_STATUS bits */
> -#define FS_OP_ERR BIT(4)
> -#define FS_READY_BSY_N BIT(5)
> -#define FS_MPU_ERR BIT(8)
> -#define FS_DEVICE_STS_ERR BIT(16)
> -#define FS_DEVICE_WP BIT(23)
> -
> -/* NAND_BUFFER_STATUS bits */
> -#define BS_UNCORRECTABLE_BIT BIT(8)
> -#define BS_CORRECTABLE_ERR_MSK 0x1f
> -
> -/* NAND_DEVn_CFG0 bits */
> -#define DISABLE_STATUS_AFTER_WRITE 4
> -#define CW_PER_PAGE 6
> -#define UD_SIZE_BYTES 9
> -#define UD_SIZE_BYTES_MASK GENMASK(18, 9)
> -#define ECC_PARITY_SIZE_BYTES_RS 19
> -#define SPARE_SIZE_BYTES 23
> -#define SPARE_SIZE_BYTES_MASK GENMASK(26, 23)
> -#define NUM_ADDR_CYCLES 27
> -#define STATUS_BFR_READ 30
> -#define SET_RD_MODE_AFTER_STATUS 31
> -
> -/* NAND_DEVn_CFG0 bits */
> -#define DEV0_CFG1_ECC_DISABLE 0
> -#define WIDE_FLASH 1
> -#define NAND_RECOVERY_CYCLES 2
> -#define CS_ACTIVE_BSY 5
> -#define BAD_BLOCK_BYTE_NUM 6
> -#define BAD_BLOCK_IN_SPARE_AREA 16
> -#define WR_RD_BSY_GAP 17
> -#define ENABLE_BCH_ECC 27
> -
> -/* NAND_DEV0_ECC_CFG bits */
> -#define ECC_CFG_ECC_DISABLE 0
> -#define ECC_SW_RESET 1
> -#define ECC_MODE 4
> -#define ECC_PARITY_SIZE_BYTES_BCH 8
> -#define ECC_NUM_DATA_BYTES 16
> -#define ECC_NUM_DATA_BYTES_MASK GENMASK(25, 16)
> -#define ECC_FORCE_CLK_OPEN 30
> -
> -/* NAND_DEV_CMD1 bits */
> -#define READ_ADDR 0
> -
> -/* NAND_DEV_CMD_VLD bits */
> -#define READ_START_VLD BIT(0)
> -#define READ_STOP_VLD BIT(1)
> -#define WRITE_START_VLD BIT(2)
> -#define ERASE_START_VLD BIT(3)
> -#define SEQ_READ_START_VLD BIT(4)
> -
> -/* NAND_EBI2_ECC_BUF_CFG bits */
> -#define NUM_STEPS 0
> -
> -/* NAND_ERASED_CW_DETECT_CFG bits */
> -#define ERASED_CW_ECC_MASK 1
> -#define AUTO_DETECT_RES 0
> -#define MASK_ECC BIT(ERASED_CW_ECC_MASK)
> -#define RESET_ERASED_DET BIT(AUTO_DETECT_RES)
> -#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
> -#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
> -#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
> -
> -/* NAND_ERASED_CW_DETECT_STATUS bits */
> -#define PAGE_ALL_ERASED BIT(7)
> -#define CODEWORD_ALL_ERASED BIT(6)
> -#define PAGE_ERASED BIT(5)
> -#define CODEWORD_ERASED BIT(4)
> -#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
> -#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
> -
> -/* NAND_READ_LOCATION_n bits */
> -#define READ_LOCATION_OFFSET 0
> -#define READ_LOCATION_SIZE 16
> -#define READ_LOCATION_LAST 31
> -
> -/* Version Mask */
> -#define NAND_VERSION_MAJOR_MASK 0xf0000000
> -#define NAND_VERSION_MAJOR_SHIFT 28
> -#define NAND_VERSION_MINOR_MASK 0x0fff0000
> -#define NAND_VERSION_MINOR_SHIFT 16
> -
> -/* NAND OP_CMDs */
> -#define OP_PAGE_READ 0x2
> -#define OP_PAGE_READ_WITH_ECC 0x3
> -#define OP_PAGE_READ_WITH_ECC_SPARE 0x4
> -#define OP_PAGE_READ_ONFI_READ 0x5
> -#define OP_PROGRAM_PAGE 0x6
> -#define OP_PAGE_PROGRAM_WITH_ECC 0x7
> -#define OP_PROGRAM_PAGE_SPARE 0x9
> -#define OP_BLOCK_ERASE 0xa
> -#define OP_CHECK_STATUS 0xc
> -#define OP_FETCH_ID 0xb
> -#define OP_RESET_DEVICE 0xd
> -
> -/* Default Value for NAND_DEV_CMD_VLD */
> -#define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
> - ERASE_START_VLD | SEQ_READ_START_VLD)
> -
> -/* NAND_CTRL bits */
> -#define BAM_MODE_EN BIT(0)
> -
> -/*
> - * the NAND controller performs reads/writes with ECC in 516 byte chunks.
> - * the driver calls the chunks 'step' or 'codeword' interchangeably
> - */
> -#define NANDC_STEP_SIZE 512
> -
> -/*
> - * the largest page size we support is 8K, this will have 16 steps/codewords
> - * of 512 bytes each
> - */
> -#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
> -
> -/* we read at most 3 registers per codeword scan */
> -#define MAX_REG_RD (3 * MAX_NUM_STEPS)
> +#include <linux/mtd/nand-qpic-common.h>
>
> /* ECC modes supported by the controller */
> #define ECC_NONE BIT(0)
> @@ -200,247 +21,6 @@ nandc_set_reg(chip, reg, \
> ((cw_offset) << READ_LOCATION_OFFSET) | \
> ((read_size) << READ_LOCATION_SIZE) | \
> ((is_last_read_loc) << READ_LOCATION_LAST))
> -/*
> - * Returns the actual register address for all NAND_DEV_ registers
> - * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
> - */
> -#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
> -
> -/* Returns the NAND register physical address */
> -#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
> -
> -/* Returns the dma address for reg read buffer */
> -#define reg_buf_dma_addr(chip, vaddr) \
> - ((chip)->reg_read_dma + \
> - ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
> -
> -#define QPIC_PER_CW_CMD_ELEMENTS 32
> -#define QPIC_PER_CW_CMD_SGL 32
> -#define QPIC_PER_CW_DATA_SGL 8
> -
> -#define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
> -
> -/*
> - * Flags used in DMA descriptor preparation helper functions
> - * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
> - */
> -/* Don't set the EOT in current tx BAM sgl */
> -#define NAND_BAM_NO_EOT BIT(0)
> -/* Set the NWD flag in current BAM sgl */
> -#define NAND_BAM_NWD BIT(1)
> -/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
> -#define NAND_BAM_NEXT_SGL BIT(2)
> -/*
> - * Erased codeword status is being used two times in single transfer so this
> - * flag will determine the current value of erased codeword status register
> - */
> -#define NAND_ERASED_CW_SET BIT(4)
> -
> -#define MAX_ADDRESS_CYCLE 5
> -
> -/*
> - * This data type corresponds to the BAM transaction which will be used for all
> - * NAND transfers.
> - * @bam_ce - the array of BAM command elements
> - * @cmd_sgl - sgl for NAND BAM command pipe
> - * @data_sgl - sgl for NAND BAM consumer/producer pipe
> - * @last_data_desc - last DMA desc in data channel (tx/rx).
> - * @last_cmd_desc - last DMA desc in command channel.
> - * @txn_done - completion for NAND transfer.
> - * @bam_ce_pos - the index in bam_ce which is available for next sgl
> - * @bam_ce_start - the index in bam_ce which marks the start position ce
> - * for current sgl. It will be used for size calculation
> - * for current sgl
> - * @cmd_sgl_pos - current index in command sgl.
> - * @cmd_sgl_start - start index in command sgl.
> - * @tx_sgl_pos - current index in data sgl for tx.
> - * @tx_sgl_start - start index in data sgl for tx.
> - * @rx_sgl_pos - current index in data sgl for rx.
> - * @rx_sgl_start - start index in data sgl for rx.
> - * @wait_second_completion - wait for second DMA desc completion before making
> - * the NAND transfer completion.
> - */
> -struct bam_transaction {
> - struct bam_cmd_element *bam_ce;
> - struct scatterlist *cmd_sgl;
> - struct scatterlist *data_sgl;
> - struct dma_async_tx_descriptor *last_data_desc;
> - struct dma_async_tx_descriptor *last_cmd_desc;
> - struct completion txn_done;
> - u32 bam_ce_pos;
> - u32 bam_ce_start;
> - u32 cmd_sgl_pos;
> - u32 cmd_sgl_start;
> - u32 tx_sgl_pos;
> - u32 tx_sgl_start;
> - u32 rx_sgl_pos;
> - u32 rx_sgl_start;
> - bool wait_second_completion;
> -};
> -
> -/*
> - * This data type corresponds to the nand dma descriptor
> - * @dma_desc - low level DMA engine descriptor
> - * @list - list for desc_info
> - *
> - * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
> - * ADM
> - * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
> - * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
> - * @dir - DMA transfer direction
> - */
> -struct desc_info {
> - struct dma_async_tx_descriptor *dma_desc;
> - struct list_head node;
> -
> - union {
> - struct scatterlist adm_sgl;
> - struct {
> - struct scatterlist *bam_sgl;
> - int sgl_cnt;
> - };
> - };
> - enum dma_data_direction dir;
> -};
> -
> -/*
> - * holds the current register values that we want to write. acts as a contiguous
> - * chunk of memory which we use to write the controller registers through DMA.
> - */
> -struct nandc_regs {
> - __le32 cmd;
> - __le32 addr0;
> - __le32 addr1;
> - __le32 chip_sel;
> - __le32 exec;
> -
> - __le32 cfg0;
> - __le32 cfg1;
> - __le32 ecc_bch_cfg;
> -
> - __le32 clrflashstatus;
> - __le32 clrreadstatus;
> -
> - __le32 cmd1;
> - __le32 vld;
> -
> - __le32 orig_cmd1;
> - __le32 orig_vld;
> -
> - __le32 ecc_buf_cfg;
> - __le32 read_location0;
> - __le32 read_location1;
> - __le32 read_location2;
> - __le32 read_location3;
> - __le32 read_location_last0;
> - __le32 read_location_last1;
> - __le32 read_location_last2;
> - __le32 read_location_last3;
> -
> - __le32 erased_cw_detect_cfg_clr;
> - __le32 erased_cw_detect_cfg_set;
> -};
> -
> -/*
> - * NAND controller data struct
> - *
> - * @dev: parent device
> - *
> - * @base: MMIO base
> - *
> - * @core_clk: controller clock
> - * @aon_clk: another controller clock
> - *
> - * @regs: a contiguous chunk of memory for DMA register
> - * writes. contains the register values to be
> - * written to controller
> - *
> - * @props: properties of current NAND controller,
> - * initialized via DT match data
> - *
> - * @controller: base controller structure
> - * @host_list: list containing all the chips attached to the
> - * controller
> - *
> - * @chan: dma channel
> - * @cmd_crci: ADM DMA CRCI for command flow control
> - * @data_crci: ADM DMA CRCI for data flow control
> - *
> - * @desc_list: DMA descriptor list (list of desc_infos)
> - *
> - * @data_buffer: our local DMA buffer for page read/writes,
> - * used when we can't use the buffer provided
> - * by upper layers directly
> - * @reg_read_buf: local buffer for reading back registers via DMA
> - *
> - * @base_phys: physical base address of controller registers
> - * @base_dma: dma base address of controller registers
> - * @reg_read_dma: contains dma address for register read buffer
> - *
> - * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf
> - * functions
> - * @max_cwperpage: maximum QPIC codewords required. calculated
> - * from all connected NAND devices pagesize
> - *
> - * @reg_read_pos: marker for data read in reg_read_buf
> - *
> - * @cmd1/vld: some fixed controller register values
> - *
> - * @exec_opwrite: flag to select correct number of code word
> - * while reading status
> - */
> -struct qcom_nand_controller {
> - struct device *dev;
> -
> - void __iomem *base;
> -
> - struct clk *core_clk;
> - struct clk *aon_clk;
> -
> - struct nandc_regs *regs;
> - struct bam_transaction *bam_txn;
> -
> - const struct qcom_nandc_props *props;
> -
> - struct nand_controller controller;
> - struct list_head host_list;
> -
> - union {
> - /* will be used only by QPIC for BAM DMA */
> - struct {
> - struct dma_chan *tx_chan;
> - struct dma_chan *rx_chan;
> - struct dma_chan *cmd_chan;
> - };
> -
> - /* will be used only by EBI2 for ADM DMA */
> - struct {
> - struct dma_chan *chan;
> - unsigned int cmd_crci;
> - unsigned int data_crci;
> - };
> - };
> -
> - struct list_head desc_list;
> -
> - u8 *data_buffer;
> - __le32 *reg_read_buf;
> -
> - phys_addr_t base_phys;
> - dma_addr_t base_dma;
> - dma_addr_t reg_read_dma;
> -
> - int buf_size;
> - int buf_count;
> - int buf_start;
> - unsigned int max_cwperpage;
> -
> - int reg_read_pos;
> -
> - u32 cmd1, vld;
> - bool exec_opwrite;
> -};
> -
> /*
> * NAND special boot partitions
> *
> @@ -544,113 +124,17 @@ struct qcom_nand_host {
> bool bch_enabled;
> };
>
> -/*
> - * This data type corresponds to the NAND controller properties which varies
> - * among different NAND controllers.
> - * @ecc_modes - ecc mode for NAND
> - * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
> - * @is_bam - whether NAND controller is using BAM
> - * @is_qpic - whether NAND CTRL is part of qpic IP
> - * @qpic_v2 - flag to indicate QPIC IP version 2
> - * @use_codeword_fixup - whether NAND has different layout for boot partitions
> - */
> -struct qcom_nandc_props {
> - u32 ecc_modes;
> - u32 dev_cmd_reg_start;
> - bool is_bam;
> - bool is_qpic;
> - bool qpic_v2;
> - bool use_codeword_fixup;
> -};
> -
> -/* Frees the BAM transaction memory */
> -static void free_bam_transaction(struct qcom_nand_controller *nandc)
> -{
> - struct bam_transaction *bam_txn = nandc->bam_txn;
> -
> - devm_kfree(nandc->dev, bam_txn);
> -}
> -
> -/* Allocates and Initializes the BAM transaction */
> -static struct bam_transaction *
> -alloc_bam_transaction(struct qcom_nand_controller *nandc)
> -{
> - struct bam_transaction *bam_txn;
> - size_t bam_txn_size;
> - unsigned int num_cw = nandc->max_cwperpage;
> - void *bam_txn_buf;
> -
> - bam_txn_size =
> - sizeof(*bam_txn) + num_cw *
> - ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
> - (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
> - (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
> -
> - bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
> - if (!bam_txn_buf)
> - return NULL;
> -
> - bam_txn = bam_txn_buf;
> - bam_txn_buf += sizeof(*bam_txn);
> -
> - bam_txn->bam_ce = bam_txn_buf;
> - bam_txn_buf +=
> - sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
> -
> - bam_txn->cmd_sgl = bam_txn_buf;
> - bam_txn_buf +=
> - sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
> -
> - bam_txn->data_sgl = bam_txn_buf;
> -
> - init_completion(&bam_txn->txn_done);
> -
> - return bam_txn;
> -}
> -
> -/* Clears the BAM transaction indexes */
> -static void clear_bam_transaction(struct qcom_nand_controller *nandc)
> +static void nandc_set_reg(struct nand_chip *chip, int offset,
> + u32 val)
> {
> - struct bam_transaction *bam_txn = nandc->bam_txn;
> -
> - if (!nandc->props->is_bam)
> - return;
> -
> - bam_txn->bam_ce_pos = 0;
> - bam_txn->bam_ce_start = 0;
> - bam_txn->cmd_sgl_pos = 0;
> - bam_txn->cmd_sgl_start = 0;
> - bam_txn->tx_sgl_pos = 0;
> - bam_txn->tx_sgl_start = 0;
> - bam_txn->rx_sgl_pos = 0;
> - bam_txn->rx_sgl_start = 0;
> - bam_txn->last_data_desc = NULL;
> - bam_txn->wait_second_completion = false;
> -
> - sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
> - QPIC_PER_CW_CMD_SGL);
> - sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
> - QPIC_PER_CW_DATA_SGL);
> -
> - reinit_completion(&bam_txn->txn_done);
> -}
> + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> + struct nandc_regs *regs = nandc->regs;
> + __le32 *reg;
>
> -/* Callback for DMA descriptor completion */
> -static void qpic_bam_dma_done(void *data)
> -{
> - struct bam_transaction *bam_txn = data;
> + reg = offset_to_nandc_reg(regs, offset);
>
> - /*
> - * In case of data transfer with NAND, 2 callbacks will be generated.
> - * One for command channel and another one for data channel.
> - * If current transaction has data descriptors
> - * (i.e. wait_second_completion is true), then set this to false
> - * and wait for second DMA descriptor completion.
> - */
> - if (bam_txn->wait_second_completion)
> - bam_txn->wait_second_completion = false;
> - else
> - complete(&bam_txn->txn_done);
> + if (reg)
> + *reg = cpu_to_le32(val);
> }
>
> static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
> @@ -658,13 +142,6 @@ static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
> return container_of(chip, struct qcom_nand_host, chip);
> }
>
> -static inline struct qcom_nand_controller *
> -get_qcom_nand_controller(struct nand_chip *chip)
> -{
> - return container_of(chip->controller, struct qcom_nand_controller,
> - controller);
> -}
> -
> static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
> {
> return ioread32(nandc->base + offset);
> @@ -676,91 +153,6 @@ static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
> iowrite32(val, nandc->base + offset);
> }
>
> -static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
> - bool is_cpu)
> -{
> - if (!nandc->props->is_bam)
> - return;
> -
> - if (is_cpu)
> - dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
> - MAX_REG_RD *
> - sizeof(*nandc->reg_read_buf),
> - DMA_FROM_DEVICE);
> - else
> - dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
> - MAX_REG_RD *
> - sizeof(*nandc->reg_read_buf),
> - DMA_FROM_DEVICE);
> -}
> -
> -static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
> -{
> - switch (offset) {
> - case NAND_FLASH_CMD:
> - return ®s->cmd;
> - case NAND_ADDR0:
> - return ®s->addr0;
> - case NAND_ADDR1:
> - return ®s->addr1;
> - case NAND_FLASH_CHIP_SELECT:
> - return ®s->chip_sel;
> - case NAND_EXEC_CMD:
> - return ®s->exec;
> - case NAND_FLASH_STATUS:
> - return ®s->clrflashstatus;
> - case NAND_DEV0_CFG0:
> - return ®s->cfg0;
> - case NAND_DEV0_CFG1:
> - return ®s->cfg1;
> - case NAND_DEV0_ECC_CFG:
> - return ®s->ecc_bch_cfg;
> - case NAND_READ_STATUS:
> - return ®s->clrreadstatus;
> - case NAND_DEV_CMD1:
> - return ®s->cmd1;
> - case NAND_DEV_CMD1_RESTORE:
> - return ®s->orig_cmd1;
> - case NAND_DEV_CMD_VLD:
> - return ®s->vld;
> - case NAND_DEV_CMD_VLD_RESTORE:
> - return ®s->orig_vld;
> - case NAND_EBI2_ECC_BUF_CFG:
> - return ®s->ecc_buf_cfg;
> - case NAND_READ_LOCATION_0:
> - return ®s->read_location0;
> - case NAND_READ_LOCATION_1:
> - return ®s->read_location1;
> - case NAND_READ_LOCATION_2:
> - return ®s->read_location2;
> - case NAND_READ_LOCATION_3:
> - return ®s->read_location3;
> - case NAND_READ_LOCATION_LAST_CW_0:
> - return ®s->read_location_last0;
> - case NAND_READ_LOCATION_LAST_CW_1:
> - return ®s->read_location_last1;
> - case NAND_READ_LOCATION_LAST_CW_2:
> - return ®s->read_location_last2;
> - case NAND_READ_LOCATION_LAST_CW_3:
> - return ®s->read_location_last3;
> - default:
> - return NULL;
> - }
> -}
> -
> -static void nandc_set_reg(struct nand_chip *chip, int offset,
> - u32 val)
> -{
> - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> - struct nandc_regs *regs = nandc->regs;
> - __le32 *reg;
> -
> - reg = offset_to_nandc_reg(regs, offset);
> -
> - if (reg)
> - *reg = cpu_to_le32(val);
> -}
> -
> /* Helper to check the code word, whether it is last cw or not */
> static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
> {
> @@ -852,383 +244,6 @@ static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, i
> host->cw_data : host->cw_size, 1);
> }
>
> -/*
> - * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
> - * for BAM. This descriptor will be added in the NAND DMA descriptor queue
> - * which will be submitted to DMA engine.
> - */
> -static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
> - struct dma_chan *chan,
> - unsigned long flags)
> -{
> - struct desc_info *desc;
> - struct scatterlist *sgl;
> - unsigned int sgl_cnt;
> - int ret;
> - struct bam_transaction *bam_txn = nandc->bam_txn;
> - enum dma_transfer_direction dir_eng;
> - struct dma_async_tx_descriptor *dma_desc;
> -
> - desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> - if (!desc)
> - return -ENOMEM;
> -
> - if (chan == nandc->cmd_chan) {
> - sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
> - sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
> - bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
> - dir_eng = DMA_MEM_TO_DEV;
> - desc->dir = DMA_TO_DEVICE;
> - } else if (chan == nandc->tx_chan) {
> - sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
> - sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
> - bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
> - dir_eng = DMA_MEM_TO_DEV;
> - desc->dir = DMA_TO_DEVICE;
> - } else {
> - sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
> - sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
> - bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
> - dir_eng = DMA_DEV_TO_MEM;
> - desc->dir = DMA_FROM_DEVICE;
> - }
> -
> - sg_mark_end(sgl + sgl_cnt - 1);
> - ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
> - if (ret == 0) {
> - dev_err(nandc->dev, "failure in mapping desc\n");
> - kfree(desc);
> - return -ENOMEM;
> - }
> -
> - desc->sgl_cnt = sgl_cnt;
> - desc->bam_sgl = sgl;
> -
> - dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
> - flags);
> -
> - if (!dma_desc) {
> - dev_err(nandc->dev, "failure in prep desc\n");
> - dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
> - kfree(desc);
> - return -EINVAL;
> - }
> -
> - desc->dma_desc = dma_desc;
> -
> - /* update last data/command descriptor */
> - if (chan == nandc->cmd_chan)
> - bam_txn->last_cmd_desc = dma_desc;
> - else
> - bam_txn->last_data_desc = dma_desc;
> -
> - list_add_tail(&desc->node, &nandc->desc_list);
> -
> - return 0;
> -}
> -
> -/*
> - * Prepares the command descriptor for BAM DMA which will be used for NAND
> - * register reads and writes. The command descriptor requires the command
> - * to be formed in command element type so this function uses the command
> - * element from bam transaction ce array and fills the same with required
> - * data. A single SGL can contain multiple command elements so
> - * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
> - * after the current command element.
> - */
> -static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
> - int reg_off, const void *vaddr,
> - int size, unsigned int flags)
> -{
> - int bam_ce_size;
> - int i, ret;
> - struct bam_cmd_element *bam_ce_buffer;
> - struct bam_transaction *bam_txn = nandc->bam_txn;
> -
> - bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
> -
> - /* fill the command desc */
> - for (i = 0; i < size; i++) {
> - if (read)
> - bam_prep_ce(&bam_ce_buffer[i],
> - nandc_reg_phys(nandc, reg_off + 4 * i),
> - BAM_READ_COMMAND,
> - reg_buf_dma_addr(nandc,
> - (__le32 *)vaddr + i));
> - else
> - bam_prep_ce_le32(&bam_ce_buffer[i],
> - nandc_reg_phys(nandc, reg_off + 4 * i),
> - BAM_WRITE_COMMAND,
> - *((__le32 *)vaddr + i));
> - }
> -
> - bam_txn->bam_ce_pos += size;
> -
> - /* use the separate sgl after this command */
> - if (flags & NAND_BAM_NEXT_SGL) {
> - bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
> - bam_ce_size = (bam_txn->bam_ce_pos -
> - bam_txn->bam_ce_start) *
> - sizeof(struct bam_cmd_element);
> - sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
> - bam_ce_buffer, bam_ce_size);
> - bam_txn->cmd_sgl_pos++;
> - bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
> -
> - if (flags & NAND_BAM_NWD) {
> - ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
> - DMA_PREP_FENCE |
> - DMA_PREP_CMD);
> - if (ret)
> - return ret;
> - }
> - }
> -
> - return 0;
> -}
> -
> -/*
> - * Prepares the data descriptor for BAM DMA which will be used for NAND
> - * data reads and writes.
> - */
> -static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
> - const void *vaddr,
> - int size, unsigned int flags)
> -{
> - int ret;
> - struct bam_transaction *bam_txn = nandc->bam_txn;
> -
> - if (read) {
> - sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
> - vaddr, size);
> - bam_txn->rx_sgl_pos++;
> - } else {
> - sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
> - vaddr, size);
> - bam_txn->tx_sgl_pos++;
> -
> - /*
> - * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
> - * is not set, form the DMA descriptor
> - */
> - if (!(flags & NAND_BAM_NO_EOT)) {
> - ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
> - DMA_PREP_INTERRUPT);
> - if (ret)
> - return ret;
> - }
> - }
> -
> - return 0;
> -}
> -
> -static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
> - int reg_off, const void *vaddr, int size,
> - bool flow_control)
> -{
> - struct desc_info *desc;
> - struct dma_async_tx_descriptor *dma_desc;
> - struct scatterlist *sgl;
> - struct dma_slave_config slave_conf;
> - struct qcom_adm_peripheral_config periph_conf = {};
> - enum dma_transfer_direction dir_eng;
> - int ret;
> -
> - desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> - if (!desc)
> - return -ENOMEM;
> -
> - sgl = &desc->adm_sgl;
> -
> - sg_init_one(sgl, vaddr, size);
> -
> - if (read) {
> - dir_eng = DMA_DEV_TO_MEM;
> - desc->dir = DMA_FROM_DEVICE;
> - } else {
> - dir_eng = DMA_MEM_TO_DEV;
> - desc->dir = DMA_TO_DEVICE;
> - }
> -
> - ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
> - if (ret == 0) {
> - ret = -ENOMEM;
> - goto err;
> - }
> -
> - memset(&slave_conf, 0x00, sizeof(slave_conf));
> -
> - slave_conf.device_fc = flow_control;
> - if (read) {
> - slave_conf.src_maxburst = 16;
> - slave_conf.src_addr = nandc->base_dma + reg_off;
> - if (nandc->data_crci) {
> - periph_conf.crci = nandc->data_crci;
> - slave_conf.peripheral_config = &periph_conf;
> - slave_conf.peripheral_size = sizeof(periph_conf);
> - }
> - } else {
> - slave_conf.dst_maxburst = 16;
> - slave_conf.dst_addr = nandc->base_dma + reg_off;
> - if (nandc->cmd_crci) {
> - periph_conf.crci = nandc->cmd_crci;
> - slave_conf.peripheral_config = &periph_conf;
> - slave_conf.peripheral_size = sizeof(periph_conf);
> - }
> - }
> -
> - ret = dmaengine_slave_config(nandc->chan, &slave_conf);
> - if (ret) {
> - dev_err(nandc->dev, "failed to configure dma channel\n");
> - goto err;
> - }
> -
> - dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
> - if (!dma_desc) {
> - dev_err(nandc->dev, "failed to prepare desc\n");
> - ret = -EINVAL;
> - goto err;
> - }
> -
> - desc->dma_desc = dma_desc;
> -
> - list_add_tail(&desc->node, &nandc->desc_list);
> -
> - return 0;
> -err:
> - kfree(desc);
> -
> - return ret;
> -}
> -
> -/*
> - * read_reg_dma: prepares a descriptor to read a given number of
> - * contiguous registers to the reg_read_buf pointer
> - *
> - * @first: offset of the first register in the contiguous block
> - * @num_regs: number of registers to read
> - * @flags: flags to control DMA descriptor preparation
> - */
> -static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
> - int num_regs, unsigned int flags)
> -{
> - bool flow_control = false;
> - void *vaddr;
> -
> - vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
> - nandc->reg_read_pos += num_regs;
> -
> - if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
> - first = dev_cmd_reg_addr(nandc, first);
> -
> - if (nandc->props->is_bam)
> - return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
> - num_regs, flags);
> -
> - if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
> - flow_control = true;
> -
> - return prep_adm_dma_desc(nandc, true, first, vaddr,
> - num_regs * sizeof(u32), flow_control);
> -}
> -
> -/*
> - * write_reg_dma: prepares a descriptor to write a given number of
> - * contiguous registers
> - *
> - * @first: offset of the first register in the contiguous block
> - * @num_regs: number of registers to write
> - * @flags: flags to control DMA descriptor preparation
> - */
> -static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
> - int num_regs, unsigned int flags)
> -{
> - bool flow_control = false;
> - struct nandc_regs *regs = nandc->regs;
> - void *vaddr;
> -
> - vaddr = offset_to_nandc_reg(regs, first);
> -
> - if (first == NAND_ERASED_CW_DETECT_CFG) {
> - if (flags & NAND_ERASED_CW_SET)
> - vaddr = ®s->erased_cw_detect_cfg_set;
> - else
> - vaddr = ®s->erased_cw_detect_cfg_clr;
> - }
> -
> - if (first == NAND_EXEC_CMD)
> - flags |= NAND_BAM_NWD;
> -
> - if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
> - first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
> -
> - if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
> - first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
> -
> - if (nandc->props->is_bam)
> - return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
> - num_regs, flags);
> -
> - if (first == NAND_FLASH_CMD)
> - flow_control = true;
> -
> - return prep_adm_dma_desc(nandc, false, first, vaddr,
> - num_regs * sizeof(u32), flow_control);
> -}
> -
> -/*
> - * read_data_dma: prepares a DMA descriptor to transfer data from the
> - * controller's internal buffer to the buffer 'vaddr'
> - *
> - * @reg_off: offset within the controller's data buffer
> - * @vaddr: virtual address of the buffer we want to write to
> - * @size: DMA transaction size in bytes
> - * @flags: flags to control DMA descriptor preparation
> - */
> -static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> - const u8 *vaddr, int size, unsigned int flags)
> -{
> - if (nandc->props->is_bam)
> - return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
> -
> - return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
> -}
> -
> -/*
> - * write_data_dma: prepares a DMA descriptor to transfer data from
> - * 'vaddr' to the controller's internal buffer
> - *
> - * @reg_off: offset within the controller's data buffer
> - * @vaddr: virtual address of the buffer we want to read from
> - * @size: DMA transaction size in bytes
> - * @flags: flags to control DMA descriptor preparation
> - */
> -static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> - const u8 *vaddr, int size, unsigned int flags)
> -{
> - if (nandc->props->is_bam)
> - return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
> -
> - return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
> -}
> -
> -/*
> - * Helper to prepare DMA descriptors for configuring registers
> - * before reading a NAND page.
> - */
> -static void config_nand_page_read(struct nand_chip *chip)
> -{
> - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> -
> - write_reg_dma(nandc, NAND_ADDR0, 2, 0);
> - write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
> - if (!nandc->props->qpic_v2)
> - write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
> - write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
> - write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
> - NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
> -}
> -
> /*
> * Helper to prepare DMA descriptors for configuring registers
> * before reading each codeword in NAND page.
> @@ -1303,88 +318,6 @@ static void config_nand_cw_write(struct nand_chip *chip)
> write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
> }
>
> -/* helpers to submit/free our list of dma descriptors */
> -static int submit_descs(struct qcom_nand_controller *nandc)
> -{
> - struct desc_info *desc, *n;
> - dma_cookie_t cookie = 0;
> - struct bam_transaction *bam_txn = nandc->bam_txn;
> - int ret = 0;
> -
> - if (nandc->props->is_bam) {
> - if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
> - ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
> - if (ret)
> - goto err_unmap_free_desc;
> - }
> -
> - if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
> - ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
> - DMA_PREP_INTERRUPT);
> - if (ret)
> - goto err_unmap_free_desc;
> - }
> -
> - if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
> - ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
> - DMA_PREP_CMD);
> - if (ret)
> - goto err_unmap_free_desc;
> - }
> - }
> -
> - list_for_each_entry(desc, &nandc->desc_list, node)
> - cookie = dmaengine_submit(desc->dma_desc);
> -
> - if (nandc->props->is_bam) {
> - bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
> - bam_txn->last_cmd_desc->callback_param = bam_txn;
> - if (bam_txn->last_data_desc) {
> - bam_txn->last_data_desc->callback = qpic_bam_dma_done;
> - bam_txn->last_data_desc->callback_param = bam_txn;
> - bam_txn->wait_second_completion = true;
> - }
> -
> - dma_async_issue_pending(nandc->tx_chan);
> - dma_async_issue_pending(nandc->rx_chan);
> - dma_async_issue_pending(nandc->cmd_chan);
> -
> - if (!wait_for_completion_timeout(&bam_txn->txn_done,
> - QPIC_NAND_COMPLETION_TIMEOUT))
> - ret = -ETIMEDOUT;
> - } else {
> - if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
> - ret = -ETIMEDOUT;
> - }
> -
> -err_unmap_free_desc:
> - /*
> - * Unmap the dma sg_list and free the desc allocated by both
> - * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
> - */
> - list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
> - list_del(&desc->node);
> -
> - if (nandc->props->is_bam)
> - dma_unmap_sg(nandc->dev, desc->bam_sgl,
> - desc->sgl_cnt, desc->dir);
> - else
> - dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
> - desc->dir);
> -
> - kfree(desc);
> - }
> -
> - return ret;
> -}
> -
> -/* reset the register read buffer for next NAND operation */
> -static void clear_read_regs(struct qcom_nand_controller *nandc)
> -{
> - nandc->reg_read_pos = 0;
> - nandc_read_buffer_sync(nandc, false);
> -}
> -
> /*
> * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
> * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
> @@ -3016,136 +1949,6 @@ static const struct nand_controller_ops qcom_nandc_ops = {
> .exec_op = qcom_nand_exec_op,
> };
>
> -static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
> -{
> - if (nandc->props->is_bam) {
> - if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
> - dma_unmap_single(nandc->dev, nandc->reg_read_dma,
> - MAX_REG_RD *
> - sizeof(*nandc->reg_read_buf),
> - DMA_FROM_DEVICE);
> -
> - if (nandc->tx_chan)
> - dma_release_channel(nandc->tx_chan);
> -
> - if (nandc->rx_chan)
> - dma_release_channel(nandc->rx_chan);
> -
> - if (nandc->cmd_chan)
> - dma_release_channel(nandc->cmd_chan);
> - } else {
> - if (nandc->chan)
> - dma_release_channel(nandc->chan);
> - }
> -}
> -
> -static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
> -{
> - int ret;
> -
> - ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
> - if (ret) {
> - dev_err(nandc->dev, "failed to set DMA mask\n");
> - return ret;
> - }
> -
> - /*
> - * we use the internal buffer for reading ONFI params, reading small
> - * data like ID and status, and preforming read-copy-write operations
> - * when writing to a codeword partially. 532 is the maximum possible
> - * size of a codeword for our nand controller
> - */
> - nandc->buf_size = 532;
> -
> - nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
> - if (!nandc->data_buffer)
> - return -ENOMEM;
> -
> - nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
> - if (!nandc->regs)
> - return -ENOMEM;
> -
> - nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
> - sizeof(*nandc->reg_read_buf),
> - GFP_KERNEL);
> - if (!nandc->reg_read_buf)
> - return -ENOMEM;
> -
> - if (nandc->props->is_bam) {
> - nandc->reg_read_dma =
> - dma_map_single(nandc->dev, nandc->reg_read_buf,
> - MAX_REG_RD *
> - sizeof(*nandc->reg_read_buf),
> - DMA_FROM_DEVICE);
> - if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
> - dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
> - return -EIO;
> - }
> -
> - nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
> - if (IS_ERR(nandc->tx_chan)) {
> - ret = PTR_ERR(nandc->tx_chan);
> - nandc->tx_chan = NULL;
> - dev_err_probe(nandc->dev, ret,
> - "tx DMA channel request failed\n");
> - goto unalloc;
> - }
> -
> - nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
> - if (IS_ERR(nandc->rx_chan)) {
> - ret = PTR_ERR(nandc->rx_chan);
> - nandc->rx_chan = NULL;
> - dev_err_probe(nandc->dev, ret,
> - "rx DMA channel request failed\n");
> - goto unalloc;
> - }
> -
> - nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
> - if (IS_ERR(nandc->cmd_chan)) {
> - ret = PTR_ERR(nandc->cmd_chan);
> - nandc->cmd_chan = NULL;
> - dev_err_probe(nandc->dev, ret,
> - "cmd DMA channel request failed\n");
> - goto unalloc;
> - }
> -
> - /*
> - * Initially allocate BAM transaction to read ONFI param page.
> - * After detecting all the devices, this BAM transaction will
> - * be freed and the next BAM transaction will be allocated with
> - * maximum codeword size
> - */
> - nandc->max_cwperpage = 1;
> - nandc->bam_txn = alloc_bam_transaction(nandc);
> - if (!nandc->bam_txn) {
> - dev_err(nandc->dev,
> - "failed to allocate bam transaction\n");
> - ret = -ENOMEM;
> - goto unalloc;
> - }
> - } else {
> - nandc->chan = dma_request_chan(nandc->dev, "rxtx");
> - if (IS_ERR(nandc->chan)) {
> - ret = PTR_ERR(nandc->chan);
> - nandc->chan = NULL;
> - dev_err_probe(nandc->dev, ret,
> - "rxtx DMA channel request failed\n");
> - return ret;
> - }
> - }
> -
> - INIT_LIST_HEAD(&nandc->desc_list);
> - INIT_LIST_HEAD(&nandc->host_list);
> -
> - nand_controller_init(&nandc->controller);
> - nandc->controller.ops = &qcom_nandc_ops;
> -
> - return 0;
> -unalloc:
> - qcom_nandc_unalloc(nandc);
> - return ret;
> -}
> -
> /* one time setup of a few nand controller registers */
> static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
> {
> @@ -3427,6 +2230,9 @@ static int qcom_nandc_probe(struct platform_device *pdev)
> if (ret)
> goto err_nandc_alloc;
>
> + nand_controller_init(&nandc->controller);
> + nandc->controller.ops = &qcom_nandc_ops;
> +
> ret = qcom_nandc_setup(nandc);
> if (ret)
> goto err_setup;
> @@ -3473,28 +2279,28 @@ static void qcom_nandc_remove(struct platform_device *pdev)
> DMA_BIDIRECTIONAL, 0);
> }
>
> -static const struct qcom_nandc_props ipq806x_nandc_props = {
> +static struct qcom_nandc_props ipq806x_nandc_props = {
> .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
> .is_bam = false,
> .use_codeword_fixup = true,
> .dev_cmd_reg_start = 0x0,
> };
>
> -static const struct qcom_nandc_props ipq4019_nandc_props = {
> +static struct qcom_nandc_props ipq4019_nandc_props = {
> .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
> .is_bam = true,
> .is_qpic = true,
> .dev_cmd_reg_start = 0x0,
> };
>
> -static const struct qcom_nandc_props ipq8074_nandc_props = {
> +static struct qcom_nandc_props ipq8074_nandc_props = {
> .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
> .is_bam = true,
> .is_qpic = true,
> .dev_cmd_reg_start = 0x7000,
> };
>
> -static const struct qcom_nandc_props sdx55_nandc_props = {
> +static struct qcom_nandc_props sdx55_nandc_props = {
> .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
> .is_bam = true,
> .is_qpic = true,
> diff --git a/include/linux/mtd/nand-qpic-common.h b/include/linux/mtd/nand-qpic-common.h
> new file mode 100644
> index 000000000000..891f975ca173
> --- /dev/null
> +++ b/include/linux/mtd/nand-qpic-common.h
> @@ -0,0 +1,488 @@
> +/* SPDX-License-Identifier: GPL-2.0 */
> +/*
> + * QCOM QPIC common APIs header file
> + *
> + * Copyright (c) 2023 Qualcomm Inc.
> + * Authors: Md sadre Alam <quic_mdalam@...cinc.com>
> + * Sricharan R <quic_srichara@...cinc.com>
> + * Varadarajan Narayanan <quic_varada@...cinc.com>
> + *
> + */
> +#ifndef __MTD_NAND_QPIC_COMMON_H__
> +#define __MTD_NAND_QPIC_COMMON_H__
> +
> +#include <linux/bitops.h>
> +#include <linux/clk.h>
> +#include <linux/delay.h>
> +#include <linux/dmaengine.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/dma/qcom_adm.h>
> +#include <linux/dma/qcom_bam_dma.h>
> +#include <linux/module.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/of.h>
> +#include <linux/platform_device.h>
> +#include <linux/slab.h>
> +
> +/* NANDc reg offsets */
> +#define NAND_FLASH_CMD 0x00
> +#define NAND_ADDR0 0x04
> +#define NAND_ADDR1 0x08
> +#define NAND_FLASH_CHIP_SELECT 0x0c
> +#define NAND_EXEC_CMD 0x10
> +#define NAND_FLASH_STATUS 0x14
> +#define NAND_BUFFER_STATUS 0x18
> +#define NAND_DEV0_CFG0 0x20
> +#define NAND_DEV0_CFG1 0x24
> +#define NAND_DEV0_ECC_CFG 0x28
> +#define NAND_AUTO_STATUS_EN 0x2c
> +#define NAND_DEV1_CFG0 0x30
> +#define NAND_DEV1_CFG1 0x34
> +#define NAND_READ_ID 0x40
> +#define NAND_READ_STATUS 0x44
> +#define NAND_DEV_CMD0 0xa0
> +#define NAND_DEV_CMD1 0xa4
> +#define NAND_DEV_CMD2 0xa8
> +#define NAND_DEV_CMD_VLD 0xac
> +#define SFLASHC_BURST_CFG 0xe0
> +#define NAND_ERASED_CW_DETECT_CFG 0xe8
> +#define NAND_ERASED_CW_DETECT_STATUS 0xec
> +#define NAND_EBI2_ECC_BUF_CFG 0xf0
> +#define FLASH_BUF_ACC 0x100
> +
> +#define NAND_CTRL 0xf00
> +#define NAND_VERSION 0xf08
> +#define NAND_READ_LOCATION_0 0xf20
> +#define NAND_READ_LOCATION_1 0xf24
> +#define NAND_READ_LOCATION_2 0xf28
> +#define NAND_READ_LOCATION_3 0xf2c
> +#define NAND_READ_LOCATION_LAST_CW_0 0xf40
> +#define NAND_READ_LOCATION_LAST_CW_1 0xf44
> +#define NAND_READ_LOCATION_LAST_CW_2 0xf48
> +#define NAND_READ_LOCATION_LAST_CW_3 0xf4c
> +
> +/* dummy register offsets, used by write_reg_dma */
> +#define NAND_DEV_CMD1_RESTORE 0xdead
> +#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
> +
> +/* NAND_FLASH_CMD bits */
> +#define PAGE_ACC BIT(4)
> +#define LAST_PAGE BIT(5)
> +
> +/* NAND_FLASH_CHIP_SELECT bits */
> +#define NAND_DEV_SEL 0
> +#define DM_EN BIT(2)
> +
> +/* NAND_FLASH_STATUS bits */
> +#define FS_OP_ERR BIT(4)
> +#define FS_READY_BSY_N BIT(5)
> +#define FS_MPU_ERR BIT(8)
> +#define FS_DEVICE_STS_ERR BIT(16)
> +#define FS_DEVICE_WP BIT(23)
> +
> +/* NAND_BUFFER_STATUS bits */
> +#define BS_UNCORRECTABLE_BIT BIT(8)
> +#define BS_CORRECTABLE_ERR_MSK 0x1f
> +
> +/* NAND_DEVn_CFG0 bits */
> +#define DISABLE_STATUS_AFTER_WRITE 4
> +#define CW_PER_PAGE 6
> +#define UD_SIZE_BYTES 9
> +#define UD_SIZE_BYTES_MASK GENMASK(18, 9)
> +#define ECC_PARITY_SIZE_BYTES_RS 19
> +#define SPARE_SIZE_BYTES 23
> +#define SPARE_SIZE_BYTES_MASK GENMASK(26, 23)
> +#define NUM_ADDR_CYCLES 27
> +#define STATUS_BFR_READ 30
> +#define SET_RD_MODE_AFTER_STATUS 31
> +
> +/* NAND_DEVn_CFG0 bits */
> +#define DEV0_CFG1_ECC_DISABLE 0
> +#define WIDE_FLASH 1
> +#define NAND_RECOVERY_CYCLES 2
> +#define CS_ACTIVE_BSY 5
> +#define BAD_BLOCK_BYTE_NUM 6
> +#define BAD_BLOCK_IN_SPARE_AREA 16
> +#define WR_RD_BSY_GAP 17
> +#define ENABLE_BCH_ECC 27
> +
> +/* NAND_DEV0_ECC_CFG bits */
> +#define ECC_CFG_ECC_DISABLE 0
> +#define ECC_SW_RESET 1
> +#define ECC_MODE 4
> +#define ECC_PARITY_SIZE_BYTES_BCH 8
> +#define ECC_NUM_DATA_BYTES 16
> +#define ECC_NUM_DATA_BYTES_MASK GENMASK(25, 16)
> +#define ECC_FORCE_CLK_OPEN 30
> +
> +/* NAND_DEV_CMD1 bits */
> +#define READ_ADDR 0
> +
> +/* NAND_DEV_CMD_VLD bits */
> +#define READ_START_VLD BIT(0)
> +#define READ_STOP_VLD BIT(1)
> +#define WRITE_START_VLD BIT(2)
> +#define ERASE_START_VLD BIT(3)
> +#define SEQ_READ_START_VLD BIT(4)
> +
> +/* NAND_EBI2_ECC_BUF_CFG bits */
> +#define NUM_STEPS 0
> +
> +/* NAND_ERASED_CW_DETECT_CFG bits */
> +#define ERASED_CW_ECC_MASK 1
> +#define AUTO_DETECT_RES 0
> +#define MASK_ECC BIT(ERASED_CW_ECC_MASK)
> +#define RESET_ERASED_DET BIT(AUTO_DETECT_RES)
> +#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
> +#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
> +#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
> +
> +/* NAND_ERASED_CW_DETECT_STATUS bits */
> +#define PAGE_ALL_ERASED BIT(7)
> +#define CODEWORD_ALL_ERASED BIT(6)
> +#define PAGE_ERASED BIT(5)
> +#define CODEWORD_ERASED BIT(4)
> +#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
> +#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
> +
> +/* NAND_READ_LOCATION_n bits */
> +#define READ_LOCATION_OFFSET 0
> +#define READ_LOCATION_SIZE 16
> +#define READ_LOCATION_LAST 31
> +
> +/* Version Mask */
> +#define NAND_VERSION_MAJOR_MASK 0xf0000000
> +#define NAND_VERSION_MAJOR_SHIFT 28
> +#define NAND_VERSION_MINOR_MASK 0x0fff0000
> +#define NAND_VERSION_MINOR_SHIFT 16
> +
> +/* NAND OP_CMDs */
> +#define OP_PAGE_READ 0x2
> +#define OP_PAGE_READ_WITH_ECC 0x3
> +#define OP_PAGE_READ_WITH_ECC_SPARE 0x4
> +#define OP_PAGE_READ_ONFI_READ 0x5
> +#define OP_PROGRAM_PAGE 0x6
> +#define OP_PAGE_PROGRAM_WITH_ECC 0x7
> +#define OP_PROGRAM_PAGE_SPARE 0x9
> +#define OP_BLOCK_ERASE 0xa
> +#define OP_CHECK_STATUS 0xc
> +#define OP_FETCH_ID 0xb
> +#define OP_RESET_DEVICE 0xd
> +
> +/* Default Value for NAND_DEV_CMD_VLD */
> +#define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
> + ERASE_START_VLD | SEQ_READ_START_VLD)
> +
> +/* NAND_CTRL bits */
> +#define BAM_MODE_EN BIT(0)
> +
> +/*
> + * the NAND controller performs reads/writes with ECC in 516 byte chunks.
> + * the driver calls the chunks 'step' or 'codeword' interchangeably
> + */
> +#define NANDC_STEP_SIZE 512
> +
> +/*
> + * the largest page size we support is 8K, this will have 16 steps/codewords
> + * of 512 bytes each
> + */
> +#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
> +
> +/* we read at most 3 registers per codeword scan */
> +#define MAX_REG_RD (3 * MAX_NUM_STEPS)
> +
> +#define QPIC_PER_CW_CMD_ELEMENTS 32
> +#define QPIC_PER_CW_CMD_SGL 32
> +#define QPIC_PER_CW_DATA_SGL 8
> +
> +#define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
> +
> +/*
> + * Flags used in DMA descriptor preparation helper functions
> + * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
> + */
> +/* Don't set the EOT in current tx BAM sgl */
> +#define NAND_BAM_NO_EOT BIT(0)
> +/* Set the NWD flag in current BAM sgl */
> +#define NAND_BAM_NWD BIT(1)
> +/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
> +#define NAND_BAM_NEXT_SGL BIT(2)
> +
> +/*
> + * Returns the actual register address for all NAND_DEV_ registers
> + * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
> + */
> +#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
> +
> +/* Returns the NAND register physical address */
> +#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
> +
> +/* Returns the dma address for reg read buffer */
> +#define reg_buf_dma_addr(chip, vaddr) \
> + ((chip)->reg_read_dma + \
> + ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
> +
> +/*
> + * Erased codeword status is being used two times in single transfer so this
> + * flag will determine the current value of erased codeword status register
> + */
> +#define NAND_ERASED_CW_SET BIT(4)
> +
> +#define MAX_ADDRESS_CYCLE 5
> +
> +/*
> + * This data type corresponds to the BAM transaction which will be used for all
> + * NAND transfers.
> + * @bam_ce - the array of BAM command elements
> + * @cmd_sgl - sgl for NAND BAM command pipe
> + * @data_sgl - sgl for NAND BAM consumer/producer pipe
> + * @last_data_desc - last DMA desc in data channel (tx/rx).
> + * @last_cmd_desc - last DMA desc in command channel.
> + * @txn_done - completion for NAND transfer.
> + * @bam_ce_pos - the index in bam_ce which is available for next sgl
> + * @bam_ce_start - the index in bam_ce which marks the start position ce
> + * for current sgl. It will be used for size calculation
> + * for current sgl
> + * @cmd_sgl_pos - current index in command sgl.
> + * @cmd_sgl_start - start index in command sgl.
> + * @tx_sgl_pos - current index in data sgl for tx.
> + * @tx_sgl_start - start index in data sgl for tx.
> + * @rx_sgl_pos - current index in data sgl for rx.
> + * @rx_sgl_start - start index in data sgl for rx.
> + * @wait_second_completion - wait for second DMA desc completion before making
> + * the NAND transfer completion.
> + */
> +struct bam_transaction {
> + struct bam_cmd_element *bam_ce;
> + struct scatterlist *cmd_sgl;
> + struct scatterlist *data_sgl;
> + struct dma_async_tx_descriptor *last_data_desc;
> + struct dma_async_tx_descriptor *last_cmd_desc;
> + struct completion txn_done;
> + u32 bam_ce_pos;
> + u32 bam_ce_start;
> + u32 cmd_sgl_pos;
> + u32 cmd_sgl_start;
> + u32 tx_sgl_pos;
> + u32 tx_sgl_start;
> + u32 rx_sgl_pos;
> + u32 rx_sgl_start;
> + bool wait_second_completion;
> +};
> +
> +/*
> + * This data type corresponds to the nand dma descriptor
> + * @dma_desc - low level DMA engine descriptor
> + * @list - list for desc_info
> + *
> + * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
> + * ADM
> + * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
> + * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
> + * @dir - DMA transfer direction
> + */
> +struct desc_info {
> + struct dma_async_tx_descriptor *dma_desc;
> + struct list_head node;
> +
> + union {
> + struct scatterlist adm_sgl;
> + struct {
> + struct scatterlist *bam_sgl;
> + int sgl_cnt;
> + };
> + };
> + enum dma_data_direction dir;
> +};
> +
> +/*
> + * holds the current register values that we want to write. acts as a contiguous
> + * chunk of memory which we use to write the controller registers through DMA.
> + */
> +struct nandc_regs {
> + __le32 cmd;
> + __le32 addr0;
> + __le32 addr1;
> + __le32 chip_sel;
> + __le32 exec;
> +
> + __le32 cfg0;
> + __le32 cfg1;
> + __le32 ecc_bch_cfg;
> +
> + __le32 clrflashstatus;
> + __le32 clrreadstatus;
> +
> + __le32 cmd1;
> + __le32 vld;
> +
> + __le32 orig_cmd1;
> + __le32 orig_vld;
> +
> + __le32 ecc_buf_cfg;
> + __le32 read_location0;
> + __le32 read_location1;
> + __le32 read_location2;
> + __le32 read_location3;
> + __le32 read_location_last0;
> + __le32 read_location_last1;
> + __le32 read_location_last2;
> + __le32 read_location_last3;
> +
> + __le32 erased_cw_detect_cfg_clr;
> + __le32 erased_cw_detect_cfg_set;
> +};
> +
> +/*
> + * NAND controller data struct
> + *
> + * @dev: parent device
> + *
> + * @base: MMIO base
> + *
> + * @core_clk: controller clock
> + * @aon_clk: another controller clock
> + *
> + * @regs: a contiguous chunk of memory for DMA register
> + * writes. contains the register values to be
> + * written to controller
> + *
> + * @props: properties of current NAND controller,
> + * initialized via DT match data
> + *
> + * @controller: base controller structure
> + * @host_list: list containing all the chips attached to the
> + * controller
> + *
> + * @chan: dma channel
> + * @cmd_crci: ADM DMA CRCI for command flow control
> + * @data_crci: ADM DMA CRCI for data flow control
> + *
> + * @desc_list: DMA descriptor list (list of desc_infos)
> + *
> + * @data_buffer: our local DMA buffer for page read/writes,
> + * used when we can't use the buffer provided
> + * by upper layers directly
> + * @reg_read_buf: local buffer for reading back registers via DMA
> + *
> + * @base_phys: physical base address of controller registers
> + * @base_dma: dma base address of controller registers
> + * @reg_read_dma: contains dma address for register read buffer
> + *
> + * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf
> + * functions
> + * @max_cwperpage: maximum QPIC codewords required. calculated
> + * from all connected NAND devices pagesize
> + *
> + * @reg_read_pos: marker for data read in reg_read_buf
> + *
> + * @cmd1/vld: some fixed controller register values
> + *
> + * @exec_opwrite: flag to select correct number of code word
> + * while reading status
> + */
> +struct qcom_nand_controller {
> + struct device *dev;
> +
> + void __iomem *base;
> +
> + struct clk *core_clk;
> + struct clk *aon_clk;
> +
> + struct nandc_regs *regs;
> + struct bam_transaction *bam_txn;
> +
> + const struct qcom_nandc_props *props;
> +
> + struct nand_controller controller;
> + struct list_head host_list;
> +
> + union {
> + /* will be used only by QPIC for BAM DMA */
> + struct {
> + struct dma_chan *tx_chan;
> + struct dma_chan *rx_chan;
> + struct dma_chan *cmd_chan;
> + };
> +
> + /* will be used only by EBI2 for ADM DMA */
> + struct {
> + struct dma_chan *chan;
> + unsigned int cmd_crci;
> + unsigned int data_crci;
> + };
> + };
> +
> + struct list_head desc_list;
> +
> + u8 *data_buffer;
> + __le32 *reg_read_buf;
> +
> + phys_addr_t base_phys;
> + dma_addr_t base_dma;
> + dma_addr_t reg_read_dma;
> +
> + int buf_size;
> + int buf_count;
> + int buf_start;
> + unsigned int max_cwperpage;
> +
> + int reg_read_pos;
> +
> + u32 cmd1, vld;
> + bool exec_opwrite;
> +};
> +
> +/*
> + * This data type corresponds to the NAND controller properties which varies
> + * among different NAND controllers.
> + * @ecc_modes - ecc mode for NAND
> + * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
> + * @is_bam - whether NAND controller is using BAM
> + * @is_qpic - whether NAND CTRL is part of qpic IP
> + * @qpic_v2 - flag to indicate QPIC IP version 2
> + * @use_codeword_fixup - whether NAND has different layout for boot partitions
> + */
> +struct qcom_nandc_props {
> + u32 ecc_modes;
> + u32 dev_cmd_reg_start;
> + bool is_bam;
> + bool is_qpic;
> + bool qpic_v2;
> + bool use_codeword_fixup;
> +};
> +
> +void config_nand_page_read(struct nand_chip *chip);
> +void free_bam_transaction(struct qcom_nand_controller *nandc);
> +void qpic_bam_dma_done(void *data);
> +void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, bool is_cpu);
> +__le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset);
> +void clear_read_regs(struct qcom_nand_controller *nandc);
> +int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
> + int reg_off, const void *vaddr, int size,
> + bool flow_control);
> +int submit_descs(struct qcom_nand_controller *nandc);
> +int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
> + struct dma_chan *chan, unsigned long flags);
> +int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
> + int reg_off, const void *vaddr,
> + int size, unsigned int flags);
> +int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
> + const void *vaddr,
> + int size, unsigned int flags);
> +int read_reg_dma(struct qcom_nand_controller *nandc, int first,
> + int num_regs, unsigned int flags);
> +int write_reg_dma(struct qcom_nand_controller *nandc, int first,
> + int num_regs, unsigned int flags);
> +int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> + const u8 *vaddr, int size, unsigned int flags);
> +int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> + const u8 *vaddr, int size, unsigned int flags);
> +struct bam_transaction *alloc_bam_transaction(struct qcom_nand_controller *nandc);
> +void clear_bam_transaction(struct qcom_nand_controller *nandc);
> +void qcom_nandc_unalloc(struct qcom_nand_controller *nandc);
> +int qcom_nandc_alloc(struct qcom_nand_controller *nandc);
> +struct qcom_nand_controller *get_qcom_nand_controller(struct nand_chip *chip);
> +
> +#endif
Powered by blists - more mailing lists