[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <692a111c-f0a7-4e0a-af6a-2590d6a1ffa7@nvidia.com>
Date: Sun, 18 Feb 2024 14:46:44 +0200
From: Yishai Hadas <yishaih@...dia.com>
To: <ankita@...dia.com>, <jgg@...dia.com>, <alex.williamson@...hat.com>,
<shameerali.kolothum.thodi@...wei.com>, <kevin.tian@...el.com>,
<mst@...hat.com>, <eric.auger@...hat.com>, <jgg@...pe.ca>,
<oleksandr@...alenko.name>, <clg@...hat.com>,
<satyanarayana.k.v.p@...el.com>, <brett.creeley@....com>, <horms@...nel.org>,
<shannon.nelson@....com>
CC: <aniketa@...dia.com>, <cjia@...dia.com>, <kwankhede@...dia.com>,
<targupta@...dia.com>, <vsethi@...dia.com>, <acurrid@...dia.com>,
<apopple@...dia.com>, <jhubbard@...dia.com>, <danw@...dia.com>,
<anuaggarwal@...dia.com>, <mochs@...dia.com>, <kvm@...r.kernel.org>,
<linux-kernel@...r.kernel.org>, <virtualization@...ts.linux-foundation.org>
Subject: Re: [PATCH v18 3/3] vfio/nvgrace-gpu: Add vfio pci variant module for
grace hopper
On 16/02/2024 5:01, ankita@...dia.com wrote:
> From: Ankit Agrawal <ankita@...dia.com>
>
> NVIDIA's upcoming Grace Hopper Superchip provides a PCI-like device
> for the on-chip GPU that is the logical OS representation of the
> internal proprietary chip-to-chip cache coherent interconnect.
>
> The device is peculiar compared to a real PCI device in that whilst
> there is a real 64b PCI BAR1 (comprising region 2 & region 3) on the
> device, it is not used to access device memory once the faster
> chip-to-chip interconnect is initialized (occurs at the time of host
> system boot). The device memory is accessed instead using the chip-to-chip
> interconnect that is exposed as a contiguous physically addressable
> region on the host. This device memory aperture can be obtained from host
> ACPI table using device_property_read_u64(), according to the FW
> specification. Since the device memory is cache coherent with the CPU,
> it can be mmap into the user VMA with a cacheable mapping using
> remap_pfn_range() and used like a regular RAM. The device memory
> is not added to the host kernel, but mapped directly as this reduces
> memory wastage due to struct pages.
>
> There is also a requirement of a minimum reserved 1G uncached region
> (termed as resmem) to support the Multi-Instance GPU (MIG) feature [1].
> This is to work around a HW defect. Based on [2], the requisite properties
> (uncached, unaligned access) can be achieved through a VM mapping (S1)
> of NORMAL_NC and host (S2) mapping with MemAttr[2:0]=0b101. To provide
> a different non-cached property to the reserved 1G region, it needs to
> be carved out from the device memory and mapped as a separate region
> in Qemu VMA with pgprot_writecombine(). pgprot_writecombine() sets the
> Qemu VMA page properties (pgprot) as NORMAL_NC.
>
> Provide a VFIO PCI variant driver that adapts the unique device memory
> representation into a more standard PCI representation facing userspace.
>
> The variant driver exposes these two regions - the non-cached reserved
> (resmem) and the cached rest of the device memory (termed as usemem) as
> separate VFIO 64b BAR regions. This is divergent from the baremetal
> approach, where the device memory is exposed as a device memory region.
> The decision for a different approach was taken in view of the fact that
> it would necessiate additional code in Qemu to discover and insert those
> regions in the VM IPA, along with the additional VM ACPI DSDT changes to
> communicate the device memory region IPA to the VM workloads. Moreover,
> this behavior would have to be added to a variety of emulators (beyond
> top of tree Qemu) out there desiring grace hopper support.
>
> Since the device implements 64-bit BAR0, the VFIO PCI variant driver
> maps the uncached carved out region to the next available PCI BAR (i.e.
> comprising of region 2 and 3). The cached device memory aperture is
> assigned BAR region 4 and 5. Qemu will then naturally generate a PCI
> device in the VM with the uncached aperture reported as BAR2 region,
> the cacheable as BAR4. The variant driver provides emulation for these
> fake BARs' PCI config space offset registers.
>
> The hardware ensures that the system does not crash when the memory
> is accessed with the memory enable turned off. It synthesis ~0 reads
> and dropped writes on such access. So there is no need to support the
> disablement/enablement of BAR through PCI_COMMAND config space register.
>
> The memory layout on the host looks like the following:
> devmem (memlength)
> |--------------------------------------------------|
> |-------------cached------------------------|--NC--|
> | |
> usemem.memphys resmem.memphys
>
> PCI BARs need to be aligned to the power-of-2, but the actual memory on the
> device may not. A read or write access to the physical address from the
> last device PFN up to the next power-of-2 aligned physical address
> results in reading ~0 and dropped writes. Note that the GPU device
> driver [6] is capable of knowing the exact device memory size through
> separate means. The device memory size is primarily kept in the system
> ACPI tables for use by the VFIO PCI variant module.
>
> Note that the usemem memory is added by the VM Nvidia device driver [5]
> to the VM kernel as memblocks. Hence make the usable memory size memblock
> (MEMBLK_SIZE) aligned. This is a hardwired ABI value between the GPU FW and
> VFIO driver. The VM device driver make use of the same value for its
> calculation to determine USEMEM size.
>
> Currently there is no provision in KVM for a S2 mapping with
> MemAttr[2:0]=0b101, but there is an ongoing effort to provide the same [3].
> As previously mentioned, resmem is mapped pgprot_writecombine(), that
> sets the Qemu VMA page properties (pgprot) as NORMAL_NC. Using the
> proposed changes in [3] and [4], KVM marks the region with
> MemAttr[2:0]=0b101 in S2.
>
> If the device memory properties are not present, the driver registers the
> vfio-pci-core function pointers. Since there are no ACPI memory properties
> generated for the VM, the variant driver inside the VM will only use
> the vfio-pci-core ops and hence try to map the BARs as non cached. This
> is not a problem as the CPUs have FWB enabled which blocks the VM
> mapping's ability to override the cacheability set by the host mapping.
>
> This goes along with a qemu series [6] to provides the necessary
> implementation of the Grace Hopper Superchip firmware specification so
> that the guest operating system can see the correct ACPI modeling for
> the coherent GPU device. Verified with the CUDA workload in the VM.
>
> [1] https://www.nvidia.com/en-in/technologies/multi-instance-gpu/
> [2] section D8.5.5 of https://developer.arm.com/documentation/ddi0487/latest/
> [3] https://lore.kernel.org/all/20240211174705.31992-1-ankita@nvidia.com/
> [4] https://lore.kernel.org/all/20230907181459.18145-2-ankita@nvidia.com/
> [5] https://github.com/NVIDIA/open-gpu-kernel-modules
> [6] https://lore.kernel.org/all/20231203060245.31593-1-ankita@nvidia.com/
>
> Signed-off-by: Aniket Agashe <aniketa@...dia.com>
> Signed-off-by: Ankit Agrawal <ankita@...dia.com>
> ---
> MAINTAINERS | 16 +-
> drivers/vfio/pci/Kconfig | 2 +
> drivers/vfio/pci/Makefile | 2 +
> drivers/vfio/pci/nvgrace-gpu/Kconfig | 10 +
> drivers/vfio/pci/nvgrace-gpu/Makefile | 3 +
> drivers/vfio/pci/nvgrace-gpu/main.c | 888 ++++++++++++++++++++++++++
> 6 files changed, 916 insertions(+), 5 deletions(-)
> create mode 100644 drivers/vfio/pci/nvgrace-gpu/Kconfig
> create mode 100644 drivers/vfio/pci/nvgrace-gpu/Makefile
> create mode 100644 drivers/vfio/pci/nvgrace-gpu/main.c
>
> diff --git a/MAINTAINERS b/MAINTAINERS
> index 73d898383e51..7fc7a14c1a20 100644
> --- a/MAINTAINERS
> +++ b/MAINTAINERS
> @@ -23075,12 +23075,11 @@ L: kvm@...r.kernel.org
> S: Maintained
> F: drivers/vfio/pci/mlx5/
>
> -VFIO VIRTIO PCI DRIVER
> -M: Yishai Hadas <yishaih@...dia.com>
> +VFIO NVIDIA GRACE GPU DRIVER
> +M: Ankit Agrawal <ankita@...dia.com>
> L: kvm@...r.kernel.org
> -L: virtualization@...ts.linux-foundation.org
> -S: Maintained
> -F: drivers/vfio/pci/virtio
> +S: Supported
> +F: drivers/vfio/pci/nvgrace-gpu/
>
> VFIO PCI DEVICE SPECIFIC DRIVERS
> R: Jason Gunthorpe <jgg@...dia.com>
> @@ -23105,6 +23104,13 @@ L: kvm@...r.kernel.org
> S: Maintained
> F: drivers/vfio/platform/
>
> +VFIO VIRTIO PCI DRIVER
> +M: Yishai Hadas <yishaih@...dia.com>
> +L: kvm@...r.kernel.org
> +L: virtualization@...ts.linux-foundation.org
> +S: Maintained
> +F: drivers/vfio/pci/virtio
> +
> VGA_SWITCHEROO
> R: Lukas Wunner <lukas@...ner.de>
> S: Maintained
> diff --git a/drivers/vfio/pci/Kconfig b/drivers/vfio/pci/Kconfig
> index 18c397df566d..15821a2d77d2 100644
> --- a/drivers/vfio/pci/Kconfig
> +++ b/drivers/vfio/pci/Kconfig
> @@ -67,4 +67,6 @@ source "drivers/vfio/pci/pds/Kconfig"
>
> source "drivers/vfio/pci/virtio/Kconfig"
>
> +source "drivers/vfio/pci/nvgrace-gpu/Kconfig"
> +
> endmenu
> diff --git a/drivers/vfio/pci/Makefile b/drivers/vfio/pci/Makefile
> index 046139a4eca5..ce7a61f1d912 100644
> --- a/drivers/vfio/pci/Makefile
> +++ b/drivers/vfio/pci/Makefile
> @@ -15,3 +15,5 @@ obj-$(CONFIG_HISI_ACC_VFIO_PCI) += hisilicon/
> obj-$(CONFIG_PDS_VFIO_PCI) += pds/
>
> obj-$(CONFIG_VIRTIO_VFIO_PCI) += virtio/
> +
> +obj-$(CONFIG_NVGRACE_GPU_VFIO_PCI) += nvgrace-gpu/
> diff --git a/drivers/vfio/pci/nvgrace-gpu/Kconfig b/drivers/vfio/pci/nvgrace-gpu/Kconfig
> new file mode 100644
> index 000000000000..a7f624b37e41
> --- /dev/null
> +++ b/drivers/vfio/pci/nvgrace-gpu/Kconfig
> @@ -0,0 +1,10 @@
> +# SPDX-License-Identifier: GPL-2.0-only
> +config NVGRACE_GPU_VFIO_PCI
> + tristate "VFIO support for the GPU in the NVIDIA Grace Hopper Superchip"
> + depends on ARM64 || (COMPILE_TEST && 64BIT)
> + select VFIO_PCI_CORE
> + help
> + VFIO support for the GPU in the NVIDIA Grace Hopper Superchip is
> + required to assign the GPU device to userspace using KVM/qemu/etc.
> +
> + If you don't know what to do here, say N.
> diff --git a/drivers/vfio/pci/nvgrace-gpu/Makefile b/drivers/vfio/pci/nvgrace-gpu/Makefile
> new file mode 100644
> index 000000000000..3ca8c187897a
> --- /dev/null
> +++ b/drivers/vfio/pci/nvgrace-gpu/Makefile
> @@ -0,0 +1,3 @@
> +# SPDX-License-Identifier: GPL-2.0-only
> +obj-$(CONFIG_NVGRACE_GPU_VFIO_PCI) += nvgrace-gpu-vfio-pci.o
> +nvgrace-gpu-vfio-pci-y := main.o
> diff --git a/drivers/vfio/pci/nvgrace-gpu/main.c b/drivers/vfio/pci/nvgrace-gpu/main.c
> new file mode 100644
> index 000000000000..5a251a6a782e
> --- /dev/null
> +++ b/drivers/vfio/pci/nvgrace-gpu/main.c
> @@ -0,0 +1,888 @@
> +// SPDX-License-Identifier: GPL-2.0-only
> +/*
> + * Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved
> + */
> +
> +#include <linux/vfio_pci_core.h>
> +#include <linux/sizes.h>
> +
> +/*
> + * The device memory usable to the workloads running in the VM is cached
> + * and showcased as a 64b device BAR (comprising of BAR4 and BAR5 region)
> + * to the VM and is represented as usemem.
> + * Moreover, the VM GPU device driver needs a non-cacheable region to
> + * support the MIG feature. This region is also exposed as a 64b BAR
> + * (comprising of BAR2 and BAR3 region) and represented as resmem.
> + */
> +#define RESMEM_REGION_INDEX VFIO_PCI_BAR2_REGION_INDEX
> +#define USEMEM_REGION_INDEX VFIO_PCI_BAR4_REGION_INDEX
> +
> +/* Memory size expected as non cached and reserved by the VM driver */
> +#define RESMEM_SIZE SZ_1G
> +
> +/* A hardwired and constant ABI value between the GPU FW and VFIO driver. */
> +#define MEMBLK_SIZE SZ_512M
> +
> +/*
> + * The state of the two device memory region - resmem and usemem - is
> + * saved as struct mem_region.
> + */
> +struct mem_region {
> + phys_addr_t memphys; /* Base physical address of the region */
> + size_t memlength; /* Region size */
> + size_t bar_size; /* Reported region BAR size */
> + __le64 bar_val; /* Emulated BAR offset registers */
> + union {
> + void *memaddr;
> + void __iomem *ioaddr;
> + }; /* Base virtual address of the region */
> +};
> +
> +struct nvgrace_gpu_pci_core_device {
> + struct vfio_pci_core_device core_device;
> + /* Cached and usable memory for the VM. */
> + struct mem_region usemem;
> + /* Non cached memory carved out from the end of device memory */
> + struct mem_region resmem;
> + /* Lock to control device memory kernel mapping */
> + struct mutex remap_lock;
> +};
> +
> +static void nvgrace_gpu_init_fake_bar_emu_regs(struct vfio_device *core_vdev)
> +{
> + struct nvgrace_gpu_pci_core_device *nvdev =
> + container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
> + core_device.vdev);
> +
> + nvdev->resmem.bar_val = 0;
> + nvdev->usemem.bar_val = 0;
> +}
> +
> +/* Choose the structure corresponding to the fake BAR with a given index. */
> +static struct mem_region *
> +nvgrace_gpu_memregion(int index,
> + struct nvgrace_gpu_pci_core_device *nvdev)
> +{
> + if (index == USEMEM_REGION_INDEX)
> + return &nvdev->usemem;
> +
> + if (index == RESMEM_REGION_INDEX)
> + return &nvdev->resmem;
> +
> + return NULL;
> +}
> +
> +static int nvgrace_gpu_open_device(struct vfio_device *core_vdev)
> +{
> + struct vfio_pci_core_device *vdev =
> + container_of(core_vdev, struct vfio_pci_core_device, vdev);
> + struct nvgrace_gpu_pci_core_device *nvdev =
> + container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
> + core_device.vdev);
> + int ret;
> +
> + ret = vfio_pci_core_enable(vdev);
> + if (ret)
> + return ret;
> +
> + if (nvdev->usemem.memlength) {
> + nvgrace_gpu_init_fake_bar_emu_regs(core_vdev);
> + mutex_init(&nvdev->remap_lock);
> + }
> +
> + vfio_pci_core_finish_enable(vdev);
> +
> + return 0;
> +}
> +
> +static void nvgrace_gpu_close_device(struct vfio_device *core_vdev)
> +{
> + struct nvgrace_gpu_pci_core_device *nvdev =
> + container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
> + core_device.vdev);
> +
> + /* Unmap the mapping to the device memory cached region */
> + if (nvdev->usemem.memaddr) {
> + memunmap(nvdev->usemem.memaddr);
> + nvdev->usemem.memaddr = NULL;
> + }
> +
> + /* Unmap the mapping to the device memory non-cached region */
> + if (nvdev->resmem.ioaddr) {
> + iounmap(nvdev->resmem.ioaddr);
> + nvdev->resmem.ioaddr = NULL;
> + }
> +
> + mutex_destroy(&nvdev->remap_lock);
> +
> + vfio_pci_core_close_device(core_vdev);
> +}
> +
> +static int nvgrace_gpu_mmap(struct vfio_device *core_vdev,
> + struct vm_area_struct *vma)
> +{
> + struct nvgrace_gpu_pci_core_device *nvdev =
> + container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
> + core_device.vdev);
No need for a new line here.
> +
> + struct mem_region *memregion;
> + unsigned long start_pfn;
> + u64 req_len, pgoff, end;
> + unsigned int index;
> + int ret = 0;
> +
> + index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
> +
> + memregion = nvgrace_gpu_memregion(index, nvdev);
> + if (!memregion)
> + return vfio_pci_core_mmap(core_vdev, vma);
> +
> + /*
> + * Request to mmap the BAR. Map to the CPU accessible memory on the
> + * GPU using the memory information gathered from the system ACPI
> + * tables.
> + */
> + pgoff = vma->vm_pgoff &
> + ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
> +
> + if (check_sub_overflow(vma->vm_end, vma->vm_start, &req_len) ||
> + check_add_overflow(PHYS_PFN(memregion->memphys), pgoff, &start_pfn) ||
> + check_add_overflow(PFN_PHYS(pgoff), req_len, &end))
> + return -EOVERFLOW;
> +
> + /*
> + * Check that the mapping request does not go beyond available device
> + * memory size
> + */
> + if (end > memregion->memlength)
> + return -EINVAL;
> +
> + /*
> + * The carved out region of the device memory needs the NORMAL_NC
> + * property. Communicate as such to the hypervisor.
> + */
> + if (index == RESMEM_REGION_INDEX)
> + vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
> +
> + /*
> + * Perform a PFN map to the memory and back the device BAR by the
> + * GPU memory.
> + *
> + * The available GPU memory size may not be power-of-2 aligned. The
> + * remainder is only backed by vfio_device_ops read/write handlers.
> + *
> + * During device reset, the GPU is safely disconnected to the CPU
> + * and access to the BAR will be immediately returned preventing
> + * machine check.
> + */
> + ret = remap_pfn_range(vma, vma->vm_start, start_pfn,
> + req_len, vma->vm_page_prot);
> + if (ret)
> + return ret;
> +
> + vma->vm_pgoff = start_pfn;
> +
> + return 0;
> +}
> +
> +static long
> +nvgrace_gpu_ioctl_get_region_info(struct vfio_device *core_vdev,
> + unsigned long arg)
> +{
> + struct nvgrace_gpu_pci_core_device *nvdev =
> + container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
> + core_device.vdev);
> + unsigned long minsz = offsetofend(struct vfio_region_info, offset);
> + struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
> + struct vfio_region_info_cap_sparse_mmap *sparse;
> + struct vfio_region_info info;
> + struct mem_region *memregion;
> + u32 size;
> + int ret;
> +
> + if (copy_from_user(&info, (void __user *)arg, minsz))
> + return -EFAULT;
> +
> + if (info.argsz < minsz)
> + return -EINVAL;
> +
> + /*
> + * Request to determine the BAR region information. Send the
> + * GPU memory information.
> + */
> + memregion = nvgrace_gpu_memregion(info.index, nvdev);
> + if (!memregion)
> + return vfio_pci_core_ioctl(core_vdev,
> + VFIO_DEVICE_GET_REGION_INFO, arg);
> +
> + size = struct_size(sparse, areas, 1);
> +
> + /*
> + * Setup for sparse mapping for the device memory. Only the
> + * available device memory on the hardware is shown as a
> + * mappable region.
> + */
> + sparse = kzalloc(size, GFP_KERNEL);
> + if (!sparse)
> + return -ENOMEM;
> +
> + sparse->nr_areas = 1;
> + sparse->areas[0].offset = 0;
> + sparse->areas[0].size = memregion->memlength;
> + sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
> + sparse->header.version = 1;
> +
> + ret = vfio_info_add_capability(&caps, &sparse->header, size);
> + kfree(sparse);
> + if (ret)
> + return ret;
> +
> + info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
> + /*
> + * The region memory size may not be power-of-2 aligned.
> + * Given that the memory as a BAR and may not be
> + * aligned, roundup to the next power-of-2.
> + */
> + info.size = memregion->bar_size;
> + info.flags = VFIO_REGION_INFO_FLAG_READ |
> + VFIO_REGION_INFO_FLAG_WRITE |
> + VFIO_REGION_INFO_FLAG_MMAP;
> +
> + if (caps.size) {
> + info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
> + if (info.argsz < sizeof(info) + caps.size) {
> + info.argsz = sizeof(info) + caps.size;
> + info.cap_offset = 0;
> + } else {
> + vfio_info_cap_shift(&caps, sizeof(info));
> + if (copy_to_user((void __user *)arg +
> + sizeof(info), caps.buf,
> + caps.size)) {
> + kfree(caps.buf);
> + return -EFAULT;
> + }
> + info.cap_offset = sizeof(info);
> + }
> + kfree(caps.buf);
> + }
> + return copy_to_user((void __user *)arg, &info, minsz) ?
> + -EFAULT : 0;
> +}
> +
> +static long nvgrace_gpu_ioctl(struct vfio_device *core_vdev,
> + unsigned int cmd, unsigned long arg)
> +{
> + switch (cmd) {
> + case VFIO_DEVICE_GET_REGION_INFO:
> + return nvgrace_gpu_ioctl_get_region_info(core_vdev, arg);
> + case VFIO_DEVICE_IOEVENTFD:
> + return -ENOTTY;
> + case VFIO_DEVICE_RESET:
> + nvgrace_gpu_init_fake_bar_emu_regs(core_vdev);
> + fallthrough;
> + default:
> + return vfio_pci_core_ioctl(core_vdev, cmd, arg);
> + }
> +}
> +
> +static __le64
> +nvgrace_gpu_get_read_value(size_t bar_size, u64 flags, __le64 val64)
> +{
> + u64 tmp_val;
> +
> + tmp_val = le64_to_cpu(val64);
> + tmp_val &= ~(bar_size - 1);
> + tmp_val |= flags;
> +
> + return cpu_to_le64(tmp_val);
> +}
> +
> +/*
> + * Both the usable (usemem) and the reserved (resmem) device memory region
> + * are exposed as a 64b fake device BARs in the VM. These fake BARs must
> + * respond to the accesses on their respective PCI config space offsets.
> + *
> + * resmem BAR owns PCI_BASE_ADDRESS_2 & PCI_BASE_ADDRESS_3.
> + * usemem BAR owns PCI_BASE_ADDRESS_4 & PCI_BASE_ADDRESS_5.
> + */
> +static ssize_t
> +nvgrace_gpu_read_config_emu(struct vfio_device *core_vdev,
> + char __user *buf, size_t count, loff_t *ppos)
> +{
> + struct nvgrace_gpu_pci_core_device *nvdev =
> + container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
> + core_device.vdev);
> + u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
> + struct mem_region *memregion = NULL;
> + __le64 val64;
> + size_t register_offset;
> + loff_t copy_offset;
> + size_t copy_count;
> + int ret;
> +
> + ret = vfio_pci_core_read(core_vdev, buf, count, ppos);
> + if (ret < 0)
> + return ret;
> +
> + if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2,
> + sizeof(val64),
> + ©_offset, ©_count,
> + ®ister_offset))
> + memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev);
> + else if (vfio_pci_core_range_intersect_range(pos, count,
> + PCI_BASE_ADDRESS_4,
> + sizeof(val64),
> + ©_offset, ©_count,
> + ®ister_offset))
> + memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev);
> +
> + if (memregion) {
> + val64 = nvgrace_gpu_get_read_value(memregion->bar_size,
> + PCI_BASE_ADDRESS_MEM_TYPE_64 |
> + PCI_BASE_ADDRESS_MEM_PREFETCH,
> + memregion->bar_val);
> + if (copy_to_user(buf + copy_offset,
> + (void *)&val64 + register_offset, copy_count)) {
> + /*
> + * The position has been incremented in
> + * vfio_pci_core_read. Reset the offset back to the
> + * starting position.
> + */
> + *ppos -= count;
> + return -EFAULT;
> + }
> + }
> +
> + return count;
> +}
> +
> +static ssize_t
> +nvgrace_gpu_write_config_emu(struct vfio_device *core_vdev,
> + const char __user *buf, size_t count, loff_t *ppos)
> +{
> + struct nvgrace_gpu_pci_core_device *nvdev =
> + container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
> + core_device.vdev);
> + u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
> + struct mem_region *memregion = NULL;
> + size_t register_offset;
> + loff_t copy_offset;
> + size_t copy_count;
> +
> + if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2,
> + sizeof(u64), ©_offset,
> + ©_count, ®ister_offset))
> + memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev);
> + else if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_4,
> + sizeof(u64), ©_offset,
> + ©_count, ®ister_offset))
> + memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev);
> +
> + if (memregion) {
> + if (copy_from_user((void *)&memregion->bar_val + register_offset,
> + buf + copy_offset, copy_count))
> + return -EFAULT;
> + *ppos += copy_count;
> + return copy_count;
> + }
> +
> + return vfio_pci_core_write(core_vdev, buf, count, ppos);
> +}
> +
> +/*
> + * Ad hoc map the device memory in the module kernel VA space. Primarily needed
> + * as vfio does not require the userspace driver to only perform accesses through
> + * mmaps of the vfio-pci BAR regions and such accesses should be supported using
> + * vfio_device_ops read/write implementations.
> + *
> + * The usemem region is cacheable memory and hence is memremaped.
> + * The resmem region is non-cached and is mapped using ioremap_wc (NORMAL_NC).
> + */
> +static int
> +nvgrace_gpu_map_device_mem(int index,
> + struct nvgrace_gpu_pci_core_device *nvdev)
> +{
> + struct mem_region *memregion;
> + int ret = 0;
> +
> + memregion = nvgrace_gpu_memregion(index, nvdev);
> + if (!memregion)
> + return -EINVAL;
> +
> + mutex_lock(&nvdev->remap_lock);
> +
> + if (memregion->memaddr)
> + goto unlock;
> +
> + if (index == USEMEM_REGION_INDEX)
> + memregion->memaddr = memremap(memregion->memphys,
> + memregion->memlength,
> + MEMREMAP_WB);
> + else
> + memregion->ioaddr = ioremap_wc(memregion->memphys,
> + memregion->memlength);
> +
> + if (!memregion->memaddr)
> + ret = -ENOMEM;
> +
> +unlock:
> + mutex_unlock(&nvdev->remap_lock);
> +
> + return ret;
> +}
> +
> +/*
> + * Read the data from the device memory (mapped either through ioremap
> + * or memremap) into the user buffer.
> + */
> +static int
> +nvgrace_gpu_map_and_read(struct nvgrace_gpu_pci_core_device *nvdev,
> + char __user *buf, size_t mem_count, loff_t *ppos)
> +{
> + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
> + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
> + int ret;
> +
> + if (!mem_count)
> + return 0;
> +
> + /*
> + * Handle read on the BAR regions. Map to the target device memory
> + * physical address and copy to the request read buffer.
> + */
> + ret = nvgrace_gpu_map_device_mem(index, nvdev);
> + if (ret)
> + return ret;
> +
> + if (index == USEMEM_REGION_INDEX) {
> + if (copy_to_user(buf,
> + (u8 *)nvdev->usemem.memaddr + offset,
> + mem_count))
> + ret = -EFAULT;
> + } else {
> + /*
> + * The hardware ensures that the system does not crash when
> + * the device memory is accessed with the memory enable
> + * turned off. It synthesizes ~0 on such read. So there is
> + * no need to check or support the disablement/enablement of
> + * BAR through PCI_COMMAND config space register. Pass
> + * test_mem flag as false.
> + */
> + ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false,
> + nvdev->resmem.ioaddr,
> + buf, offset, mem_count,
> + 0, 0, false);
> + }
> +
> + return ret;
> +}
> +
> +/*
> + * Read count bytes from the device memory at an offset. The actual device
> + * memory size (available) may not be a power-of-2. So the driver fakes
> + * the size to a power-of-2 (reported) when exposing to a user space driver.
> + *
> + * Reads starting beyond the reported size generate -EINVAL; reads extending
> + * beyond the actual device size is filled with ~0; reads extending beyond
> + * the reported size are truncated.
> + */
> +static ssize_t
> +nvgrace_gpu_read_mem(struct nvgrace_gpu_pci_core_device *nvdev,
> + char __user *buf, size_t count, loff_t *ppos)
> +{
> + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
> + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
> + struct mem_region *memregion;
> + size_t mem_count, i;
> + u8 val = 0xFF;
> + int ret;
> +
> + memregion = nvgrace_gpu_memregion(index, nvdev);
> + if (!memregion)
Can that happen ? it was just tested by the caller.
> + return -EINVAL;
> +
> + if (offset >= memregion->bar_size)
> + return -EINVAL;
> +
> + /* Clip short the read request beyond reported BAR size */
> + count = min(count, memregion->bar_size - (size_t)offset);
> +
> + /*
> + * Determine how many bytes to be actually read from the device memory.
> + * Read request beyond the actual device memory size is filled with ~0,
> + * while those beyond the actual reported size is skipped.
> + */
> + if (offset >= memregion->memlength)
> + mem_count = 0;
> + else
> + mem_count = min(count, memregion->memlength - (size_t)offset);
> +
> + ret = nvgrace_gpu_map_and_read(nvdev, buf, mem_count, ppos);
> + if (ret)
> + return ret;
> +
> + /*
> + * Only the device memory present on the hardware is mapped, which may
> + * not be power-of-2 aligned. A read to an offset beyond the device memory
> + * size is filled with ~0.
> + */
> + for (i = mem_count; i < count; i++)
> + put_user(val, (unsigned char __user *)(buf + i));
Did you condier a failure here ?
> +
> + *ppos += count;
> + return count;
> +}
> +
> +static ssize_t
> +nvgrace_gpu_read(struct vfio_device *core_vdev,
> + char __user *buf, size_t count, loff_t *ppos)
> +{
> + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
> + struct nvgrace_gpu_pci_core_device *nvdev =
> + container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
> + core_device.vdev);
> +
> + if (nvgrace_gpu_memregion(index, nvdev))
> + return nvgrace_gpu_read_mem(nvdev, buf, count, ppos);
> +
> + if (index == VFIO_PCI_CONFIG_REGION_INDEX)
> + return nvgrace_gpu_read_config_emu(core_vdev, buf, count, ppos);
> +
> + return vfio_pci_core_read(core_vdev, buf, count, ppos);
> +}
> +
> +/*
> + * Write the data to the device memory (mapped either through ioremap
> + * or memremap) from the user buffer.
> + */
> +static int
> +nvgrace_gpu_map_and_write(struct nvgrace_gpu_pci_core_device *nvdev,
> + const char __user *buf, size_t mem_count,
> + loff_t *ppos)
> +{
> + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
> + loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
> + int ret;
> +
> + if (!mem_count)
> + return 0;
> +
> + ret = nvgrace_gpu_map_device_mem(index, nvdev);
> + if (ret)
> + return ret;
> +
> + if (index == USEMEM_REGION_INDEX) {
> + if (copy_from_user((u8 *)nvdev->usemem.memaddr + pos,
> + buf, mem_count))
> + return -EFAULT;
> + } else {
> + /*
> + * The hardware ensures that the system does not crash when
> + * the device memory is accessed with the memory enable
> + * turned off. It drops such writes. So there is no need to
> + * check or support the disablement/enablement of BAR
> + * through PCI_COMMAND config space register. Pass test_mem
> + * flag as false.
> + */
> + ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false,
> + nvdev->resmem.ioaddr,
> + (char __user *)buf, pos, mem_count,
> + 0, 0, true);
> + }
> +
> + return ret;
> +}
> +
> +/*
> + * Write count bytes to the device memory at a given offset. The actual device
> + * memory size (available) may not be a power-of-2. So the driver fakes the
> + * size to a power-of-2 (reported) when exposing to a user space driver.
> + *
> + * Writes extending beyond the reported size are truncated; writes starting
> + * beyond the reported size generate -EINVAL.
> + */
> +static ssize_t
> +nvgrace_gpu_write_mem(struct nvgrace_gpu_pci_core_device *nvdev,
> + size_t count, loff_t *ppos, const char __user *buf)
> +{
> + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
> + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
> + struct mem_region *memregion;
> + size_t mem_count;
> + int ret = 0;
> +
> + memregion = nvgrace_gpu_memregion(index, nvdev);
> + if (!memregion)
Same as the above note in nvgrace_gpu_read_mem().
> + return -EINVAL;
> +
> + if (offset >= memregion->bar_size)
> + return -EINVAL;
> +
> + /* Clip short the write request beyond reported BAR size */
> + count = min(count, memregion->bar_size - (size_t)offset);
> +
> + /*
> + * Determine how many bytes to be actually written to the device memory.
> + * Do not write to the offset beyond available size.
> + */
> + if (offset >= memregion->memlength)
> + goto exitfn;
> +
> + /*
> + * Only the device memory present on the hardware is mapped, which may
> + * not be power-of-2 aligned. Drop access outside the available device
> + * memory on the hardware.
> + */
> + mem_count = min(count, memregion->memlength - (size_t)offset);
> +
> + ret = nvgrace_gpu_map_and_write(nvdev, buf, mem_count, ppos);
> + if (ret)
> + return ret;
> +
> +exitfn:
> + *ppos += count;
> + return count;
> +}
> +
> +static ssize_t
> +nvgrace_gpu_write(struct vfio_device *core_vdev,
> + const char __user *buf, size_t count, loff_t *ppos)
> +{
> + struct nvgrace_gpu_pci_core_device *nvdev =
> + container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
> + core_device.vdev);
> + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
> +
> + if (nvgrace_gpu_memregion(index, nvdev))
> + return nvgrace_gpu_write_mem(nvdev, count, ppos, buf);
> +
> + if (index == VFIO_PCI_CONFIG_REGION_INDEX)
> + return nvgrace_gpu_write_config_emu(core_vdev, buf, count, ppos);
> +
> + return vfio_pci_core_write(core_vdev, buf, count, ppos);
> +}
> +
> +static const struct vfio_device_ops nvgrace_gpu_pci_ops = {
> + .name = "nvgrace-gpu-vfio-pci",
> + .init = vfio_pci_core_init_dev,
> + .release = vfio_pci_core_release_dev,
> + .open_device = nvgrace_gpu_open_device,
> + .close_device = nvgrace_gpu_close_device,
> + .ioctl = nvgrace_gpu_ioctl,
> + .read = nvgrace_gpu_read,
> + .write = nvgrace_gpu_write,
> + .mmap = nvgrace_gpu_mmap,
> + .request = vfio_pci_core_request,
> + .match = vfio_pci_core_match,
> + .bind_iommufd = vfio_iommufd_physical_bind,
> + .unbind_iommufd = vfio_iommufd_physical_unbind,
> + .attach_ioas = vfio_iommufd_physical_attach_ioas,
> + .detach_ioas = vfio_iommufd_physical_detach_ioas,
> +};
> +
> +static const struct vfio_device_ops nvgrace_gpu_pci_core_ops = {
> + .name = "nvgrace-gpu-vfio-pci-core",
> + .init = vfio_pci_core_init_dev,
> + .release = vfio_pci_core_release_dev,
> + .open_device = nvgrace_gpu_open_device,
> + .close_device = vfio_pci_core_close_device,
> + .ioctl = vfio_pci_core_ioctl,
> + .device_feature = vfio_pci_core_ioctl_feature,
This entry is missing above as part of nvgrace_gpu_pci_ops.
> + .read = vfio_pci_core_read,
> + .write = vfio_pci_core_write,
> + .mmap = vfio_pci_core_mmap,
> + .request = vfio_pci_core_request,
> + .match = vfio_pci_core_match,
> + .bind_iommufd = vfio_iommufd_physical_bind,
> + .unbind_iommufd = vfio_iommufd_physical_unbind,
> + .attach_ioas = vfio_iommufd_physical_attach_ioas,
> + .detach_ioas = vfio_iommufd_physical_detach_ioas,
> +};
> +
> +static struct
> +nvgrace_gpu_pci_core_device *nvgrace_gpu_drvdata(struct pci_dev *pdev)
> +{
> + struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev);
> +
> + return container_of(core_device, struct nvgrace_gpu_pci_core_device,
> + core_device);
> +}
The above function is called only once.
You could just inline its first line (i.e. struct vfio_pci_core_device
*core_device = dev_get_drvdata(&pdev->dev); and drop it.
> +static int
> +nvgrace_gpu_fetch_memory_property(struct pci_dev *pdev,
> + u64 *pmemphys, u64 *pmemlength)
> +{
> + int ret;
> +
> + /*
> + * The memory information is present in the system ACPI tables as DSD
> + * properties nvidia,gpu-mem-base-pa and nvidia,gpu-mem-size.
> + */
> + ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-base-pa",
> + pmemphys);
> + if (ret)
> + return ret;
> +
> + if (*pmemphys > type_max(phys_addr_t))
> + return -EOVERFLOW;
> +
> + ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-size",
> + pmemlength);
> + if (ret)
> + return ret;
> +
> + if (*pmemlength > type_max(size_t))
> + return -EOVERFLOW;
> +
> + /*
> + * If the C2C link is not up due to an error, the coherent device
> + * memory size is returned as 0. Fail in such case.
> + */
> + if (*pmemlength == 0)
> + return -ENOMEM;
> +
> + return ret;
> +}
> +
> +static int
> +nvgrace_gpu_init_nvdev_struct(struct pci_dev *pdev,
> + struct nvgrace_gpu_pci_core_device *nvdev,
> + u64 memphys, u64 memlength)
> +{
> + int ret = 0;
> +
> + /*
> + * The VM GPU device driver needs a non-cacheable region to support
> + * the MIG feature. Since the device memory is mapped as NORMAL cached,
> + * carve out a region from the end with a different NORMAL_NC
> + * property (called as reserved memory and represented as resmem). This
> + * region then is exposed as a 64b BAR (region 2 and 3) to the VM, while
> + * exposing the rest (termed as usable memory and represented using usemem)
> + * as cacheable 64b BAR (region 4 and 5).
> + *
> + * devmem (memlength)
> + * |-------------------------------------------------|
> + * | |
> + * usemem.memphys resmem.memphys
> + */
> + nvdev->usemem.memphys = memphys;
> +
> + /*
> + * The device memory exposed to the VM is added to the kernel by the
> + * VM driver module in chunks of memory block size. Only the usable
> + * memory (usemem) is added to the kernel for usage by the VM
> + * workloads. Make the usable memory size memblock aligned.
> + */
> + if (check_sub_overflow(memlength, RESMEM_SIZE,
> + &nvdev->usemem.memlength)) {
> + ret = -EOVERFLOW;
> + goto done;
> + }
> +
> + /*
> + * The USEMEM part of the device memory has to be MEMBLK_SIZE
> + * aligned. This is a hardwired ABI value between the GPU FW and
> + * VFIO driver. The VM device driver is also aware of it and make
> + * use of the value for its calculation to determine USEMEM size.
> + */
> + nvdev->usemem.memlength = round_down(nvdev->usemem.memlength,
> + MEMBLK_SIZE);
> + if ((check_add_overflow(nvdev->usemem.memphys,
> + nvdev->usemem.memlength,
> + &nvdev->resmem.memphys)) ||
> + (check_sub_overflow(memlength, nvdev->usemem.memlength,
> + &nvdev->resmem.memlength))) {
> + ret = -EOVERFLOW;
> + goto done;
> + }
> +
> + if (nvdev->usemem.memlength == 0) {
> + ret = -EINVAL;
> + goto done;
> + }
> +
Couldn't that check be done earlier in this function ?
> + /*
> + * The memory regions are exposed as BARs. Calculate and save
> + * the BAR size for them.
> + */
> + nvdev->usemem.bar_size = roundup_pow_of_two(nvdev->usemem.memlength);
> + nvdev->resmem.bar_size = roundup_pow_of_two(nvdev->resmem.memlength);
> +done:
> + return ret;
> +}
> +
> +static int nvgrace_gpu_probe(struct pci_dev *pdev,
> + const struct pci_device_id *id)
> +{
> + const struct vfio_device_ops *ops = &nvgrace_gpu_pci_core_ops;
> + struct nvgrace_gpu_pci_core_device *nvdev;
> + u64 memphys, memlength;
> + int ret;
> +
> + ret = nvgrace_gpu_fetch_memory_property(pdev, &memphys, &memlength);
> + if (!ret)
> + ops = &nvgrace_gpu_pci_ops;
> +
> + nvdev = vfio_alloc_device(nvgrace_gpu_pci_core_device, core_device.vdev,
> + &pdev->dev, ops);
> + if (IS_ERR(nvdev))
> + return PTR_ERR(nvdev);
> +
> + dev_set_drvdata(&pdev->dev, &nvdev->core_device);
> +
> + if (ops == &nvgrace_gpu_pci_ops) {
> + /*
> + * Device memory properties are identified in the host ACPI
> + * table. Set the nvgrace_gpu_pci_core_device structure.
> + */
> + ret = nvgrace_gpu_init_nvdev_struct(pdev, nvdev,
> + memphys, memlength);
> + if (ret)
> + goto out_put_vdev;
> + }
> +
> + ret = vfio_pci_core_register_device(&nvdev->core_device);
> + if (ret)
> + goto out_put_vdev;
> +
> + return ret;
> +
> +out_put_vdev:
> + vfio_put_device(&nvdev->core_device.vdev);
> + return ret;
> +}
> +
> +static void nvgrace_gpu_remove(struct pci_dev *pdev)
> +{
> + struct nvgrace_gpu_pci_core_device *nvdev = nvgrace_gpu_drvdata(pdev);
> + struct vfio_pci_core_device *vdev = &nvdev->core_device;
> +
> + vfio_pci_core_unregister_device(vdev);
> + vfio_put_device(&vdev->vdev);
> +}
> +
> +static const struct pci_device_id nvgrace_gpu_vfio_pci_table[] = {
> + /* GH200 120GB */
> + { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2342) },
> + /* GH200 480GB */
> + { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2345) },
> + {}
> +};
> +
> +MODULE_DEVICE_TABLE(pci, nvgrace_gpu_vfio_pci_table);
> +
> +static struct pci_driver nvgrace_gpu_vfio_pci_driver = {
> + .name = KBUILD_MODNAME,
> + .id_table = nvgrace_gpu_vfio_pci_table,
> + .probe = nvgrace_gpu_probe,
> + .remove = nvgrace_gpu_remove,
> + .err_handler = &vfio_pci_core_err_handlers,
> + .driver_managed_dma = true,
> +};
> +
> +module_pci_driver(nvgrace_gpu_vfio_pci_driver);
> +
> +MODULE_LICENSE("GPL");
> +MODULE_AUTHOR("Ankit Agrawal <ankita@...dia.com>");
> +MODULE_AUTHOR("Aniket Agashe <aniketa@...dia.com>");
> +MODULE_DESCRIPTION("VFIO NVGRACE GPU PF - User Level driver for NVIDIA devices with CPU coherently accessible device memory");
I'm not in the full details here, however, the construction of the
variant driver looks OK, so:
Reviewed-by: Yishai Hadas <yishaih@...dia.com>
Yishai
Powered by blists - more mailing lists